Advanced Structure Analysis

download Advanced Structure Analysis

of 37

Transcript of Advanced Structure Analysis

  • 8/7/2019 Advanced Structure Analysis

    1/37

    Arab academy for Science, Technology and Maritime Transport

    Submitted to:Dr. El Sayed Hegazy

    Prepared by:Eng. Mohamed Abdel Aziz Fahmy

  • 8/7/2019 Advanced Structure Analysis

    2/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 2

    Advanced Structure Analysis

    Introduction

    1- Longitudinal strength calculation2- Local strength calculation3- Transverse strength calculation4- Docking strength calculation5- Building berth calculation6- Launching calculation7- Strength calculation in damaged condition8- Strength after repair

    1- Longitudinal strength calculation

    CH.1: Loads acting on ships during service

    There are two types of loading (stresses) acting on a ship duringservice:

    a) General structure stresses: which appear at any point along theships length (with different values)

    b) Local stresses: which appear in certain places due to local loadsacting on it

    a) Generalstructure stresses

    Water pressure Racking stressesLongitudinal

    bending of shipshull

  • 8/7/2019 Advanced Structure Analysis

    3/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 3

    10 2 3 4 5

    Stepped Weight Curve (WC)

    Bouyancy Curve (BC)

    LoadCurve

    Shear Force Diagram (SFD)

    Still Bending Moment Diagram (M still )

    Zero Shear

    Qmax

    Mmax

    B

    G

    6 7 8 9 10

    W

    L

    FPAP

    BonjeanCurves

  • 8/7/2019 Advanced Structure Analysis

    4/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 4

    To be noticed that:

    The calculating components (MStill, MHog , MSag ) are called static components of bending moment There is another component; dynamic component of bending moment(MDynamic ) to be added to the above mentioned components to get thetotal bending moment

    MTotal = MStatic + MDynamic

    There are imperial formula to calculate MDynamic

    Stress Distribution on Mid-Ship SectionFrom simple beam theory we get:

    I y M .

    where,

    M: Bending moment acting on the sectionI : Moment of inertia about the neutral axis of the sectiony: Distance of the point in the section at which a stress to be calculated from

    the neutral axis

  • 8/7/2019 Advanced Structure Analysis

    5/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 5

    Calculation of the moment of inertia of a mid-shipsection about the neutral axis of the section

    Steps:

    1. Draw the mid-ship section of the ship showing only all longitudinalstiffeners with its scantling

    2. Numbering all these longitudinal members

    No Item A i(Scantling Area)

    Xi (Distancefrom base

    line)

    M (Moment

    about baseline)

    Yi (xi e)

    **

    ii***

    I i (ii + A i * (x i e) 2

    i (M/ I * yi)

    123...

    A M

    ** e = M / A

    *** ii = I + ( Ai*L2

    )

  • 8/7/2019 Advanced Structure Analysis

    6/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 6

    Approximate formula for calculating maximum staticbending moment (M max ) at mid-ship section

    Mmax = L / k , where k = 29 32 passengerin tons 22 30 cargo

    Qmax = / k L : in meters 40 50 tanker35 40 Bulk carrier

    Notice:

    Shearing force at any section is equal to the sum of all forces locatedon the right or the left of the section

    Bending moment at any section is equal to the sum of all momentslocated on the right or the left of the section

    e.g.:A box barge has 5 compartments 200 m long. The weight of the barge is

    uniformly distributed along the length. 500 tons of cargo is added at each ofthe end compartments.

    Draw the shearing force diagram (S.F.D) and bending moment diagram(B.M.D) and find the value of maximum bending moment.

  • 8/7/2019 Advanced Structure Analysis

    7/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 7

    W.C.

    500 ton 500 ton

    500/40 12.5 t/m

    1000/200 5 t/m

    7.5 t/m 12.5 - 5

    A B

    Q A =Q max =7.5*40 =300

    Zero Shear

    MA = (7.5*40)*20 = 6000

    B.C.

    Load Curve

    S.F.D.

    B.M.D.

