Advanced Mathematical Economics...Chapter 8 Scalar parabolic partial differential equations 8.1...

45
Advanced Mathematical Economics Paulo B. Brito PhD in Economics: 2020-2021 ISEG Universidade de Lisboa [email protected] Lecture 7 2.12.2020

Transcript of Advanced Mathematical Economics...Chapter 8 Scalar parabolic partial differential equations 8.1...

  • Advanced Mathematical Economics

    Paulo B. BritoPhD in Economics: 2020-2021

    ISEGUniversidade de Lisboa

    [email protected]

    Lecture 72.12.2020

  • Contents

    8 Scalar parabolic partial differential equations 28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.2 The simplest linear forward equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    8.2.1 The heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48.2.2 Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58.2.3 The forward heat equation in the infinite domain . . . . . . . . . . . . . . . . 68.2.4 The forward linear equation in the semi-infinite domain . . . . . . . . . . . . 108.2.5 The backward heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    8.3 The homogeneous linear PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138.3.1 Equation without transport term . . . . . . . . . . . . . . . . . . . . . . . . 138.3.2 The general homogeneous diffusion equation . . . . . . . . . . . . . . . . . . . 14

    8.4 Non-autonomous linear equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158.5 Fokker-Planck-Kolmogorov equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    8.5.1 The simplest problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178.5.2 The distribution associated to the Ornstein Uhlenbeck equation . . . . . . . . 18

    8.6 Economic applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198.6.1 The distributional Solow model . . . . . . . . . . . . . . . . . . . . . . . . . . 198.6.2 The option pricing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    8.7 Bibiography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248.A Appendix: Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    9 Optimal control of parabolic partial differential equations 299.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299.2 A simple optimal control problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    9.2.1 Average optimal control problem . . . . . . . . . . . . . . . . . . . . . . . . . 319.2.2 Application: the distributional ๐ด๐พ model . . . . . . . . . . . . . . . . . . . . 32

    9.3 Optimal control of the Fokker-Planck-Kolmogorov equation . . . . . . . . . . . . . . 359.3.1 Application: optimal distribution of capital with stochastic redistribution . . 36

    9.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    1

  • Chapter 8

    Scalar parabolic partial differentialequations

     

    8.1 Introduction

    Parabolic partial differential equations involve a known function ๐น depending on two independentvariables (๐‘ก, ๐‘ฅ), an unknown function of them ๐‘ข(๐‘ก, ๐‘ฅ), the first partial derivative as regards ๐‘ก andfirst and second partial derivatives as regards the โ€spatialโ€ variable ๐‘ฅ:

    ๐น(๐‘ก, ๐‘ฅ, ๐‘ข, ๐‘ข๐‘ก, ๐‘ข๐‘ฅ, ๐‘ข๐‘ฅ๐‘ฅ) = 0

      where ๐‘ข โˆถ ๐’ฏ ร— X โ†’ โ„, where ๐’ฏ โŠ† โ„+ and X โŠ† โ„.In its simplest form, ๐น(๐‘ข๐‘ก, ๐‘ข๐‘ฅ๐‘ฅ) = 0, the equation models a distribution featuring dispersion

    through time, for a cross section variable, generated by spatial contact (think about the time dis-tribution of a pollutant spreading within a lake in which the water is completely still). Equation๐น(๐‘ข๐‘ก, ๐‘ข๐‘ฅ, ๐‘ข๐‘ฅ๐‘ฅ) = 0 features both dispersion and advection behaviors (think about the time dis-tribution of a pollutant spreading within a river). Equation ๐น(๐‘ข๐‘ก, ๐‘ข, ๐‘ข๐‘ฅ, ๐‘ข๐‘ฅ๐‘ฅ) = 0 jointly displaysdispersion, advection and growth or decay behaviors (think about a time distribution of a pollutantspreading within a river, in which there is a permanent flow of new pollutants being dumped intothe river). The independent terms appear in function ๐น(.) if there are some time or spatial specificcomponents.

    We will also see in the next chapter that there is a close connection between partial differentialequations and stochastic differential equations. This implied that continuous-time finance has beenusing parabolic PDEโ€™s since the beginning of the 1970โ€™s.

    In economics and finance applications it is important to distinguish between forward (FPDE)and backward (BPDE) parabolic PDEโ€™s. While the first are complemented with an initial distri-bution and generate a flow of distributions forward in time, the latter are complemented with aterminal distribution and its solution generate a flow of distributions consistent with that terminal

    2

  • Paulo Brito Advanced Mathematical Economics 2020/2021 3

    constraint. While for FPDE the terminal distribution is unknown, for BPDE the distribution attime ๐‘ก = 0 is unknown. For planar systems, we may have forward, backward or forward-backward(FBPDE) parabolic PDEโ€™s. The last case can be seen as a generalization of the saddle-path dy-namics for ODEโ€™s.

    In mathematical finance most applications, such as the Black and Scholes (1973) model, mostPDEโ€™s are of the backward type. In economics there is recent interest in PDEโ€™s related to thetopical importance of distribution issues, and, in particular spatial dynamics modelled by BPDE.Optimal control of PDEโ€™s and the mean-field games usually lead to FBPDEโ€™s.

    Again, the body of theory and application of parabolic PDEโ€™s is huge. We only present nextsome very introductory results and applications.

    Let ๐‘ข(๐‘ก, ๐‘ฅ) where (๐‘ก, ๐‘ฅ) โˆˆ ๐’ฏ ร— X โŠ† โ„ ร— โ„+ is an at least ๐ถ2,1(โ„+, โ„) function1. We can define

    โ€ข linear parabolic PDE

    ๐‘ข๐‘ก = ๐‘Ž(๐‘ก, ๐‘ฅ)๐‘ข๐‘ฅ๐‘ฅ + ๐‘(๐‘ก, ๐‘ฅ)๐‘ข๐‘ฅ + ๐‘(๐‘ก, ๐‘ฅ)๐‘ข + ๐‘‘(๐‘ก, ๐‘ฅ)

    if ๐น(.) is linear in ๐‘ข and all its derivatives,  and the coefficients are independent from ๐‘ข

    โ€ข a semi-linear parabolic PDE

    ๐‘ข๐‘ก = ๐‘Ž(๐‘ก, ๐‘ฅ)๐‘ข๐‘ฅ๐‘ฅ + ๐‘(๐‘ก, ๐‘ฅ)๐‘ข๐‘ฅ + ๐‘(๐‘ฅ, ๐‘ก, ๐‘ข)

      it ๐น(.) is linear in the derivatives of ๐‘ข, and the coefficients are independent from ๐‘ข

    โ€ข a quasi-linear parabolic PDE

    ๐‘ข๐‘ก = ๐‘Ž(๐‘ฅ, ๐‘ก, ๐‘ข)๐‘ข๐‘ฅ๐‘ฅ + ๐‘(๐‘ฅ, ๐‘ก, ๐‘ข)๐‘ข๐‘ฅ + ๐‘(๐‘ฅ, ๐‘ก, ๐‘ข)

      if ๐น(.) is linear in the derivatives of ๐‘ข, but the coefficients can be functions of ๐‘ข.

    Consider the simplest linear parabolic equation with constant coefficients, sometimes called thediffusion equation with advection and growth,

    ๐‘ข๐‘ก = ๐‘Ž๐‘ข๐‘ฅ๐‘ฅ + ๐‘๐‘ข๐‘ฅ + ๐‘๐‘ข + ๐‘‘.

      The time-behavior of ๐‘ข depends on three terms: a diffusion term, ๐‘Ž๐‘ข๐‘ฅ๐‘ฅ, a transport term, ๐‘๐‘ข๐‘ฅ,and a growth term ๐‘๐‘ข + ๐‘‘. If ๐‘Ž > 0 (๐‘Ž < 0) the equation is sometimes called a forward FPDE(backward BPDE) equation, because the diffusion operator works forward (backward) in time.The second term introduces a behavior similar to the first-order PDE: it involves a translation of thesolution along the direction ๐‘ฅ. The third term generates a time behavior of the whole distribution๐‘ข(๐‘ฅ, .) in a way similar to a solution of a ordinary differential equation, that is, it involves stabilityor instability properties.

    1It is, at least, differentiable to the second order as regards ๐‘ฅ and to the first order as regards ๐‘ก.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 4

    In the case of a parabolic PDE the stability or instability properties are related to the wholedistribution: we have stability in a distributional sense if there is a solution ๐‘ข(๐‘ก, ๐‘ฅ) = ๐‘ข(๐‘ฅ)such that

    lim๐‘กโ†’โˆž

    ๐‘ข(๐‘ก, ๐‘ฅ) = ๐‘ข(๐‘ฅ)

      where ๐‘ข(๐‘ฅ) is a stationary distribution.An important element regarding the existence and characterization of the solution of PDEโ€™s

    is related to the characteristics of the support of the distribution X. We can distinguish betweenthree main cases:

    โ€ข unbounded or infinite case X = (โˆ’โˆž, โˆž)

    โ€ข the semi-bounded of semi-infinite case X = [0, โˆž) or X = (โˆ’โˆž, 0], where 0 can be substitutedby any finite number

    โ€ข the bounded case X = (๐‘ฅ, ๐‘ฅ) where both limits are finite.

    In order to define problems involving parabolic PDEโ€™s we have to supplement it with adistribution referred to a point in time (an initial distribution for the forward PDE or terminaldistribution for a backward PDE), and possibly conditions involving known values for the valuesof ๐‘ข(๐‘ก, ๐‘ฅ) at the boundaries of X) (so called boundary conditions), i.e, ๐‘ฅ โˆˆ ๐œ•X.

    A problem is said to be well-posed if there is a solution to the PDE that satisfies jointly theinitial (or terminal) and the boundary conditions and it is continuous at those points. In this casewe say we have a classic solution. If a problem is not well-posed it is ill-posed. In this casethere are no solutions or classic solutions do not exist (but generalized solutions can exist).

    A necessary condition for a problem involving a FPDE to be well posed is that it is supplementedwith an initial condition in time, and a necessary condition for a problem BPDE to be well-posedis that it involves a terminal condition in time.

    Next we will present the solutions for some simple equations and problems.

    8.2 The simplest linear forward equation

    8.2.1 The heat equation

    The simplest linear parabolic PDE is the heat equation, where ๐‘ข(๐‘ก, ๐‘ฅ) and is formalized by thelinear forward parabolic PDE

    ๐‘ข๐‘ก โˆ’ ๐‘ข๐‘ฅ๐‘ฅ = 0 (8.1)

      2. It describes the dynamics of the temperature distribution when spatial differences in tempera-ture drive the change in spatial distribution of temperature across time. Consider a homogeneousrod with infinite width and let ๐‘ข(๐‘ก, ๐‘ฅ) be the temperature at point ๐‘ฅ โˆˆ (โˆ’โˆž, โˆž) at time ๐‘ก โ‰ฅ 0.