    MB = [(7.5*40)*80 ]-[(5*60)*30 ] = 24000 - 9000 = 15000

    QA = 7.5 * 40 = 300 . . . . . . . . . . . . Q maxQB = 0 . . . . . . . . . . . . Zero shear

    MA = 7.5 * 40 * 20 = 6000 MB = 300 * 80 300 * 30

    = 24000 9000= 15000 . . . . . . . . . . . . M max

  • 8/7/2019 Advanced Structure Analysis

    8/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 8

    Solution of statically undetermined beams

    In these problems the number of unknowns more than three

    qMA MB

    YA YB

    Unknowns = 4

    Equilibrium Equations X = 0 Y = 0 M = 0 Eq. 4

    Compatibility Equation:

    1. Super position method

    M A M BP

    Y A Y B

    M = 0 M A = MB Y = 0 Y A = YB = P/2 X = 0 = = 0

  • 8/7/2019 Advanced Structure Analysis

    9/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 9

    EI PL

    EI L M

    EI L M

    B

    A

    16

    6

    3

    2

    3

    2

    1

    A =

    2. Three Moments Equations

    M A M D

    Y A Y D

    B C

    M B M Cq(x)

    A D

    6 unknowns (M A, MB, MC, MD, YA, YD), So 6 equations are needed:

    A = 0 BA = BC Y = 0

    D = 0 CB = CD M = 0

    From 3:

    )()(6336

    X q

    BC C B

    X q

    BA B A

    EI L M

    EI L M

    EI L M

    EI L M

    From 4:

    )()( 6336 X qCD

    DC X q

    CBC B

    EI L M

    EI L M

    EI L M

    EI L M

    M A

    M B

    P

  • 8/7/2019 Advanced Structure Analysis

    10/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 10

    e.g.:Draw the Bending Moment Diagram for the following continuous beam.

    4 unknowns (M 0, M1, M2 and M 3), So 4 equations are needed:

    0 = 0 10 = 12 3 = 0 21 = 23

    06324

    )()()(

    103

    0

    1000000

    EI L M

    EI L M

    EI Lq

    M M q

    03645

    )()()(

    323

    332333

    EI L M

    EI L M

    EI qL

    M M q

    82

    201

    0

    Lq M M

    1152

    22

    3

    qL M M

    2

    EI L M

    EI L M

    EI Lq

    M M q

    3624

    )()()(

    103

    0

    11001001010 3

    EI L M

    EI L M

    EI PL

    M M P

    6316

    )()()(

    212

    2121121212 4

    3=4 PL Lq

    M M 375.04

    20

    20 5

    EI L M

    EI L M

    EI PL

    M M P

    3616

    )()()(

    212

    2211212121

    6

    EI L M

    EI L M

    EI qL

    M M q

    633607

    )()()(

    323

    3232232323

    7

    6=7 qLPL M M 467.0375.031 8

    From 1, 2, 5, 8 the unknown moments M0, M1, M2 and M 3 can be determined

    M0 = ]375.3636)3.04

    ([ 0 Pqq

    L L M1 = ]18625.17074.0[ PqL L

    M2 = ]36363.0[ PqL L M3 = ]181812[ PqL

    L

    qPq (t/m)

    0 1 2 3

    o

    M max =0.1283qLat 0.5774L

    M max =PL/4at point of load

    M max =q L/8at 0.5L

    o

    M 0 M 1 M 2 M 3

  • 8/7/2019 Advanced Structure Analysis

    11/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 11

    EX.:Draw the Bending Moment Diagram for the following continuous beam.

    2 unknowns ( M 1 and M 2), So 2 equations are need

    10 = 12 21 = 23

    EI

    L M

    EI

    qL

    M M q

    345

    )()()(

    13

    1100101010 1

    EI

    L M

    EI

    L M

    LEI

    b LPab

    M M P

    636

    )(

    )()()(

    21

    2121121212 2

    1=2

    2

    621

    31

    3

    636*645

    345 M

    EI L M

    EI L M

    LEI PL

    EI L M

    EI qL L

    EI

    3

    EI

    L M

    EI

    L M

    LEI a LPab

    M M P

    366)(

    )()()(

    21

    2211212121 4

    EI L M

    EI Lq

    M M q

    324

    )()()(

    23

    0

    32322302323 5

    4=5 EI

    L M EI Lq

    3242

    30 6

    From 3, 6 the unknown moments M1, M2 can be determined

    q P q

    0 1 2 3

    o

    M max =0.1283qLat 0.5774L

    M max =3PL/16at point of loadM max =q L/8at 0.5L

    o

    M 0 M 1 M 2 M 3

  • 8/7/2019 Advanced Structure Analysis

    12/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 12

    i j

    M i,i-1 M i,j

    j+1i-1

    Q

    i j

    M ijQ

    M ji

    L ij

    Slop Deflection Method

    It has advantage to the other methods that it can be used in case of springtype support

    Sign convention:CW CCW

    For Moment: negative positive +ve -ve

    B.M.D +ve -ve

    Slop : positive negative

    : Rigid Body Rotation

    L A A B B

    tan

    Note:In case of rigid body support = 0

    L I stiffness

    Slop Deflection equation:

    Assume the moment direction in +ve

    ijijiij

    ij ji

    ij

    ijiji Q EI

    L M

    EI

    L M )(

    63 . . . . . . .1

    ijij jij

    ij ji

    ij

    ijij j Q EI

    L M

    EI

    L M )(

    36 . . . . . . .2

    Solving 1 & 2 for M ij & M ji . . . . . .