    2The first formulation of the heat equation is attributed to Fourier in a presentation to the Institut de France,and in a book with title Theorie de la Propagation de la Chaleur dans les Solides both in 1807.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 5

    Consider a small segment of the rod between points ๐‘ฅ and ๐‘ฅ + ฮ”๐‘ฅ, where ฮ”๐‘ฅ > 0. The differencein the temperature between the two boundaries of the segment

    ๐‘ข(๐‘ก, ๐‘ฅ + ฮ”๐‘ฅ) โˆ’ ๐‘ข(๐‘ก, ๐‘ฅ) = โˆซ๐‘ฅ+โˆ†๐‘ฅ

    ๐‘ฅ๐‘ข๐‘ฅ(๐‘ก, ๐‘ง) ๐‘‘๐‘ง

    is a measure of the average temperature in the segment at time ๐‘ก. The instantaneous change inaverage temperature in the segment is

    ๐‘‘๐‘‘๐‘ก( โˆซ

    ๐‘ฅ+โˆ†๐‘ฅ

    ๐‘ฅ๐‘ข(๐‘ก, ๐‘ง) ๐‘‘๐‘ง) = โˆซ

    ๐‘ฅ+โˆ†๐‘ฅ

    ๐‘ฅ๐‘ข๐‘ก(๐‘ก, ๐‘ง) ๐‘‘๐‘ง

      If there is a hotter spot located outside the segment, for instance in a leftward region, and becausethe heat flows from hot to colder regions, then temperature in the segment ฮ”๐‘ฅ is lower then inthe leftward region, implying ๐‘ข๐‘ฅ(๐‘ก, ๐‘ฅ) < 0, and it is higher than in the rightward region, implying๐‘ข๐‘ฅ(๐‘ก, ๐‘ฅ + ฮ”๐‘ฅ) < 0, and the gradient in the leftward boundary is higher in absolute terms that therightward ๐‘ข๐‘ฅ(๐‘ก, ๐‘ฅ) โˆ’ ๐‘ข๐‘ฅ(๐‘ก, ๐‘ฅ + ฮ”๐‘ฅ) < 0. Therefore, the temperature flow is

    ๐‘ข๐‘ฅ(๐‘ก, ๐‘ฅ + ฮ”๐‘ฅ) โˆ’ ๐‘ข๐‘ฅ(๐‘ก, ๐‘ฅ) = โˆซ๐‘ฅ+โˆ†๐‘ฅ

    ๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ (๐‘ก, ๐‘ง) ๐‘‘๐‘ง.

    If is assumed that the instantaneous change in the segmentโ€™s temperature is equal to the heat thatflows through the segment, then

    โˆซ๐‘ฅ+โˆ†๐‘ฅ

    ๐‘ฅ๐‘ข๐‘ก(๐‘ก, ๐‘ง) ๐‘‘๐‘ง = โˆซ

    ๐‘ฅ+โˆ†๐‘ฅ

    ๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ (๐‘ก, ๐‘ง) ๐‘‘๐‘ง.

      which is equivalent to

    โˆซ๐‘ฅ+โˆ†๐‘ฅ

    ๐‘ฅ๐‘ข๐‘ก(๐‘ก, ๐‘ง) โˆ’ ๐‘ข๐‘ฅ๐‘ฅ (๐‘ก, ๐‘ง) ๐‘‘๐‘ง = 0,

      which is holds if and only if equation (8.1) is satisfied.Next we define and solve the simplest linear scalar parabolic partial differential equation

    ๐‘ข๐‘ก(๐‘ก, ๐‘ฅ) = ๐‘Ž ๐‘ข๐‘ฅ๐‘ฅ(๐‘ก, ๐‘ฅ) to address the differences in the solution when we consider the domain of๐‘ฅ, X, the existence of side conditions and the sign of ๐‘Ž.

    We start with the forward equation, where ๐‘Ž > 0, in subsection 8.2.3 and deal next with thebackward equation 8.2.5

    8.2.2 Fourier transforms

     There are several methods to solve linear parabolic PDEโ€™s. When the domain of the independent

    variable ๐‘ฅ is (โˆ’โˆž, โˆž), the most direct method to find a solution is by using Fourier and inverseFourier transforms (see Appendix 8.7).

    The method of obtaining a solution follows three steps: first, we transform function ๐‘ข(๐‘ก, ๐‘ฅ) suchthat the PDE is transformed into a parameterized ordinary differential equation; second we solve

  • Paulo Brito Advanced Mathematical Economics 2020/2021 6

    this ODE; and finally we transform back to the original function. When the domain of ๐‘ฅ is not thedouble-infinite we may have to adapt this method.

    There are several possible transformations: sine, cosine, Laplace, Mellin or Fourier transforms.Next we use the Fourier transform approach.

    The Fourier transform of ๐‘ข(๐‘ก, ๐‘ฅ), taking ๐‘ก as a parameter, is 3

    ๐‘ˆ(๐‘ก, ๐œ”) = โ„ฑ[๐‘ข(๐‘ก, ๐‘ฅ)](๐œ”) โ‰ก โˆซโˆž

    โˆ’โˆž๐‘ข(๐‘ก, ๐‘ฅ)๐‘’โˆ’2๐œ‹๐‘–๐œ”๐‘ฅ๐‘‘๐‘ฅ (8.2)

      where ๐‘–2 = โˆ’1 and the inverse Fourier transform  is

    ๐‘ข(๐‘ก, ๐‘ฅ) = โ„ฑโˆ’1[๐‘ˆ(๐‘ก, ๐œ”)](๐‘ฅ) โ‰ก โˆซโˆž

    โˆ’โˆž๐‘ˆ(๐‘ก, ๐œ”)๐‘’2๐œ‹๐‘–๐œ”๐‘ฅ๐‘‘๐œ”. (8.3)

      Time derivatives can also have Fourier transform representations: first derivative representationsare

    ๐‘ข๐‘ก(๐‘ก, ๐‘ฅ) =๐œ•๐œ•๐‘ก  โˆซ

    โˆž

    โˆ’โˆž๐‘ˆ(๐‘ก, ๐œ”)๐‘’2๐œ‹๐‘–๐œ”๐‘ฅ๐‘‘๐œ” = โˆซ

    โˆž

    โˆ’โˆž๐‘ˆ๐‘ก(๐‘ก, ๐œ”)๐‘’2๐œ‹๐‘–๐œ”๐‘ฅ๐‘‘๐œ”,

      and๐‘ข๐‘ฅ(๐‘ก, ๐‘ฅ) =

    ๐œ•๐œ•๐‘ฅ  โˆซ

    โˆž

    โˆ’โˆž๐‘ˆ(๐‘ก, ๐œ”)๐‘’2๐œ‹๐‘–๐œ”๐‘ฅ๐‘‘๐œ” = โˆซ

    โˆž

    โˆ’โˆž2๐œ‹๐œ”๐‘– ๐‘ˆ(๐‘ก, ๐œ”)๐‘’2๐œ‹๐‘–๐œ”๐‘ฅ๐‘‘๐œ”,

      and the second derivative is

    ๐‘ข๐‘ฅ๐‘ฅ(๐‘ก, ๐‘ฅ) = โˆซโˆž

    โˆ’โˆž(2๐œ‹๐œ”๐‘–)2๐‘ˆ(๐‘ก, ๐œ”)๐‘’2๐œ‹๐‘–๐œ”๐‘ฅ๐‘‘๐œ” = โˆ’ โˆซ

    โˆž

    โˆ’โˆž(2๐œ‹๐œ”)2๐‘ˆ(๐‘ก, ๐œ”)๐‘’2๐œ‹๐‘–๐œ”๐‘ฅ๐‘‘๐œ”.

      Next we prove the relationship between a convolution of functions and the multiplication ofFourier transforms. The function ๐‘ข(๐‘ก, ๐‘ฅ) is a convolution if it can bewritten as

    ๐‘ข(๐‘ก, ๐‘ฅ) = ๐‘ฃ(๐‘ก, ๐‘ฅ) โˆ— ๐‘ฆ(๐‘ก, ๐‘ฅ) โ‰ก โˆซโˆž

    โˆ’โˆž๐‘ฃ(๐‘ก, ๐œ‰)๐‘ฆ(๐‘ก, ๐‘ฅ โˆ’ ๐œ‰)๐‘‘๐œ‰,

      where ๐‘ฃ(๐‘ก, ๐‘ฅ) and ๐‘ฆ(๐‘ก, ๐‘ฅ) are integrable functions in the domain โ„+ ร— โ„. Let Fourier transform of๐‘ข(๐‘ก, ๐‘ฅ) be written as a product of two Fourier transforms,

    ๐‘ˆ(๐‘ก, ๐œ”) = โ„ฑ[๐‘ข(๐‘ก, ๐‘ฅ)](๐œ”) = ๐‘‰ (๐‘ก, ๐œ”)๐‘Œ (๐‘ก, ๐œ”)

      where ๐‘‰ (๐‘ก, ๐œ”) = โ„ฑ[๐‘ฃ(๐‘ก, ๐‘ฅ)](๐œ”) and ๐‘Œ (๐‘ก, ๐œ”) = โ„ฑ[๐‘ฆ(๐‘ก, ๐‘ฅ)](๐œ”). Then ๐‘ข(๐‘ก, ๐‘ฅ) is the inverse Fouriertransform of ๐‘ˆ(๐‘ก, ๐œ”) if and only if ๐‘ข(๐‘ก, ๐‘ฅ) is the convolution

    ๐‘ข(๐‘ก, ๐‘ฅ) = โ„ฑโˆ’1[๐‘ˆ(๐‘ก, ๐œ”)](๐‘ฅ) = โ„ฑโˆ’1[๐‘‰ (๐‘ก, ๐œ”)๐‘Œ (๐‘ก, ๐œ”)](๐‘ฅ) = ๐‘ฃ(๐‘ก, ๐‘ฅ) โˆ— ๐‘ฆ(๐‘ก, ๐‘ฅ).

     

    8.2.3 The forward heat equation in the infinite domain

    In this subsection we solve the slightly more general version of equation (8.1) in the infinite domainfor an arbitrary bounded initial condition and for a given initial conditions. The last two areversions of Cauchy problems in which the side conditions refer to ๐‘ก = 0.

    3There are different definitions of Fourier transforms, we use the definition by, v.g., Kammler (2000).

  • Paulo Brito Advanced Mathematical Economics 2020/2021 7

    Free but bounded initial condition

    The simplest linear PDE for an infinite domain ๐‘‹ = โ„

    ๐‘ข๐‘ก โˆ’ ๐‘Ž๐‘ข๐‘ฅ๐‘ฅ = 0, (๐‘ก, ๐‘ฅ) โˆˆ โ„+ ร— โ„ (8.4)

    where ๐‘Ž > 0.