    =+ve =-ve

    AB

    P

    A' B'

  • 8/7/2019 Advanced Structure Analysis

    13/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 13

    ]32[2

    )]()(2[2

    ij jiij

    ijij jiji

    ij

    ijij L

    EI QQ

    L

    EI M . . . . . . .3

    ]32[2

    )]()(2[2

    iji jij

    ijijiij j

    ij

    ij ji L

    EI QQ

    L

    EI M . . . . . . .4

    Assume supports i & j are fixed ,so

    )]()(2[2

    ij jijiij

    ijij QQ L

    EI M M ij . . . . . . .5

    )]()(2[2

    ijiij jij

    ij ji QQ L

    EI M M ji . . . . . . .6

    Equation 5 & 6 are obtained on the assumption that the endsi & j are fixed.

    Therefore the moments M ij & M ji are called fixed endsmoments and they can be obtained directly from tables ofbending of simple beams.

    For example:

    P

    i j

    M ij M ji

    La b

    q

    i j

    M ij M ji

    L

    q

    i j

    M ij M ji

    L

    M ij 22

    LPab

    12

    2qL 30

    2qL

    M ji 22

    LPba

    12

    2qL 20

    2qL

    So equations 3 & 4 become

    ]32[2 ij jiij

    ijijij L

    EI M M . . . . . . .7

    ]32[2

    iji jij

    ij ji ji L

    EI M M . . . . . . .8

    By applying equilibrium equations at each support we get:

    01, ijii M M

    0]32[2]32[2 1,11,

    1,1, ij ji

    ij

    ijijiiii

    ii

    iiii L

    EI M

    L EI M . . . . . . 9

  • 8/7/2019 Advanced Structure Analysis

    14/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 14

    Equation 9 contains three unknowns jii ,, 1 is called ThreeSlops EquationApplying equilibrium equations at any support, we get thenecessary number of equations to find out the unknownslops at all supportsSubstitution the slops in equations 7 & 8, we get theunknown moments at each support

    Note:When drawing the B.M.D. draw the arrow direction andneglect the signDetermine the moments value

  • 8/7/2019 Advanced Structure Analysis

    15/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 15

    Moment Distribution Method

    This method is useful in case of more than two members meetingin one joint

    Sign convention:CW CCW

    For Moment: negative positive +ve -ve

    B.M.D +ve -ve

    Slop : positive negative

    m i = Applied external moment

    From slop deflection method (previous lecture)

    ]32[2

    444

    44 iiij

    iii L

    EI M M . . . . . . .1

    But, 04 04i 04i M (No load)

    444

    44

    4iii

    i

    ii K L

    EI M . . . . . . .2

    Where, 44

    44 4

    4i

    i

    ii Ek L

    EI K ,

    4

    44

    i

    ii L

    I k =Stiffness Factor

    Similarly we can get

    111 iii K M . . .3 222 iii K M . . .4 333 iii K M . . .5

    In General ijijij K M . . . . . . .6

    =+ve =-ve

    1

    3

    2 4

    m ii

  • 8/7/2019 Advanced Structure Analysis

    16/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 16

    Balance of joint i

    )( 4321

    4321

    iiiii

    iiiii

    K K K K

    M M M M m

    . . . . . . .7

    4321 iiii

    i

    i K K K K m

    . . . . . . .8

    Substitute 8 in 2

    miiiii

    ii K K K K

    K M .

    4321

    44 , 44 4 ii Ek K

    miiiii

    ii k k k k

    k M .

    4321

    44 . . . . . . .9

    Similarly

    miiiii

    ii k k k k

    k M .

    4321

    11 . . . . . . .10

    miiiii

    ii k k k k

    k M .

    4321

    22 . . . . . . .11

    miiiii

    ii k k k k

    k M .

    4321

    33 . . . . . . .12

    In General ijijn j jij

    k

    k

    1 ,where n=number in joint i . . . . . . .13

    Result 1:The external moment effecting on joint i m i is distributed to othermember with a suitable ratio to the stiffness factor of all unitedmember in joint

    Moment at the far end (at point 1, 2, 3 and 4)1. consider the case when the other end is fixed

    036 4

    44

    4

    444

    i

    ii

    i

    ii

    EI L M

    EI L M

    44 21

    ii M M 21 carry over factor

    Result 2:The moment value at the far end for any member is equal to thehalf of moment that appears at the near end when the far end isfixed

    4i

    Mi4 M4i=?

  • 8/7/2019 Advanced Structure Analysis

    17/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 17

    consider the case when the other end is simply supported

    In this case 04i M ,where this end is simply supported

    Means that carry over factor = 0

    Result 3:The moment at the far end in the case of simply supported end,the carry over factor is equal to zero (C.O.F = 0), hence themoment is zero.

    )32(2 44444 iiiii k M M

    0 0 002 4 i

    24i . . . . . . .14

    Substitute 14 in 1

    )32(2 44444 iiiii k M M

    0 0

    )43(4)

    23(2

    )2

    2(2

    422

    4

    44

    ii

    x

    ii

    iiii

    Ek Ek

    k M

    . . . . . . .15

    Compare between 15 & 2

    44

    3ik

    = Reduced stiffness factor = ij

    Rij k k 4

    3

    Result 4:When the far end is simply supported, so we deal with the reducedstiffness factor

    2. Consider the case when the member intersect with the axis ofsymmetry of the system

    jiij M M

    In this case jiij M M

    Hence carry over factor = 1

    4i

    Mi4 M4i=?

    ji

    Mij Mji

  • 8/7/2019 Advanced Structure Analysis

    18/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 18

    Result 5:The moment at the far end in the case of symmetric axis, the carryover factor is equal to one (C.O.F = 1)

    ij

    ij ji

    ij

    ijiji EI

    L M EI

    L M 63

    ij

    ijiji EI

    L M 21

    )2

    1(4)(2

    2

    2

    2

    iij

    x

    iij

    iij

    ijij

    Ek Ek

    L

    I E M

    . . . . . . .16

    Compare between 16 & 2

    ijk 21

    = Modified stiffness factor = ij M ij k k 2

    1

    Result 6:When the member at the axis of symmetry, so we deal with thereduced stiffness factor

    Summary

    Far End Carry OverFactorStiffness

    FactorMoment at Far

    End

    21

    ij

    ijij L

    I k ij M 2

    1

    0 ij Rij k k 43 0

    1 ij M ij k k 21 jiij M M

    iijij m M . 1ij at one joint (sum of distribution factor at one joint

    should be equal to one)

    Mij

    Mij

    ji

    Mij Mji

  • 8/7/2019 Advanced Structure Analysis

    19/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 19

    Grillage in Ship Structures

    Grillage is a system of inter connecting beams.

    There are two types of grillages:

    Open Grillage Closed Grillage

    Ships hull consists o f number of grillages ( Deck grillage,Side grillage, Bottom grillage and Bulkhead grillage )

    Solution Of Open Grillage

    Assumptions:

    1. The beams intersect at right angle, which is true for shipstructure.

    2. The external loads are carried only by members of highernumber.

    3. The other members are loaded by reactions at connectingNodes.

    4. Neglecting all reactions between members at the nodesexcept vertical reactions.

    The purpose of grillage solution is to find out the unknownvertical reactions at nodes.

  • 8/7/2019 Advanced Structure Analysis

    20/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 20

    Example: Solve the following grillage and then draw the B.M.D. foreach member. The grillage is subjected to uniform pressure (p)(Kg/cm 2)

    To get the unknowns R 1 & R2 , fromthe slop and deflection tables atpoints 1, 2 for both transverse

    members ab & cd and longitudinalmember ef

    W1 (long) = W 1 (trans ab) . . . . . 1

    W2 (long) = W 2 (trans cd) . . . . . 2

    221212111

    2121111...

    )()()()(

    R f R f R f

    RW RW RW longW . . . . . 3

    222222121

    2222122

    ...

    )()()()(

    R f R f R f

    RW RW RW longW

    . . . . . 4

    1

    34

    1111

    0052.0384

    )()()(

    R Ei B

    q Ei

    B

    RW qW transW . . . . . 5

    2

    34

    2222

    0052.0384

    )()()(

    R Ei B

    q Ei B

    RW qW transW . . . . . 6

    R2 R1 R2'

    12 2'

    ac

    bd

    c'

    d'

    e f1

    a

    b

    R1q=p.s(t/m)

    1

    c

    d

    R2q=p.s(t/m)