    Proposition 1. Let ๐‘˜(๐‘ฅ) be an arbitrary but bounded function, i.e. satisfying โˆซโˆžโˆ’โˆž |๐‘˜(๐‘ฅ)|๐‘‘๐‘ฅ < โˆž.Then the solution to PDE (8.4) is

    ๐‘ข(๐‘ก, ๐‘ฅ) =โŽง{โŽจ{โŽฉ

    ๐‘˜(๐‘ฅ), (๐‘ก, ๐‘ฅ) โˆˆ {๐‘ก = 0}  ร— โ„1

    2โˆš

    ๐œ‹๐‘Ž๐‘ก โˆซโˆž

    โˆ’โˆž๐‘˜(๐œ‰)๐‘’โˆ’ (๐‘ฅโˆ’๐œ‰)

    24๐‘Ž๐‘ก  ๐‘‘๐œ‰, (๐‘ก, ๐‘ฅ) โˆˆ โ„++ ร— โ„

    (8.5)

     

    Proof.  Applying the previous definition of Fourier transform, equation (8.4) becomes

    ๐‘ข๐‘ก โˆ’ ๐‘Ž๐‘ข๐‘ฅ๐‘ฅ = โˆซโˆž

    โˆ’โˆž(๐‘ˆ๐‘ก(๐‘ก, ๐œ”) + ๐‘Ž(2๐œ‹๐œ”)2๐‘ˆ(๐‘ก, ๐œ”)) ๐‘’2๐œ‹๐‘–๐œ”๐‘ฅ๐‘‘๐œ” = 0.

      This equation is satisfied if ๐‘ˆ(๐‘ก, ๐œ”) is solves

    ๐‘ˆ๐‘ก(๐‘ก, ๐œ”) = ๐œ†(๐œ”) ๐‘ˆ(๐‘ก, ๐œ”).

      where ๐œ†(๐œ”) = โˆ’(2๐œ‹๐œ”)2๐‘Ž. The solution for this ODE is

    ๐‘ˆ(๐‘ก, ๐œ”) = ๐พ(๐œ”) ๐บ(๐‘ก, ๐œ”)

      where ๐บ(.) is called the Gaussian kernel 

    ๐บ(๐œ”, ๐‘ก) โ‰กโŽง{โŽจ{โŽฉ

    1, ๐‘ก = 0๐‘’๐œ†(๐œ”) ๐‘ก, ๐‘ก > 0

      and the function ๐พ(๐œ”) is arbitrary. To obtain the solution in terms of the original function,๐‘ข(๐‘ก, ๐‘ฅ), we perform an inverse Fourier transform

    ๐‘ข(๐‘ก, ๐‘ฅ) = โ„ฑโˆ’1(๐‘ˆ(๐‘ก, ๐œ”)) = โ„ฑโˆ’1(๐พ(๐œ”) ๐บ(๐‘ก, ๐œ”)) = ๐‘˜(๐‘ฅ) โˆ— ๐‘”(๐‘ก, ๐‘ฅ)

      where ๐‘˜(๐‘ฅ) โˆ— ๐‘”(๐‘ก, ๐‘ฅ) is a convolution, that is

    ๐‘˜(๐‘ฅ) โˆ— ๐‘”(๐‘ก, ๐‘ฅ) = โˆซโˆž

    โˆ’โˆž๐‘˜(๐œ‰)๐‘”(๐‘ก, ๐‘ฅ โˆ’ ๐œ‰)๐‘‘๐œ‰.

      Using the tables in the Appendix, for ๐‘”(๐‘ฅ, ๐‘ก) = โ„ฑโˆ’1[๐บ(๐‘ก, ๐œ”)](๐‘ฅ) the Gaussian kernel in the initialvariable is

    ๐‘”(๐‘ก, ๐‘ฅ) =โŽง{โŽจ{โŽฉ

    ๐›ฟ(๐‘ฅ), ๐‘ก = 0๐‘’โˆ’ ๐‘ฅ

    24๐‘Ž๐‘ก

    2โˆš

    ๐œ‹ ๐‘Ž ๐‘ก, ๐‘ก > 0

  • Paulo Brito Advanced Mathematical Economics 2020/2021 8

      where ๐›ฟ(.) is the Diracโ€™s delta function.Therefore, because and ๐‘˜(๐‘ฅ) = โ„ฑโˆ’1[๐พ(๐‘ก๐œ”)](๐‘ฅ),

    ๐‘ข(๐‘ก, ๐‘ฅ) =โŽง{โŽจ{โŽฉ

    ๐‘˜(๐‘ฅ), ๐‘ก = 01

    2โˆš

    ๐œ‹๐‘Ž๐‘ก โˆซโˆž

    โˆ’โˆž๐‘˜(๐œ‰)๐‘’โˆ’ (๐‘ฅโˆ’๐œ‰)

    24๐‘Ž๐‘ก  ๐‘‘๐œ‰, ๐‘ก > 0

    (8.6)

      where ๐‘˜(๐‘ฅ) is an arbitrary but bounded function, i.e. satisfying โˆซโˆžโˆ’โˆž |๐‘˜(๐‘ฅ)|๐‘‘๐‘ฅ < โˆž, andbecause โˆซโˆžโˆ’โˆž ๐‘˜(๐œ‰)๐›ฟ(๐‘ฅ โˆ’ ๐œ‰)๐‘‘๐œ‰ = ๐‘˜(๐‘ฅ).

    Two observations can be made concerning the solution of this PDE.First, applying the Fourier transform, we change from a distribution in the original variables ๐‘ฅ

    to a frequency distribution ๐œ”.The transformed PDE becomes a linear ODE the coefficient is eigenfunction

    ๐œ†(๐œ”) = โˆ’(2๐œ‹๐œ”)2๐‘Ž 

      which is real and non-positive for any ๐œ” โˆˆ โ„: ๐œ†(0) = 0 and ๐œ†(๐œ”) < 0 for ๐œ” โ‰  0 and,lim๐œ”โ†’ยฑโˆž ๐œ†(๐œ”) = โˆ’โˆž. This means that lim๐œ”โ†’ยฑโˆž ๐‘ˆ(๐‘ก, ๐œ”) = 0 for any ๐‘ก if ๐พ(๐œ”) is bounded.

    Second, associated to the previous property is the solution of ๐‘ข(๐‘ก, ๐‘ฅ) is an expected value of thearbitrary function where the density function is a Gaussian density function with average 0 andvariance 2 ๐‘Ž ๐‘ก.

    Initial value problem Now we consider a well-posed linear FPDE. Assume we know the distri-bution at time ๐‘ก = 0, then we have an initial value problem

    โŽง{โŽจ{โŽฉ

    ๐‘ข๐‘ก = ๐‘Ž๐‘ข๐‘ฅ๐‘ฅ, (๐‘ก, ๐‘ฅ) โˆˆ (0, โˆž) ร— (โˆ’โˆž, โˆž)๐‘ข(0, ๐‘ฅ) = ๐œ™(๐‘ฅ) (๐‘ก, ๐‘ฅ) โˆˆ {๐‘ก = 0}  ร— (โˆ’โˆž, โˆž)

    (8.7)

      where ๐‘Ž > 0 and ๐œ™(๐‘ฅ) is a known bounded function. Applying (8.6), the solution is

    ๐‘ข(๐‘ก, ๐‘ฅ) =โŽง{{โŽจ{{โŽฉ

    ๐œ™(๐‘ฅ), (๐‘ก, ๐‘ฅ) โˆˆ {๐‘ก = 0}  ร— โ„

    โˆซโˆž

    โˆ’โˆž

    ๐œ™(๐œ‰)2โˆš

    ๐œ‹ ๐‘Ž ๐‘ก  ๐‘’โˆ’

    (๐‘ฅ โˆ’ ๐œ‰)24๐‘Ž๐‘ก  ๐‘‘๐œ‰, (๐‘ก, ๐‘ฅ) โˆˆ โ„++  ร— โ„

      because โˆซโˆžโˆ’โˆž ๐œ™(๐œ‰)๐›ฟ(๐‘ฅ โˆ’ ๐œ‰)๐‘‘๐œ‰ = ๐œ™(๐‘ฅ).

    Example Figure 8.1 illustrates the behavior of the solution for ๐‘Ž = 1 and ๐œ™(๐‘ฅ) = ๐‘’โˆ’๐‘ฅ2โˆš๐œ‹ , which

    is simplified to

    ๐‘ข(๐‘ก, ๐‘ฅ) = 1โˆš๐œ‹(1 + 4 ๐‘ก)๐‘’

    โˆ’๐‘ฅ2

    1 + 4 ๐‘ก .

     

  • Paulo Brito Advanced Mathematical Economics 2020/2021 9

    -10 -5 5 100.1

    0.2

    0.3

    0.4

    0.5

    Figure 8.1: Solution for the initial value problem for the heat equation with ๐‘Ž = 1 and ๐œ™(๐‘ฅ) = ๐‘’โˆ’๐‘ฅ2โˆš๐œ‹ .

    As can be seen, the solution decays through time and converges to a homogeneous distribution

    lim๐‘กโ†’โˆž

    ๐‘ข(๐‘ก, ๐‘ฅ) = 0, โˆ€๐‘ฅ โˆˆ (โˆ’โˆž, โˆž)

     However, a conservation law holds,

    โˆซโˆž

    โˆ’โˆž๐‘ข(๐‘ก, ๐‘ฅ) ๐‘‘๐‘ฅ = 1, for each ๐‘ก โ‰ฅ 0

     

    Piecewise-constant initial condition We consider the heat equation with the initial condition

    ๐œ™(๐‘ฅ) =โŽง{โŽจ{โŽฉ

    ๐œ™0, if ๐‘ฅ โˆˆ [๐‘ฅ, ๐‘ฅ] 0 if ๐‘ฅ โˆ‰ [๐‘ฅ, ๐‘ฅ)

      where ๐‘ฅ < ๐‘ฅ are both finite. In this case, the solution to the problem is

    ๐‘ข(๐‘ก, ๐‘ฅ) = ๐œ™0 [ ฮฆ (๐‘ฅ โˆ’ ๐‘ฅโˆš

    2๐‘Ž๐‘ก  ) โˆ’ ฮฆ (๐‘ฅ โˆ’ ๐‘ฅโˆš

    2๐‘Ž๐‘ก  )]   (8.8)

      where ฮฆ(๐‘ง) is the standard normal distribution function

    ฮฆ(๐‘ฆ) = 1โˆš2๐œ‹ โˆซ๐‘ฆ

    โˆ’โˆž๐‘’โˆ’ ๐‘ง

    22 ๐‘‘๐‘ง โˆˆ (0, 1).

      Observe that โˆซโˆžโˆ’โˆž ๐‘’โˆ’ ๐‘ง22 ๐‘‘๐‘ง = (2๐œ‹) 12 .

    The solution of equation (8.8) is illustrated in Figure 8.2.In order to prove this result, applying the general solution in equation (8.6) yields the solution

    of the initial-value problem

    ๐‘ข(๐‘ก, ๐‘ฅ) = ๐œ™02โˆš

    ๐œ‹๐‘Ž๐‘ก  โˆซ๐‘ฅ

    ๐‘ฅ๐‘’โˆ’ (๐‘ฅโˆ’๐œ‰)

    24๐‘Ž๐‘ก ๐‘‘๐œ‰.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 10

    Figure 8.2: Solution for the initial value problem for the heat equation with ๐‘Ž = 1 and piecewiseinitial condition.

    To simplify the expression, we make the transformation of variables ๐‘ง โ‰ก (๐‘ฅ โˆ’ ๐œ‰)/โˆš

    2๐‘Ž๐‘ก, and denote๐‘ง โ‰ก (๐‘ฅ โˆ’ ๐œ‰)/

    โˆš2๐‘Ž๐‘ก and ๐‘ง โ‰ก (๐‘ฅ โˆ’ ๐œ‰)/

    โˆš2๐‘Ž๐‘ก. Then, because ๐‘‘๐‘ง = โˆ’1/

    โˆš2๐‘Ž๐‘ก๐‘‘๐œ‰ the solution simplifies 4

    1โˆš4๐œ‹๐‘Ž๐‘ก

    โˆซ๐‘ฅ

    ๐‘ฅ๐‘’โˆ’(๐‘ฅโˆ’๐œ‰)2/4๐‘Ž๐‘ก๐‘‘๐œ‰ = โˆ’

    โˆš2๐‘Ž๐‘กโˆš

    4๐œ‹๐‘Ž๐‘กโˆซ

    (๐‘ฅโˆ’๐‘ฅ)/โˆš

    2๐‘Ž๐‘ก

    (๐‘ฅโˆ’๐‘ฅ)/โˆš

    2๐‘Ž๐‘ก๐‘’โˆ’๐‘ง2/2๐‘‘๐‘ง

    = 1โˆš2๐œ‹ (โˆซ(๐‘ฅโˆ’๐‘ฅ)/

    โˆš2๐‘Ž๐‘ก

    โˆ’โˆž๐‘’โˆ’๐‘ง2/2๐‘‘๐‘ง โˆ’ โˆซ

    (๐‘ฅโˆ’๐‘ฅ)/โˆš

    2๐‘Ž๐‘ก

    โˆ’โˆž๐‘’โˆ’๐‘ง2/2๐‘‘๐‘ง) =

    = ฮฆ ( ๐‘ฅ โˆ’ ๐‘ฅโˆš2๐‘Ž๐‘ก  ) โˆ’ ฮฆ (๐‘ฅ โˆ’ ๐‘ฅโˆš

    2๐‘Ž๐‘ก  ) .

     

    8.2.4 The forward linear equation in the semi-infinite domain

    Now consider the equation defined on the semi-infinite domain for ๐‘ฅ, that is X = โ„+. This case ismore interesting for economic applications in which the independent variable can only take non-negative values, for instance when ๐‘ฅ refers to a stock.

    The FPDE we consider is๐‘ข๐‘ก โˆ’ ๐‘Ž๐‘ข๐‘ฅ๐‘ฅ = 0, (๐‘ก, ๐‘ฅ) โˆˆ โ„2+ (8.9)

    where ๐‘Ž > 0.

    Proposition 2. The solution to equation (8.11) is

    ๐‘ข(๐‘ก, ๐‘ฅ) = 12โˆš

    ๐œ‹ ๐‘Ž ๐‘ก โˆซโˆž

    0๐‘˜ (๐œ‰) (๐‘’โˆ’ (๐‘ฅโˆ’๐œ‰)

    24 ๐‘Ž ๐‘ก โˆ’ ๐‘’โˆ’ (๐‘ฅ+๐œ‰)

    24 ๐‘Ž ๐‘ก )  ๐‘‘๐œ‰, ๐‘ก > 0. (8.10)

    where ๐‘˜(๐‘ฅ) โˆถ X โ†’ โ„ is an arbitrary bounded function.4Recalling the formula for integration by substitution of variables, if we set ๐‘ง = ๐œ‘(๐œ‰) and ๐œ‰ โˆˆ (๐‘Ž, ๐‘) then

    โˆซ๐œ‘(๐‘)

    ๐œ‘(๐‘Ž)๐‘“(๐‘ง)๐‘‘๐‘ง = โˆซ

    ๐‘

    ๐‘Ž๐‘“(๐œ‘(๐œ‰)) ๐œ‘โ€ฒ (๐œ‰) ๐‘‘๐œ‰.

     

  • Paulo Brito Advanced Mathematical Economics 2020/2021 11

    Proof. We solve this equation by using the method of images. It consists in introducing thefollowing extension to the arbitrary function ๐‘˜(๐‘ฅ)

    ๏ฟฝฬƒ๏ฟฝ(๐‘ฅ) =โŽง{โŽจ{โŽฉ

    ๐‘˜(๐‘ฅ), if ๐‘ฅ โ‰ฅ 0โˆ’๐‘˜(โˆ’๐‘ฅ) if ๐‘ฅ < 0

      where ๐‘˜(.) is an odd function satisfying ๐‘˜(โˆ’๐‘ฅ) = โˆ’๐‘˜(๐‘ฅ). Using the solution (8.6) for ๐‘ก > 0 wehave

    ๐‘ข(๐‘ก, ๐‘ฅ) = 12โˆš

    ๐œ‹๐‘Ž๐‘ก โˆซโˆž

    โˆ’โˆž๏ฟฝฬƒ๏ฟฝ (๐œ‰)๐‘’โˆ’ (๐‘ฅโˆ’๐œ‰)

    24๐‘Ž๐‘ก  ๐‘‘๐œ‰ =

    = 12โˆš

    ๐œ‹๐‘Ž๐‘ก (โˆซ0

    โˆ’โˆž๏ฟฝฬƒ๏ฟฝ (๐œ‰)๐‘’โˆ’ (๐‘ฅโˆ’๐œ‰)

    24๐‘Ž๐‘ก  ๐‘‘๐œ‰ + โˆซ

    โˆž

    0๏ฟฝฬƒ๏ฟฝ (๐œ‰)๐‘’โˆ’ (๐‘ฅโˆ’๐œ‰)

    24๐‘Ž๐‘ก  ๐‘‘๐œ‰) =

    = 12โˆš

    ๐œ‹๐‘Ž๐‘ก (โˆ’ โˆซโˆž

    0๐‘˜ (๐œ‰)๐‘’โˆ’ (๐‘ฅ+๐œ‰)

    24๐‘Ž๐‘ก  ๐‘‘๐œ‰ + โˆซ

    โˆž

    0๐‘˜ (๐œ‰)๐‘’โˆ’ (๐‘ฅโˆ’๐œ‰)

    24๐‘Ž๐‘ก  ๐‘‘๐œ‰)

    where the last step involves integration by substitution: i.e., if we define ๐‘ข = โˆ’๐‘ฅ for ๐‘ฅ โˆˆ [0, โˆž)then โˆซ0โˆ’โˆž ๐‘“(๐‘ข)๐‘‘๐‘ข = โˆ’ โˆซ

    0โˆž ๐‘“(โˆ’๐‘ฅ)๐‘‘๐‘ฅ = โˆซ

    โˆž0 ๐‘“(โˆ’๐‘ฅ)๐‘‘๐‘ฅ. Then the solution of equation (8.11) is equation

    (8.11).

    The solution to the initial-value problem

    โŽง{โŽจ{โŽฉ

    ๐‘ข๐‘ก โˆ’ ๐‘Ž๐‘ข๐‘ฅ๐‘ฅ = 0, for ๐‘Ž > 0, (๐‘ก, ๐‘ฅ) โˆˆ โ„2+๐‘ข(0, ๐‘ก) = ๐‘ข0(๐‘ฅ), for (๐‘ก, ๐‘ฅ) โˆˆ {๐‘ก = 0} ร— โ„+

    (8.11)

    is๐‘ข(๐‘ก, ๐‘ฅ) = 12

    โˆš๐œ‹ ๐‘Ž ๐‘ก โˆซ

    โˆž

    0๐‘ข0(๐œ‰) (๐‘’โˆ’

    (๐‘ฅโˆ’๐œ‰)24 ๐‘Ž ๐‘ก โˆ’ ๐‘’โˆ’ (๐‘ฅ+๐œ‰)

    24 ๐‘Ž ๐‘ก )  ๐‘‘๐œ‰, ๐‘ก > 0. (8.12)

      We obtain this result by direct application of equation (8.12).Example Consider the initial-value problem in which the initial distribution is log-normal

    ๐‘ข0(๐‘ฅ) =๐‘’โˆ’

    (ln ๐‘ฅ  โˆ’ ๐œ‡)22๐œŽ2

    2โˆš

    ๐œ‹ ๐‘ฅ2 ๐œŽ2

      if we substitute in equation (8.12) we have the solution depicted in Figure 8.4 for several momentsin time.

    We observe that the solution is not conservative, i.e. the integral ๐‘ˆ(๐‘ก) = โˆซโˆž0 ๐‘ข(๐‘ก, ๐‘ฅ) ๐‘‘๐‘ฅ  decaysin time such that lim๐‘กโ†’โˆž  ๐‘ˆ(๐‘ก) = 0.

    8.2.5 The backward heat equation

    In finance applications and associated to Euler equation in optimal control problems, we sometimesneed to solve backward parabolic PDE.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 12

      5 10 15 20

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    Figure 8.3: Solution for the initial value problem for the heat equation in the semi-infinite line with๐‘Ž = 1 and an initial log-normal density.

    The simplest parabolic BPDE equation in the infinite domain for ๐‘ฅ and for the semi-infinitedomain for ๐‘ก is

    ๐‘ข๐‘ก + ๐‘Ž๐‘ข๐‘ฅ๐‘ฅ = 0, (๐‘ก, ๐‘ฅ) โˆˆ [0, ๐‘‡ ] ร— (โˆ’โˆž, โˆž) (8.13)

    where ๐‘Ž > 0.

    Proposition 3. Consider the BPDE equation (8.13). The solution is

    ๐‘ข(๐‘ก, ๐‘ฅ) =โŽง{โŽจ{โŽฉ

    ๐‘˜(๐‘ฅ), ๐‘ก = ๐‘‡1

    โˆš4๐œ‹๐‘Ž(๐‘‡ โˆ’๐‘ก) โˆซโˆž

    โˆ’โˆž๐‘˜(๐œ‰)๐‘’โˆ’

    (๐‘ฅโˆ’๐œ‰)24๐‘Ž(๐‘‡โˆ’๐‘ก)  ๐‘‘๐œ‰, ๐‘ก โˆˆ (0, ๐‘‡ )

     

    Proof. In order to solve it we introduce a change in variables ๐œ = ๐‘‡ โˆ’ ๐‘ก and consider a change inthe variable ๐‘ฃ(๐œ, ๐‘ฅ) = ๐‘ข(๐‘ก(๐œ), ๐‘ฅ) where ๐‘ก(๐œ) = ๐‘‡ โˆ’ ๐œ . As

    ๐‘ฃ๐œ(๐œ, ๐‘ฅ) = โˆ’๐‘ข๐‘ก(๐‘ก(๐œ), ๐‘ฅ), and ๐‘ฃ๐‘ฅ๐‘ฅ(๐œ, ๐‘ฅ) = ๐‘ข๐‘ฅ๐‘ฅ(๐‘ก(๐œ), ๐‘ฅ)

      Then ๐‘ข๐‘ก(๐‘ก, ๐‘ฅ) = โˆ’๐‘Ž๐‘ข๐‘ฅ๐‘ฅ(๐‘ก, ๐‘ฅ) is equivalent to

    ๐‘ฃ๐œ(๐œ, ๐‘ฅ) = ๐‘Ž๐‘ฃ๐‘ฅ๐‘ฅ(๐œ, ๐‘ฅ).