    R2=R 2'L=2B

    R2

    R1

    R2'

    f11=0.0052 EIL

    f12=0.0026 EIL

    f12'=0.0026 EIL

  • 8/7/2019 Advanced Structure Analysis

    21/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 21

    Coefficient f 11 is presenting the deflection value at point 1 asa result of a unit force at the same point.Coefficient f 12 is presenting the deflection value at point 1 as

    a result of a unit force at point 2.In General: Coefficient f ij is presenting the deflection value atpoint i as a result of a unit force at point j

    Notice that: f ij = f ji Coefficient f ij is called influence coefficient and can be directlycalculated from the beam formulas table

    By applying equations 1 & 2, So 3 = 5 & 4 = 6

    From the formulas table:

    EI B

    EI pL

    f 33

    11 0416.0192

    EI B

    EI L L L L

    EI L

    L L L L L

    L EIL

    L L

    axbxbL EIL

    x pa f

    33222

    3

    22

    3

    22

    12

    0208.0384

    )88

    9

    8

    18(

    6416

    )2424

    33

    4

    33(

    6

    )2

    ()4

    (1)33(

    6

    212112 f f f

    EI B

    EI L

    EIL

    L L

    EILb pa

    f 33

    3

    33

    3

    33

    22 0176.064643

    27

    3

    )4

    3()4(1

    3

    EI B

    EI L L L L

    EI L

    L L L L L

    L EIL

    L L

    bxaxaL EIL

    x pb f

    33222

    3

    22

    3

    22

    22

    0084.012288

    13)

    1616

    9

    16

    36(

    61616

    )4444

    33

    4

    33(

    6

    )4

    ()4

    (1)33(

    6

    So

    1

    34

    2

    3

    2

    3

    1

    3

    1

    34

    221212111

    0052.02384

    0208.00208.00416.0

    0052.0384...

    R Ei B pB

    Ei B

    R EI B

    R EI B

    R EI B

    R Ei B

    q Ei B

    R f R f R f

    p B R R 221 0013.00416.00364.0

    2

    34

    2

    3

    2

    3

    1

    3

    2

    34

    222222121

    0052.02384

    0084.00176.00208.0

    0052.0384

    ...

    R Ei B pB

    Ei B

    R EI B

    R EI B

    R EI B

    R Ei B

    q Ei

    B R f R f R f

    p B R R 221 0013.00208.00208.0

  • 8/7/2019 Advanced Structure Analysis

    22/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 22

    R 2 R 1 R 2'

    cd

    R

    q=p.s(t/m)

    e f

    Bending Moment Diagram

  • 8/7/2019 Advanced Structure Analysis

    23/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 23

    Effective Breadth of Plating

    beff

    max max

    beff

    Broad Flanged BeamFor simple beam theory we know that

    I y M .

    where,

    :stress at any point in the section, y:distance of the pointfrom N.A of the section, I:moment of inertia of the section.

    This theory is based on the assumption that the stressdistribution is uniform across the breadth of the flange.

    This is not true in the case of broad flanged beam, where thestress is not uniformly distributed (see the figure).

    To calculate the stresses in broad flanged beam by usingsimple beam theory, we can use the concept of effectivebreadth of plating.

    Thus the effective breadth of plating (b eff) is defined as thatpart of the plate which if computed as uniformly stressedequal to the value of maximum stress would be able towithstand the same load acting on the original flange.

    The value of effective breadth (b eff) depends on:Boundary conditions of the beam (fixed, simple, cantilever)Type of loadingScantling of the beam

  • 8/7/2019 Advanced Structure Analysis

    24/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 24

    There are many methods to calculate the effective breadth

    ratio

    b

    beff :

    o According to some classification societies(beff)=40t 60t , where t: flange thickness.

    o Simple formulas:

    Simple supported beam Lbeff 31

    Fixed end beam Lbeff 61

    Using the concept of effective breadth, any cross stiffenedplate (closed grillage) can be converted to

    open grillage and solve it as before.

    Notice that: if calculated b eff is bigger than the spacing between girders (s),

    then b eff must be taken equal to (s)If beff(calculated)>s, then b eff = s

  • 8/7/2019 Advanced Structure Analysis

    25/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 25

    Transverse Strength of Ships

    i1 i2

    i3

    i4

    i5q = p.sp = T t/mq = Ts t/m

    Transverse Strength of Cargo Ships

    I

    2I

    3I

    6I

    : wave length h: wave height L: ship lengthL = h = /20

    Hog

    Sag

    0.5ha b

    cd

    e

    f

    2I

    ec

    Tanker

    Bracket floor Solid floor

  • 8/7/2019 Advanced Structure Analysis

    26/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 26

    Why stiffeners 2 is lighter than 1?(Consider that they have the samestiffness)

    Because its obvious that stiffeners 1 is approximatelydoubled weight stiffeners 2 by the number of stiffeners

    Determine the neutral axis of the given section.