      Using the solution already found in equation (8.6) we get

    ๐‘ฃ(๐œ, ๐‘ฅ) =โŽง{โŽจ{โŽฉ

    ๐‘˜(๐‘ฅ), ๐œ = 0

    โˆซโˆž

    โˆ’โˆž๐‘˜(๐œ‰) (4๐œ‹๐‘Ž๐œ)โˆ’1/2 ๐‘’โˆ’ (๐‘ฅโˆ’๐œ‰)

    24๐‘Ž๐œ  ๐‘‘๐œ‰, ๐œ โˆˆ (0, ๐‘‡ ).

    Transforming back to ๐‘ข(๐‘ก, ๐‘ฅ) we have solution.

    A problem involving a backward PDE is only well posed if together with the PDE we have aterminal condition, for example ๐‘ข(๐‘‡ , ๐‘ฅ) = ๐œ™๐‘‡ (๐‘ฅ). In this case the value of the variable at time๐‘ก = 0 becomes endogenous.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 13

    Consider the terminal-value problem

    โŽง{โŽจ{โŽฉ

    ๐‘ข๐‘ก = โˆ’๐‘Ž๐‘ข๐‘ฅ๐‘ฅ, (๐‘ก, ๐‘ฅ) โˆˆ (โˆ’โˆž, โˆž) ร— (0, ๐‘‡ ]๐‘ข(๐‘‡ , ๐‘ฅ) = ๐œ™๐‘‡ (๐‘ฅ) (๐‘ก, ๐‘ฅ) โˆˆ (โˆ’โˆž, โˆž) ร— { ๐‘ก = ๐‘‡ }. 

      The solution is

    ๐‘ข(๐‘ก, ๐‘ฅ) =โŽง{โŽจ{โŽฉ

    ๐œ™๐‘‡ (๐‘ฅ), (๐‘ก, ๐‘ฅ) โˆˆ {๐‘ก = ๐‘‡ }  ร— โ„ 1

    โˆš4๐œ‹๐‘Ž(๐‘‡ โˆ’ ๐‘ก)โˆซ

    โˆž

    โˆ’โˆž๐œ™๐‘‡ (๐œ‰)๐‘’โˆ’

    (๐‘ฅโˆ’๐œ‰)24๐‘Ž(๐‘‡โˆ’๐‘ก)  ๐‘‘๐œ‰, (๐‘ก, ๐‘ฅ) โˆˆ (0, ๐‘‡ ) ร— โ„

    The initial distribution can be obtained by setting ๐‘ก = 0

    ๐‘ข(0, ๐‘‡ ) = 1โˆš4๐œ‹๐‘Ž(๐‘‡ โˆ’ ๐‘ก)โˆซ

    โˆž

    โˆ’โˆž๐œ™๐‘‡ (๐œ‰)๐‘’โˆ’

    (๐‘ฅโˆ’๐œ‰)24๐‘Ž๐‘‡  ๐‘‘๐œ‰.

     

    8.3 The homogeneous linear PDE

    The general forward linear parabolic PDE in the infinite domain is

    ๐‘ข๐‘ก = ๐‘Ž ๐‘ข๐‘ฅ๐‘ฅ + ๐‘ ๐‘ข๐‘ฅ + ๐‘ ๐‘ข, (๐‘ก, ๐‘ฅ) โˆˆ โ„+ ร— โ„

      where ๐‘Ž > 0. The dynamics of ๐‘ข(๐‘ก, ๐‘ฅ) contains three terms: a diffusion term, if ๐‘Ž โ‰  0, a transportterm, if ๐‘ โ‰  0, and a growth or decay term if ๐‘ > 0 or ๐‘ < 0.

    In order to solve the equation, we can follow one of two alternative methods:

    1. transform the equation into a heat equation, solve the heat equation and transform back tothe initial variables.

    2. apply the Fourier transform method to transform the PDE into a parameterized ODE, solveit, and apply inverse Fourier transforms.

    8.3.1 Equation without transport term

    If the linear forward PDE does not contain a transport term, we have

    ๐‘ข๐‘ก = ๐‘Ž ๐‘ข๐‘ฅ๐‘ฅ + ๐‘ ๐‘ข, (๐‘ก, ๐‘ฅ) โˆˆ (0, โˆž) ร— (โˆ’โˆž, โˆž) (8.14)

      where ๐‘Ž > 0 and ๐‘ โ‰  0, which has solution, for an arbitrary bounded function ๐œ™(๐‘ฅ)

    ๐‘ข(๐‘ก, ๐‘ฅ) =โŽง{{โŽจ{{โŽฉ

    โˆซโˆž

    โˆ’โˆž๐œ™(๐œ‰)๐›ฟ(๐‘ฅ โˆ’ ๐œ‰)๐‘‘๐œ‰ = ๐œ™(๐‘ฅ), (๐‘ก, ๐‘ฅ) โˆˆ {๐‘ก = 0}  ร— โ„

    ๐‘’๐‘ ๐‘ก  โˆซโˆž

    โˆ’โˆž๐œ™(๐œ‰) 1โˆš

    4 ๐œ‹ ๐‘Ž ๐‘ก๐‘’โˆ’ (๐‘ฅโˆ’๐œ‰)

    24 ๐‘Ž ๐‘ก  ๐‘‘๐œ‰, (๐‘ก, ๐‘ฅ) โˆˆ โ„+  ร— โ„.

      To find the solution, we use the first method. First, define ๐‘ฃ(๐‘ก, ๐‘ฅ) = ๐‘’โˆ’๐‘ ๐‘ก๐‘ข(๐‘ก, ๐‘ฅ), which hasderivatives ๐‘ฃ๐‘ก = โˆ’๐‘๐‘’โˆ’๐‘ ๐‘ก๐‘ข + ๐‘’โˆ’๐‘ ๐‘ก๐‘ข๐‘ก and ๐‘ฃ๐‘ฅ๐‘ฅ = ๐‘’โˆ’๐‘๐‘ก๐‘ข๐‘ฅ๐‘ฅ. Second, equation (8.14) is equivalent to the

  • Paulo Brito Advanced Mathematical Economics 2020/2021 14

    simplest linear equation ๐‘ฃ๐‘ก = ๐‘Ž๐‘ฃ๐‘ฅ๐‘ฅ which has solution (8.6). Third, as ๐‘ข(๐‘ก, ๐‘ฅ) = ๐‘’๐‘ ๐‘ก ๐‘ฃ(๐‘ก, ๐‘ฅ) we obtainthe solution

    The dynamics of the solution depends crucially on the sign of ๐‘:

    lim๐‘กโ†’โˆž

    ๐‘ข(๐‘ก, ๐‘ฅ) =โŽง{โŽจ{โŽฉ

    0 if ๐‘ < 0โˆž if ๐‘ > 0

     Figure 8.4 illustrates the cases in which ๐‘ < 0 and ๐‘ > 0. In both cases we see that the long-time

    behavior of the solution is commanded by ๐‘’๐‘ ๐‘ก: if ๐‘ < 0 then lim๐‘กโ†’โˆž ๐‘ข(๐‘ก, ๐‘ฅ) = 0, for any ๐‘ฅ โˆˆ โ„, andif ๐‘ > 0 then lim๐‘กโ†’โˆž ๐‘ข(๐‘ก, ๐‘ฅ) โˆ lim๐‘กโ†’โˆž ๐‘’๐‘ ๐‘ก = โˆž, for any ๐‘ฅ โˆˆ โ„.

    This means that the diffusion equation display asymptotic stability if ๐‘ < 0 and instability if๐‘ > 0, both in a distributional sense. In the first case the solution ๐‘ข(๐‘ก, ๐‘ฅ) is bounded and in thesecond case it is unbounded.

    Figure 8.4: Solution for the initial value problem for the heat equation with ๐‘Ž = 1 and ๐œ™(๐‘ฅ) = ๐‘’โˆ’๐‘ฅ2โˆš๐œ‹

    and ๐‘ = โˆ’0.5 and ๐‘ = 0.5.

    8.3.2 The general homogeneous diffusion equation

    The initial value problem for a a general linear homogeneous (forward) diffusion equation is

    โŽง{โŽจ{โŽฉ

    ๐‘ข๐‘ก(๐‘ก, ๐‘ฅ) = ๐‘Ž ๐‘ข๐‘ฅ๐‘ฅ(๐‘ก, ๐‘ฅ) + ๐‘ ๐‘ข๐‘ฅ(๐‘ก, ๐‘ฅ) + ๐‘ ๐‘ข(๐‘ก, ๐‘ฅ), (๐‘ก, ๐‘ฅ) โˆˆ (0, โˆž) ร— (โˆ’โˆž, โˆž)๐‘ข(0, ๐‘ฅ) = ๐œ™(๐‘ฅ), (๐‘ก, ๐‘ฅ) โˆˆ {๐‘ก = 0} ร— (โˆ’โˆž, โˆž),

    (8.15)

      where ๐‘Ž > 0, ๐‘ โ‰  0 and ๐‘ โ‰  0 and ๐œ™(๐‘ฅ) is a bounded function over ๐‘‹ = โ„.