    )(00078.0

    ])73.0(001.08.0[12

    )1(001.0])23.0(1001.0[])27.0(0015.02[

    ),(

    )(73.00048.00035.0

    )001.08.0()1001.0()0015.02()5.01001.0()10015.02(

    )(

    4

    23

    22

    3132332

    2221

    211

    m

    iineglect i y Ai y Ai y A I

    m

    A y A

    A M

    e ii

    I

    5I

    ab c

    def

    2IIdealized Mid-Ship Section

    I

    2I

    5I

    (T+0.5h-D)

    1 2

  • 8/7/2019 Advanced Structure Analysis

    27/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 27

    Example: Draw the B.M.D for the following section.

    a b

    d c

    ef

    i

    i

    i

    2i

    i

    ) / (111

    .

    ) / (12

    2

    mt

    s pq

    mt D

    p

    )(1

    )(20

    ms

    m D B

    Stiffness factor

    ab iik Rab 43

    43

    bc ik bc

    cd iik Rcd 43

    43

    ce ik ce ef ik ef 2

    Distribution factor

    73

    7443i

    ik k

    k

    bcab

    abba = 0.43

    74

    74

    ii

    k k k

    bcab

    bcbc = 0.57

    114

    114

    ii

    k k k k

    cecd bc

    bccb = 0.36

    113

    11443

    ii

    k k k k

    cecd bc

    cd cd = 0.27

    114

    114

    ii

    k k k k

    cecd bc

    cece

    = 0.36

    31

    3ii

    k k k

    ef ce

    ceec

    = 0.33

    32

    32ii

    k k

    k

    ef ce

    ef ef

    = 0.67

    Fixed End MomentsMab = Mba = Mbc = Mcb = Mcd = Mdc = 0

    Mce =30

    10030

    )10(130

    22ql = +3.33

    Mec =20

    10020

    )10(120

    22ql = -5

    Mef =12

    10012

    )10(112

    22ql = +8.33

    Mfe =12

    100

    12

    )10(1

    12

    22ql = -8.33

  • 8/7/2019 Advanced Structure Analysis

    28/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 28

    Joint a b c d e fMember ab ba bc cb cd ce dc ec ef fe

    - 0.43 0.57 0.36 0.27 0.36 - 0.33 0.67 -F.E.M. 0 0 0 0 0 +3.33 0 -5 +8.33 -8.33

    Balance -1.2 -0.9 -1.2 -1.1 -2.2

    C.O. -0.6 -0.55 -0.6 -1.1Sum 0 0 -0.6 -1.2 -0.9 +1.58 0 -6.7 +6.13 -9.43Balance +0.2 +0.14 +0.2 +0.2 +0.4

    C.O. +0.1 +0.1 +0.1 +0.2Sum 0 0 -0.5 -1 -0.76 +1.88 0 -6.4 +6.43 -9.23

    Balance -0.04 -0.03 -0.04 -0.01 -0.02C.O. -0.02 -0.005 -0.02 -0.01Sum 0 0 -0.52 -1.04 -0.79 +1.83 0 -6.43 +6.41 -9.24

    Balance +0.22 +0.3 +0.007 +0.01C.O. +0.15 +0.004 +0.005Sum 0 +0.22 -0.22 -0.89 -0.79 +1.834 0 -6.423 +6.42 -9.235

    Balance -0.055 -0.042 -0.055 +0.001 +0.002C.O. -0.027 +0.000 -0.027 +0.001Sum 0 +0.22 -0.247 -.0.945 -0.832 +1.78 0 -6.45 +6.422 -9.234

    Balance +0.012 +0.015 +0.009 +0.019C.O. +0.008 +0.005 +0.009Sum 0 +0.232 -0.232 -0.937 -0.832 +1.785 0 -6.441 +6.441 -9.225

    a0.232

    d

    f

    0.232

    0.832

    1.785

    0.937

    6.441

    6.441

    b

    c

    e

    0

    0

    9.225

  • 8/7/2019 Advanced Structure Analysis

    29/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 29

    Local Strength of Ships

    1. Local strength of double bottom:

    a) Idealization of D.B.:The bottom structure is idealized by an open grillage (b eff):

    The longitudinal members are keels and side girdersThe transverse members are solid floors

    The section of the member is I-beam

    b) Boundary conditions:If not specified, we can apply the following simple rule:

    - When a weak member connected to a strongmember, the end of the weak member is consideredfixed, while the end of the strong member isconsidered simply supported.