    Proposition 4. The solution to problem (8.15) is

    ๐‘ข(๐‘ก, ๐‘ฅ) = โˆซโˆž

    โˆ’โˆž๐œ™(๐‘ ) 1โˆš

    4๐œ‹๐‘Ž๐‘กexp (โˆ’(๐‘ฅ โˆ’ ๐‘ )

    2 + 2 ๐‘ (๐‘ฅ โˆ’ ๐‘ ) ๐‘ก + (๐‘2 โˆ’ 4๐‘Ž๐‘) ๐‘ก24 ๐‘Ž ๐‘ก ) ๐‘‘๐‘  (8.16)

     

  • Paulo Brito Advanced Mathematical Economics 2020/2021 15

    Proof. We will solve this problem using the Fourier transform representation of equation ๐‘ข๐‘ก โˆ’(๐‘Ž๐‘ข๐‘ฅ๐‘ฅ + ๐‘๐‘ข๐‘ฅ + ๐‘๐‘ข) = 0. Using inverse Fourier transforms yields

    ๐‘ข๐‘ก(๐‘ก, ๐‘ฅ) โˆ’ ๐‘Ž๐‘ข๐‘ฅ๐‘ฅ(๐‘ก, ๐‘ฅ) โˆ’ ๐‘๐‘ข๐‘ฅ โˆ’ ๐‘๐‘ข(๐‘ก, ๐‘ฅ) = โˆซโˆž

    โˆ’โˆž๐‘’2๐œ‹๐‘–๐œ”๐‘ฅ [ ๐‘ˆ๐‘ก(๐‘ก, ๐œ”) + ๐œ†(๐œ”)๐‘ˆ(๐‘ก, ๐œ”)]  ๐‘‘๐œ” = 0.

      where the coefficient is a complex-valued function of ๐œ” 5 

    ๐œ†(๐œ”) โ‰ก ๐‘Ž(2๐œ‹๐œ”)2 โˆ’ ๐‘ โˆ’ 2๐œ‹ ๐‘ ๐œ” ๐‘–, ๐‘– โ‰กโˆš

    โˆ’1

      Therefore, the PDE (8.15) is equivalent to the linear ODE parameterized by ๐œ”

    ๐‘ˆ๐‘ก(๐‘ก, ๐œ”) = โˆ’๐œ†(๐œ”)๐‘ˆ(๐‘ก, ๐œ”), (๐‘ก, ๐œ”) โˆˆ โ„+ ร— โ„,

      which has the explicit solution

    ๐‘ˆ(๐‘ก, ๐œ”) = ฮฆ(๐œ”) ๐บ(๐‘ก, ๐œ”), for๐‘ก โˆˆ [0, โˆž)

      where ฮฆ(๐œ”) = โ„ฑ[ ๐œ™(๐‘ฅ)] (๐œ”) is the Fourier transform of the initial distribution, and ๐บ(๐‘ก, ๐œ”) is theGaussian kernel

    ๐บ(๐‘ก, ๐œ”) = ๐‘’โˆ’๐œ†(๐œ”)๐‘ก, for ๐‘ก > 0.

      We obtain the solution of problem (8.15) by applying the inverse Fourier transform

    ๐‘ข(๐‘ก, ๐‘ฅ) = โ„ฑโˆ’1 [๐‘ˆ(๐‘ก, ๐œ”)]  (๐‘ฅ) = โ„ฑโˆ’1 [ฮฆ(๐œ”) ๐บ(๐‘ก, ๐œ”)]  (๐‘ฅ) = โˆซโˆž

    โˆ’โˆž๐œ™(๐‘ )๐‘”(๐‘ก, ๐‘ฅ โˆ’ ๐‘ )๐‘‘๐‘ 

      where (see the Appendix 8.7 )

    ๐‘”(๐‘ก, ๐‘ฆ) = โ„ฑโˆ’1 [ ๐‘’โˆ’๐œ†(๐œ”)๐‘ก]   = 1โˆš4๐œ‹๐‘Ž๐‘ก

    exp (โˆ’๐‘ฆ2 + 2๐‘๐‘ก๐‘ฆ + (๐‘2 โˆ’ 4๐‘Ž๐‘)๐‘ก2

    4๐‘Ž๐‘ก ), (8.17)

      because ๐‘Ž๐‘ก > 0.

    Figure 8.5 illustrates the solution (8.16) for negative (left figures) and positive (right figures)values for ๐‘ and negative (upper figures) and positive (lower figures) values of ๐‘. It is clear thatwhile ๐‘ introduces a transportation in the positive direction, if ๐‘ < 0, or in the negative direction,if ๐‘ > 0, ๐‘ is associated to the time stability of the whole distribution.

    8.4 Non-autonomous linear equation

    Next we consider two non-autonomous equations in which there is one term depending on theindependent variables (๐‘ก, ๐‘ฅ)

    5The advection term, involving the first derivative has a complex-valued the Fourier transform representation

    ๐‘ข๐‘ฅ(๐‘ก, ๐‘ฅ) =๐œ•

    ๐œ•๐‘ฅ (โˆซโˆž

    โˆ’โˆž๐‘ˆ(๐‘ก, ๐œ”)๐‘’2๐œ‹๐‘–๐‘ฅ๐œ”๐‘‘๐œ”) = โˆซ

    โˆž

    โˆ’โˆž2๐œ‹๐œ”๐‘– ๐‘ˆ(๐‘ก, ๐œ”)๐‘’2๐œ‹๐‘–๐‘ฅ๐œ”๐‘‘๐œ”.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 16

    Figure 8.5: Solution for the initial value problem linear PDE for ๐‘Ž = 1, ๐‘ = 1 and ๐‘ = โˆ’1 and๐‘ = โˆ’0.5 and ๐‘ = 1 and ๐‘ = โˆ’1 and ๐‘ = 0.5.

    Non-homogeneous heat equation The non-homogeneous (forward) heat equation

    ๐‘ข๐‘ก โˆ’ ๐‘Ž๐‘ข๐‘ฅ๐‘ฅ โˆ’ ๐‘(๐‘ก, ๐‘ฅ) = 0, (๐‘ก, ๐‘ฅ) โˆˆ (0, โˆž) ร— (โˆ’โˆž, โˆž) (8.18)

      this equation has a component which is not affected by ๐‘ข, although it changes with (๐‘ก, ๐‘ฅ).In order to solve it, we again use inverse Fourier transforms to get an equivalent ODE in

    transformed variables ๐‘ˆ(๐‘ก, ๐œ”),

    ๐‘ˆ(๐‘ก, ๐œ”) = โˆ’๐œ†(๐œ”)๐‘ˆ(๐‘ก, ๐œ”) + ๐ต(๐‘ก, ๐œ”)

      where ๐ต(๐‘ก, ๐œ”) = โ„ฑ[๐‘(๐‘ก, ๐‘ฅ)](๐œ”) and ๐œ†(๐œ”) = (2 ๐œ‹ ๐œ”)2 ๐‘Ž. The solution to equation (8.18)is

    ๐‘ˆ(๐‘ก, ๐œ”) = ๐พ(๐œ”)๐บ(๐‘ก, ๐œ”) + โˆซ๐‘ก

    0๐ต(๐‘ , ๐œ”) ๐บ(๐‘ก โˆ’ ๐‘ , ๐œ”)๐‘‘๐‘ ,

      where ๐บ(๐‘ก, โ‹…) is a Gaussian kernel. Applying inverse Fourier transforms yields

    ๐‘ข(๐‘ก, ๐‘ฅ) = ๐‘˜(๐‘ฅ) โˆ— ๐‘”(๐‘ก, ๐‘ฅ) + โˆซ๐‘ก

    0๐‘(๐‘ , ๐‘ฅ) โˆ— ๐‘”(๐‘ก โˆ’ ๐‘ , ๐‘ฅ)๐‘‘๐‘ .

      Therefore, the solution to the parabolic PDE (8.18) is, for ๐‘ก > 0,

    ๐‘ข(๐‘ก, ๐‘ฅ) = 1โˆš4๐œ‹๐‘Ž๐‘ก

    โˆซโˆž

    โˆ’โˆž๐‘˜(๐œ‰)๐‘’โˆ’ (๐‘ฅโˆ’๐œ‰)

    24๐‘Ž๐‘ก ๐‘‘๐œ‰ + โˆซ

    ๐‘ก

    0

    1โˆš4๐œ‹๐‘Ž(๐‘ก โˆ’ ๐‘ )

    โˆซโˆž

    โˆ’โˆž๐‘’โˆ’

    (๐‘ฅโˆ’๐œ‰)24๐‘Ž(๐‘กโˆ’๐‘ ) ๐‘(๐‘ , ๐œ‰)๐‘‘๐œ‰๐‘‘๐‘ .

    The solution can converge to a spatially non-homogenous distribution.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 17

    Non-autonomous diffusion equation

    Consider the equation

    ๐‘ข๐‘ก = ๐‘Ž๐‘ข๐‘ฅ๐‘ฅ + ๐‘๐‘ข + ๐‘‘(๐‘ฅ), (๐‘ก, ๐‘ฅ) โˆˆ (โˆ’โˆž, โˆž) ร— (0, โˆž)

      where ๐‘Ž > 0. It can be proved (see Exercise 1) that the solution for ๐‘ก > 0 is

    ๐‘ข(๐‘ก, ๐‘ฅ) = ๐‘’๐‘๐‘ก

    โˆš4๐œ‹๐‘Ž๐‘ก

    โˆซโˆž

    โˆ’โˆž๐œ™(๐œ‰)๐‘’โˆ’ (๐‘ฅโˆ’๐œ‰)

    24๐‘Ž๐‘ก  ๐‘‘๐œ‰ + 1โˆš4๐œ‹๐‘Ž(๐‘ก โˆ’ ๐œ)

      โˆซ๐‘ก

    0๐‘’๐‘(๐‘กโˆ’๐œ) โˆซ

    โˆž

    โˆ’โˆž๐‘‘(๐œ‰)๐‘’โˆ’

    (๐‘ฅโˆ’๐œ‰)24๐‘Ž(๐‘กโˆ’๐œ)  ๐‘‘๐œ‰๐‘‘๐œ

     

    8.5 Fokker-Planck-Kolmogorov equation

    We will see in the chapter on stochastic differential equations, that the probability distributionof a diffusion  process follows a particular parabolic PDE, called the Fokker-Planck-Kolmogorovequation. This equation is having an increase attention, also in economics, as a model for processessatisfying a conservation law as

    โˆซ๐‘‹

    ๐‘(๐‘ก, ๐‘ฅ)๐‘‘๐‘ฅ = 1, for every  ๐‘ก โˆˆ ๐‘‡

      where ๐‘(๐‘ก, ๐‘ฅ) โˆถ ๐‘‡ ร— ๐‘‹ โ†’ (0, 1).The Fokker-Planck-Kolmogorov equation is

    ๐œ•๐‘ก๐‘(๐‘ก, ๐‘ฅ) =12๐œ•๐‘ฅ๐‘ฅ (๐‘Ž(๐‘ก, ๐‘ฅ)

    2 ๐‘(๐‘ก, ๐‘ฅ)) โˆ’ ๐œ•๐‘ฅ(๐‘(๐‘ก, ๐‘ฅ) ๐‘(๐‘ก, ๐‘ฅ)) (8.19)

      where we assume ๐‘(0, ๐‘ฅ) is known and satisfies

    โˆซ๐‘‹

    ๐‘(0, ๐‘ฅ)๐‘‘๐‘ฅ = 1.

      In applications resulting from stochastic differential equations, the initial state is known ๐‘ฅ = ๐‘ฅ0and the dynamics of a probability distribution is given by Kolmogorov forward equation (or Fokker-Planck equation) and the initial condition ๐‘(0, ๐‘ฅ) = ๐›ฟ(๐‘ฅโˆ’๐‘ฅ0) where ๐›ฟ(โ‹…) is Diracโ€™s delta generalizedfunction.