    c) Effect of longitudinals:the thickness of plating is increased by:

    s

    f t t o where,

    t0: original thickness, f: area of each longitudinal, s:longitudinal spacing

    d) Load on D.B.:

    B LwhT p

    p p p

    hT p

    ocw

    w

    )5.0(

    )5.0(

    arg

    w = cargo

  • 8/7/2019 Advanced Structure Analysis

    30/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 30

    ( T+0.5 h - y )

    I1

    I2

    2. Local strength of side assembly:

    a) Transverse system of framing:

    b) Longitudinal system of framing:

    Sidelongitudinals

    A

    BC

    D

    E

    T+0.5h-y

    T+0.5h

    BHD

    Web frames

    A B C D E

    q = (T+0.5h-y).s

  • 8/7/2019 Advanced Structure Analysis

    31/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 31

    3. Local strength of deck structure:

    a) Transverse system of framing:

    H.O.

    A

    B

    C

    D

    E

    A

    B

    C

    D

    E

    A

    E

    BHD BHDDeck Beams

    B

    C

    D

    Loads on deck consists of:

    - Cargo pressure = w/A- Shipped water: by equation from ship building

    specifications( related to the class)

    b) Longitudinal system of framing:

    A

    B C D E

    F

    BHD

    Deck centergirder

    Deck side girder Deck transverse

    Deck longitudinals

    p = p cargo + p water

  • 8/7/2019 Advanced Structure Analysis

    32/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 32

    Example: Given the following data of a single deck dry cargo ship withlongitudinal system of framing;L =124 m B =16 m D =9.5 m T =7.2 mDistance between transverse bulkheads 14 mDistance between solid floors 3.5 m

    One center girder (keel)Specific volume of cargo 1.8 m 3 /tonDistance between longitudinals (s) 0.7 mArea of inner bottom longitudinal 26.8 cm 2 Area of outer bottom longitudinal 27.36 cm 2 Scantling of vertical keel 1200x15 mmThickness of inner bottom plating 10 mmThickness of outer bottom plating 13 mmThickness of horizontal keel 16 mmThickness of solid floor 13 mm

    Normal stress in inner bottom plating due to hogging -920 Kg/cm 2 Normal stress in outer bottom plating due to hogging -1260 Kg/cm 2 In sagging condition, these values are respectively 520, 710 Kg/cm 2

    Find the value of maximum resultant stress in bottom plating

  • 8/7/2019 Advanced Structure Analysis

    33/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 33

    Finite Element Method1-Node ElementF = k u where, F = Force

    k = stiffness of springu = Displacement

    , when u = 1 k F

    2-Nodes Element

    2221212

    2121111

    uk uk F

    uk uk F

    2

    1

    2221

    1211

    2

    1 .uu

    k k k k

    F F

    k ij = stiffness at i as a result of unit displacement at j

    3-Nodes Element

    3

    2

    1

    3

    2

    1

    333231

    232221

    131211

    333231

    232221

    131211

    3

    2

    1

    3

    2

    1

    .

    000

    000

    000

    000

    000

    000

    v

    v

    v

    u

    u

    u

    k k k

    k k k

    k k k

    k k k

    k k k

    k k k

    F

    F

    F

    F

    F

    F

    y y y

    y y y

    y y y

    x x x

    x x x

    x x x

    y

    y

    y

    x

    x

    x

    4

    3

    2

    1

    4

    3

    2

    1

    44434241

    34333231

    24232221

    14131211

    44434241

    34333231

    24232221

    14131211

    4

    3

    2

    1

    4

    3

    2

    1

    .

    0000

    0000

    0000

    0000

    0000

    0000

    00000000

    v

    v

    v

    v

    u

    u

    uu

    k k k k

    k k k k

    k k k k

    k k k k

    k k k k

    k k k k

    k k k k k k k k

    F

    F

    F

    F

    F

    F

    F F

    y y y y

    y y y y

    y y y y

    y y y y

    x x x x

    x x x x

    x x x x

    x x x x

    y

    y

    y

    y

    x

    x

    x

    x

    F

    1 2

    F 1 F 2

    k u

    F 1 F 2

    F 1 F 211 1

    k u12 2

    k u21 1

    k u22 2

    =

    +

    Stiffness Matrixof

    2-Nodes Member

    1

    2

    F x 1, u 1

    3

    F x 2, u 2

    F x 3, u 3

    F y 2, v 2

    F y 3, v 3

    F y 1, v 1

    Stiffness Matrixof

    Triangular Plate Element

    1 2F x 1, u 1

    3

    F x 2, u 2

    F x 3, u 3

    F y 2, v 2

    F y 3, v 3

    F y 1, v 1

    4

    F x 2, u 2F y 2, v 2

    Stiffness Matrixof

    Rectangle Plate Element

  • 8/7/2019 Advanced Structure Analysis

    34/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 34

    Finite Element Method Procedures

    Solution of a structure by FEM is summarised as follows:1. Divide the structure into a number of finite elements (the

    element could be a beam, a rectangle plate or a triangleone), then numbering the nodes