    8.5.1 The simplest problem

    The simplest model has constant coefficients ๐‘(๐‘ก, ๐‘ฅ) = ๐œ‡ and ๐‘Ž(๐‘ก, ๐‘ฅ) = ๐œŽ and a Dirac delta initialfunction:

    โŽง{โŽจ{โŽฉ

    ๐œ•๐‘ก๐‘(๐‘ก, ๐‘ฅ) =๐œŽ22  ๐œ•๐‘ฅ๐‘ฅ๐‘(๐‘ก, ๐‘ฅ) โˆ’ ๐œ‡๐œ•๐‘ฅ๐‘(๐‘ก, ๐‘ฅ), (๐‘ก, ๐‘ฅ) โˆˆ โ„+ ร— โ„

    ๐‘(0, ๐‘ฅ) = ๐›ฟ(๐‘ฅ โˆ’ ๐‘ฅ0) (๐‘ก, ๐‘ฅ) โˆˆ { ๐‘ก = 0}  ร— โ„(8.20)

  • Paulo Brito Advanced Mathematical Economics 2020/2021 18

    The solution is a Gamma probability density

    ๐‘(๐‘ก, ๐‘ฅ) = 1โˆš2 ๐œ‹ ๐œŽ2 ๐‘ก

    exp โˆ’(๐‘ฅ โˆ’ ๐‘ฅ0 โˆ’ ๐œ‡ ๐‘ก2 ๐œŽ2 ๐‘ก )2  

    = ฮ“( โˆ’ ๐œ‡๐‘ก; ๐œŽ2

    2 , ๐‘ฅ โˆ’ ๐‘ฅ0) (๐‘ก, ๐‘ฅ) โˆˆ โ„+ ร— โ„ 

    Figure 8.6  presents an illustration of the solution

     

    Figure 8.6: Solution for (8.20)  for ๐‘ฅ0 = 5, ๐œ‡ = 1 and ๐œŽ = 0.5.

    8.5.2 The distribution associated to the Ornstein Uhlenbeck equation

    The simplest model has constant coefficients ๐‘(๐‘ก, ๐‘ฅ) = ๐œ‡0 + ๐œ‡1 ๐‘ฅ and ๐‘Ž(๐‘ก, ๐‘ฅ) = ๐œŽ and a Dirac deltainitial function:

    โŽง{โŽจ{โŽฉ

    ๐œ•๐‘ก๐‘(๐‘ก, ๐‘ฅ) =๐œŽ22  ๐œ•๐‘ฅ๐‘ฅ๐‘(๐‘ก, ๐‘ฅ) โˆ’ (๐œ‡0 + ๐œ‡1 ๐‘ฅ) ๐œ•๐‘ฅ๐‘(๐‘ก, ๐‘ฅ) โˆ’ ๐œ‡1๐‘(๐‘ก, ๐‘ฅ), (๐‘ก, ๐‘ฅ) โˆˆ โ„+ ร— โ„

    ๐‘(0, ๐‘ฅ) = ๐›ฟ(๐‘ฅ โˆ’ ๐‘ฅ0) (๐‘ก, ๐‘ฅ) โˆˆ { ๐‘ก = 0}  ร— โ„(8.21)

    The solution is a Normal density function

    ๐‘(๐‘ก, ๐‘ฅ) = 1

    โˆš2 ๐œ‹ ๐œŽ2 (1 โˆ’ ๐‘’2 ๐œ‡1 ๐‘ก)exp { โˆ’

    (๐‘ฅ โˆ’ ๐‘ฅ0 ๐‘’๐œ‡1๐‘ก โˆ’ ๐œ‡0(1 โˆ’ ๐‘’๐œ‡1๐‘ก))2

    2 ๐œŽ2 (1 โˆ’ ๐‘’2๐œ‡1๐‘ก ) }  

    = ๐‘(๐‘ฅ0๐‘’๐œ‡๐‘ก  + ๐œ‡0(1 โˆ’ ๐‘’๐œ‡1๐‘ก),๐œŽ22 (1 โˆ’ ๐‘’

    2๐œ‡1๐‘ก )) (๐‘ก, ๐‘ฅ) โˆˆ โ„+ ร— โ„

      Exercise: prove this.We see that if ๐œ‡1 < 0 then

    lim๐‘กโ†’โˆž

    ๐‘(๐‘ก, ๐‘ฅ) โˆผ ๐‘(๐œ‡0,๐œŽ22 )

      this means that the distribution is ergodic: for any initial value ๐‘ฅ0 it tends asymptotically to anormal distribution (see Figure 8.7).

  • Paulo Brito Advanced Mathematical Economics 2020/2021 19

     

    Figure 8.7: Solution for (8.20)  for ๐‘ฅ0 = 5, ๐œ‡0 = 1, ๐œ‡1 = โˆ’1 and ๐œŽ = 0.5.

    8.6 Economic applications

    8.6.1 The distributional Solow model

     In Brito (2004) we prove that in an economy in which the capital stock is distributed in an

    heterogeneous way between regions, ๐พ(๐‘ก, ๐‘ฅ), if there is an infinite support, and there are freecapital flows between regions, the budget constraint for the location ๐‘ฅ can be represented by theparabolic PDE.

    Consider the accounting balance between savings and internal and external investment for aregion ๐‘ฅ at time ๐‘ก

    ๐ผ(๐‘ก, ๐‘ฅ) + ๐‘‡ (๐‘ก, ๐‘ฅ) = ๐‘†(๐‘ก, ๐‘ฅ)

      where ๐ผ(๐‘ก, ๐‘ฅ) and ๐‘†(๐‘ก, ๐‘ฅ) is investment and domestic savings of location ๐‘ฅ at time ๐‘ก and ๐‘‡ (๐‘ก, ๐‘ฅ) isthe savings flowing to other regions.

    Assume that the capital flow for a region of length ฮ”๐‘ฅ is symmetric to the capital distributiongradient to neighboring regions:

    ๐‘‡ (๐‘ก, ๐‘ฅ)ฮ”๐‘ฅ = โˆ’ (๐พ๐‘ฅ(๐‘ฅ + ฮ”๐‘ฅ, ๐‘ก) โˆ’ ๐พ๐‘ฅ(๐‘ก, ๐‘ฅ))

      that is capital flows proportionaly and in a reverse direction to the โ€spatial gradientโ€ of thecapital distribution: regions with high capital intensity will tend to โ€leakโ€ capital to other regions.If ฮ”๐‘ฅ โ†’ 0 leads to ๐‘‡ (๐‘ก, ๐‘ฅ) = โˆ’๐พ๐‘ฅ๐‘ฅ(๐‘ก, ๐‘ฅ).

    If there is no depreciation then ๐ผ(๐‘ก, ๐‘ฅ) = ๐พ๐‘ก(๐‘ก, ๐‘ฅ). If the technology is ๐ด๐พ and the savings rateis determined as in the Solow model then ๐‘†(๐‘ก, ๐‘ฅ) = ๐‘ ๐ด๐พ(๐‘ก, ๐‘ฅ) where 0 < ๐‘  < 1 and ๐ด is assume tobe spatially homogeneous.

    Therefore we obtain a distributional Solow equation for an economy composed by heterogenousregions

    ๐พ๐‘ก = ๐พ๐‘ฅ๐‘ฅ + ๐‘ ๐ด๐พ, (๐‘ก, ๐‘ฅ) โˆˆ (โˆ’โˆž, โˆž) ร— (0, โˆž)

  • Paulo Brito Advanced Mathematical Economics 2020/2021 20

      We can define a spatially-homogenous balanced growth path (BGP) as

    ๐พ(๐‘ก) = ๐พ๐‘’๐›พ๐‘ก

      where ๐›พ = ๐‘ ๐ด.Then, if we define the deviations as regards the BGP as ๐‘˜(๐‘ก, ๐‘ฅ) = ๐พ(๐‘ก, ๐‘ฅ)๐‘’โˆ’๐›พ๐‘ก, we observe that

    the transitional dynamics is given by the solution of the equation

    ๐‘˜๐‘ก = ๐‘˜๐‘ฅ๐‘ฅ

      which is the heat equation. Therefore, given the initial distribution of the capital stock ๐พ(๐‘ฅ, 0) =๐‘˜0(๐‘ฅ) the solution for this spatial ๐ด๐พ model is

    ๐พ(๐‘ก, ๐‘ฅ) =โŽง{โŽจ{โŽฉ

    ๐‘˜0(๐‘ฅ), ๐‘ก = 0

    ๐‘’๐›พ๐‘ก โˆซโˆž

    โˆ’โˆž๐‘˜0(๐œ‰) (4๐œ‹๐‘ก)

    โˆ’1/2 ๐‘’โˆ’ (๐‘ฅโˆ’๐œ‰)2

    4๐‘ก  ๐‘‘๐œ‰, ๐‘ก > 0

      and the solution is similar to the case depicted in Figure 8.2 when ๐‘ > 0.The main conclusion is that: (1) there is long run growth; (2) , if there are homogenous

    technologies and preferences the asymptotic distribution will become spatially homogeneous. Thatis: the so-called ๐›ฝ- and ๐œŽ- convergences can be made consistent !

    8.6.2 The option pricing model

     The Black and Scholes (1973) model is a case in which a research paper had an immense impact

    on the operation of the economy. It is related to the onset of derivative markets and basically gavebirth to stochastic finance6.

    It provides a formula (the so called Black-Scholes formula) for the value of an European calloption when there are two assets, a riskless asset with interest rate ๐‘Ÿ and a underlying asset whoseprice, ๐‘† which follows a diffusion process (in a stochastic sense): ๐‘‘๐‘† = ๐œ‡๐‘†๐‘‘๐‘ก + ๐œŽ๐‘†๐‘‘๐ต where ๐‘‘๐ต isthe standard Brownian motion (see next chapter). An European call option offers the right to buythe underlying asset at time ๐‘‡ for a price ๐พ fixed at time ๐‘ก = 0, which is conventioned to be themoment of the contract.

    Under the assumption that there are no arbitrage opportunities Black and Scholes (1973) provedthat the price of the option ๐‘‰ = ๐‘‰ (๐‘ก, ๐‘†) is a a function of time, ๐‘ก โˆˆ (0, ๐‘‡ ) and the price of anunderlying asset ๐‘† โˆˆ (0, โˆž) follows the backward parabolic PDE and has a terminal constraint

    โŽง{โŽจ{โŽฉ

    ๐‘‰๐‘ก(๐‘ก, ๐‘†) = โˆ’๐œŽ2๐‘†22  ๐‘‰๐‘†๐‘†(๐‘ก, ๐‘†) โˆ’ ๐‘Ÿ๐‘†๐‘‰๐‘†(๐‘ก, ๐‘†) + ๐‘Ÿ๐‘‰ (๐‘ก, ๐‘†), (๐‘ก, ๐‘†) โˆˆ [0, ๐‘‡ ] ร— (0, โˆž)

    ๐‘‰ (๐‘‡ , ๐‘†) = max{ ๐‘† โˆ’ ๐พ, 0} , (๐‘ก, ๐‘†) โˆˆ {๐‘ก = ๐‘‡ } ร— (0, โˆž).(8.22)

    6Myron Scholes was awarded the Nobel prize in 1997, together with Robert Merton another important contributerto stochastic finance, precisely for this formula. Fisher Black was deceased at the time.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 21

    The first equation is valid for any financial option having the same underlying asset dynamics, andthe terminal constraint is characteristic of the European call option: because the writer sells theright, but not the obligation, to purchase the underlying asset at the price ๐พ at time ๐‘ก = ๐‘‡ , thebuyer is only interested in that purchase if he can sell it at the prevailing market price ๐‘† = ๐‘†(๐‘‡ )when that price is higher than the exercise price ๐พ. In this case the payoff will be ๐‘†(๐‘‡ ) โˆ’ ๐พ.Otherwise he will not execute the option and the terminal payoff will be zero.