    2. Assume displacement function at any point

    yC xC C v

    yC xC C u

    654

    321 where, C 1 - C 6 are unknown constants

    6

    5

    4

    3

    2

    1

    .1000

    0001),(

    C

    C

    C C

    C

    C

    y x y x

    vu y x

    C y x H y x ).,(),( . . . . . . 1

    From this equation we can get the vertical and horizontal displacement at any point (x,y)

    3. Displacement at Nodes

    C y x

    y x y x

    v

    u.

    111000

    000111)1,1(1

    1

    11

    C y x

    y x y x

    v

    u.

    221000

    000221)2,2(2

    2

    22

    C y x

    y x y x

    v

    u.

    331000

    000331)3,3(3

    3

    33

  • 8/7/2019 Advanced Structure Analysis

    35/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 35

    6

    5

    4

    3

    2

    1

    3

    2

    1

    3

    2

    1

    3

    2

    1

    .

    331000

    221000

    111000

    000331

    000221

    000111

    C

    C

    C

    C

    C

    C

    y x

    y x

    y x

    y x

    y x

    y x

    v

    v

    v

    u

    u

    u

    Or C A. From this equation we can get the displacement at nodes

    .1AC . . . . . . 2

    By substitution 2 in 1

    .),(),( 1A y x H y x . . . . . . 3

    From this equation we can get the relation between displacement at any point inside theelement and the displacement at nodes

    4. Express the relation between strain and displacement atnodes

    Strain x, y, xy

    xy

    y

    x

    y x

    ),( xv

    yu

    yv

    xu

    xy y x ,,

    By using the previous equation at step 2 we get:

    53654321

    66654

    22321

    )()(

    00)(

    00)(

    C C yC xC C x

    yC xC C y x

    v yu

    C C yC xC C y y

    v

    C C yC xC C x x

    u

    xy

    y

    x

    6

    5

    4

    3

    2

    1

    .

    010100

    100000

    000010

    ),(

    C

    C

    C

    C

    C

    C

    y x

    xy

    y

    x

    GC y x ),(

    By substitution 2 in it

    1

    ),( GA y x or

  • 8/7/2019 Advanced Structure Analysis

    36/37

    Advanced Structure Analysis Mohammad Abdel Aziz Fahmy 36

    B y x ),( . . . . . . 4

    From this equation we can get the strain at any point as a function of the nodal displacements

    The Matrix 1GA B is called Strain Matrix

    5. Stress calculation at any point inside element

    xy

    y

    x

    but

    E G

    E

    E

    xy

    x y y

    y x x

    )1(2

    )(1

    )(1

    xy

    y

    x

    xy

    y

    x

    E

    .

    )1(200

    01011 or

    xy

    y

    x

    xy

    y

    x E

    y x

    .

    2

    100

    01

    01

    1),(

    2 . . . . . . 5

    Or

    ),(),( y x D y x . . . . . . 6

    By substitution 4 in 6 DB y x ),(

    S y x ),( . . . . . . 7

    From this equation we can get the stress at any point

    The Matrix S is called Stress Matrix

    6. Determine stiffness matrix for each element

    2

    1

    2

    1

    2

    1

    2

    1

    .

    v

    v

    u

    u

    K

    F

    F

    F

    F

    y

    y

    x

    x

    111 )()( k F , 222 )()( k F

    nnn k F )()( where, n = number of elements

  • 8/7/2019 Advanced Structure Analysis

    37/37

    7. Stiffness matrix for whole structure

    nnn k

    k

    k

    k

    F

    F

    F

    F

    )(

    .

    .

    .

    .)(

    )(

    )(

    .

    0000000

    0.000000

    00.00000

    000.0000

    0000.0000000000

    0000000

    0000000

    )(

    .

    .

    .

    .)(

    )(

    )(

    3

    2

    1

    3

    2

    1

    3

    2

    1

    so we can get

    F = K . . . . . . 8

    Where, F : Force matrix at nodes for whole structure

    K : Stiffness matrix for whole structure

    : Displacement matrix for all nodes in the structure

    8. When knowing the boundary conditions, applyingcompatibility and equilibrium modes, we can solve equation8 to get all the nodal displacements.