    The two boundary constraints

    ๐‘‰ (๐‘ก, 0) = 0, (๐‘ก, ๐‘†) โˆˆ [0, ๐‘‡ ] ร— {๐‘† = 0} lim

    ๐‘†โ†’โˆž๐‘‰ (๐‘ก, ๐‘†) = ๐‘†, (๐‘ก, ๐‘†) โˆˆ [0, ๐‘‡ ] ร— {๐‘† โ†’ โˆž},

    are sometimes referred to, but they are redundant.The same structure occurs in the Mertonโ€™s model (see Merton (1974)) which is a seminal paper

    on the pricing of default bonds. It was the first model on the so-called structural approach tomodelling credit risk which is on the foundation of the credit risk models used by rating agencies(see Duffie and Singleton (2003)). In essence, this model assumes that the value of the firm followsa linear diffusion process and it consideres the issuance of a bond with an expiring date ๐‘‡ whoseindenture gives it absolute priority on the value of the firm at the expiry date. This means thateither if the value of the firm is smaller that the face value of the bond the creditor takes possessionof the firm and in the opposite case it recovers the face value. In this case, we can interpret theposition of the equity owner as holding an European call option over the value of the firm withstrike price equal to the face value of the debt and the creditor as having an European put optionsecurity.

    The price of the European call option 7, given the former assumptions is given by

    ๐‘‰ (๐‘ก, ๐‘†) = ๐‘†ฮฆ(๐‘‘1) โˆ’ ๐พ๐‘’โˆ’๐‘Ÿ(๐‘‡ โˆ’๐‘ก)ฮฆ(๐‘‘2), ๐‘ก โˆˆ [0, ๐‘‡ ] (8.23)

    where ฮฆ(.) is cumulative Gaussian density function such that ฮฆ(๐‘‘) = โ„™(๐‘ฅ โ‰ค ๐‘‘) where

    ๐‘‘1 =ln (๐‘†/๐พ) + (๐‘‡ โˆ’ ๐‘ก) (๐‘Ÿ + ๐œŽ

    2

    2 )

    ๐œŽโˆš

    ๐‘‡ โˆ’ ๐‘ก(8.24)

    ๐‘‘2 =ln (๐‘†/๐พ) + (๐‘‡ โˆ’ ๐‘ก) (๐‘Ÿ โˆ’ ๐œŽ

    2

    2 )

    ๐œŽโˆš

    ๐‘‡ โˆ’ ๐‘ก(8.25)

    Proof. In order to solve the B-S PDE, which is a non-linear backward parabolic PDE, we transformit to to a quasi-linear parabolic forward PDE, by applying the transformations: ๐‘ก(๐œ) = ๐‘‡ โˆ’ ๐œ and๐‘† = ๐พ๐‘’๐‘ฅ and setting ๐‘ข(๐œ, ๐‘ฅ) = ๐‘‰ (๐‘ก(๐œ), ๐‘†(๐‘ฅ)). We can transform the option-pricing problem to the

    7For the credit risk model ๐‘† would be the value of assets of a firm, ๐พ would be the face value of loan, and ๐‘‡ theterm of the loan.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 22

    Figure 8.8: Solution for the Black and Scholes model, for ๐‘Ÿ = 0.02, ๐‘‡ = 20, ๐œŽ = 0.2, and ๐พ = 10.

    equivalent initial-value problem PDE equivalent to (8.22)

    โŽง{โŽจ{โŽฉ

    ๐‘ข๐œ =๐œŽ22 ๐‘ข๐‘ฅ๐‘ฅ + (๐‘Ÿ โˆ’

    ๐œŽ22 ) ๐‘ข๐‘ฅ โˆ’ ๐‘Ÿ๐‘ข, (๐œ, ๐‘ฅ) โˆˆ [0, ๐‘‡ ] ร— (โˆ’โˆž, โˆž)

    ๐‘ข(0, ๐‘ฅ) = ๐‘ข0(๐‘ฅ)(8.26)

    where

    ๐‘ข0(๐‘ฅ) =โŽง{โŽจ{โŽฉ

    0, if ๐‘ฅ โ‰ค 0๐พ (๐‘’๐‘ฅ โˆ’ 1) , if ๐‘ฅ > 0

      The PDE is a particular example of equation (8.15), which implies that the solution is

    ๐‘ข(๐œ, ๐‘ฅ) = โˆซ0

    โˆ’โˆž0 ๐‘”(๐œ, ๐‘ฅ โˆ’ ๐‘ )๐‘‘๐‘  + ๐พ โˆซ

    โˆž

    0(๐‘’๐‘  โˆ’ 1) ๐‘”(๐œ, ๐‘ฅ โˆ’ ๐‘ )๐‘‘๐‘ 

    = ๐พโˆš2๐œ‹๐œŽ2๐œ

    โˆซโˆž

    0(๐‘’๐‘  โˆ’ 1) ๐‘’โ„Ž(๐œ,๐‘ฅโˆ’๐‘ )๐‘‘๐‘ 

      where (from equation (8.17))

    โ„Ž(๐œ, ๐‘ฆ) โ‰ก โˆ’๐‘ฆ2 + 2๐œ (๐‘Ÿ โˆ’ ๐œŽ

    2

    2 ) ๐‘ฆ + (๐‘Ÿ +๐œŽ22 )

    2๐œ2

    2๐œ๐œŽ2 . 

      Then

    ๐‘ข(๐œ, ๐‘ฅ) = ๐พโˆš2๐œ‹๐œŽ2๐œ

    (โˆซโˆž

    0๐‘’๐‘ +โ„Ž(๐œ,๐‘ฅโˆ’๐‘ )๐‘‘๐‘  โˆ’ โˆซ

    โˆž

    0๐‘’โ„Ž(๐œ,๐‘ฅโˆ’๐‘ )๐‘‘๐‘ )

    = ๐พโˆš2๐œ‹๐œŽ2๐œ

    (๐ผ1 โˆ’ ๐ผ2) .

      In order to simplify the integrals it is useful to remember the forms of the error function, erf(๐‘ฅ),and of the Gaussian cumulative distribution ฮฆ(๐‘ฅ),

    erf(๐‘ฅ) = 2โˆš๐œ‹ โˆซ๐‘ฅ

    โˆ’โˆž๐‘’โˆ’๐‘ง2๐‘‘๐‘ง, ฮฆ(๐‘ฅ) = 1โˆš2๐œ‹ โˆซ

    ๐‘ฅ

    โˆ’โˆž๐‘’โˆ’

    12  ๐‘ง

    2

    ๐‘‘๐‘ง

  • Paulo Brito Advanced Mathematical Economics 2020/2021 23

      which are related asฮฆ(๐‘ฅ) = 12 [ 1 + erf (

    ๐‘ฅโˆš2

     )] . 

      After some algebra we obtain

    ๐‘  + โ„Ž(๐œ, ๐‘ฅ โˆ’ ๐‘ ) = ๐‘ฅ โˆ’ 12(๐›ฟ1(๐‘ ))2

    โ„Ž(๐œ, ๐‘ฅ โˆ’ ๐‘ ) = โˆ’๐‘Ÿ๐œ โˆ’ 12(๐›ฟ2(๐‘ ))2

      where

    ๐›ฟ1(๐‘ ) โ‰ก๐‘ฅ โˆ’ ๐‘  + (๐‘Ÿ + ๐œŽ

    2

    2 )

    ๐œŽโˆš๐œ , and ๐›ฟ2(๐‘ ) โ‰ก๐‘ฅ โˆ’ ๐‘  + (๐‘Ÿ โˆ’ ๐œŽ

    2

    2 )

    ๐œŽโˆš๐œ .

      Then 8

    ๐ผ1 = ๐‘’๐‘ฅ โˆซโˆž

    0๐‘’โˆ’

    12 (๐›ฟ1(๐‘ ))

    2

    ๐‘‘๐‘  =

    = โˆ’๐œŽโˆš๐œ๐‘’๐‘ฅ โˆซโˆ’โˆž

    ๐‘‘1๐‘’โˆ’

    12 ๐›ฟ

    21๐‘‘๐›ฟ1 =

    =โˆš

    ๐œŽ2๐œ๐‘’๐‘ฅ โˆซ๐‘‘1

    โˆ’โˆž๐‘’โˆ’

    12 ๐›ฟ

    21๐‘‘๐›ฟ1 =

    =โˆš

    2๐œ‹๐œŽ2๐œ๐‘’๐‘ฅฮฆ(๐‘‘1)  where ๐‘‘1 = ๐›ฟ1(0) as in equation (8.24) for ๐œ = ๐‘‡ โˆ’ ๐‘ก , and also, writing that ๐‘‘2 = ๐›ฟ2(0), as inequation (8.25) for ๐œ = ๐‘‡ โˆ’ ๐‘ก,

    ๐ผ2 = ๐‘’โˆ’๐‘Ÿ๐œ โˆซโˆž

    0๐‘’โˆ’

    12 (๐›ฟ2(๐‘ ))

    2

    ๐‘‘๐‘  =

    = โˆ’๐œŽโˆš๐œ๐‘’โˆ’๐‘Ÿ๐œ โˆซโˆ’โˆž

    ๐‘‘2๐‘’โˆ’

    12 ๐›ฟ

    22๐‘‘๐›ฟ2 =

    =โˆš

    ๐œŽ2๐œ๐‘’โˆ’๐‘Ÿ๐œ โˆซ๐‘‘2

    โˆ’โˆž๐‘’โˆ’

    12 ๐›ฟ

    22๐‘‘๐›ฟ2 =

    =โˆš

    2๐œ‹๐œŽ2๐œ๐‘’โˆ’๐‘Ÿ๐œฮฆ(๐‘‘2)

    ,

      Thus๐‘ข(๐œ, ๐‘ฅ) = ๐พ (๐‘’๐‘ฅฮฆ(๐‘‘1) โˆ’ ๐‘’โˆ’๐‘Ÿ๐œฮฆ(๐‘‘2))

      and transforming back ๐‘‰ (๐‘ก, ๐‘†) = ๐‘ข (๐‘‡ โˆ’ ๐‘ก, ln (๐‘†/๐พ)) we get equation (8.23).

    Observe this is a backward parabolic PDE, which implies that the terminal condition determinesthe particular solution.

    8We use integration by transformation of variables: if we define ๐‘ง = ๐œ‘(๐‘ ) where ๐œ‘ โˆถ [๐‘Ž, ๐‘] โ†’ โ„ and ๐‘“ โˆถ โ„ โ†’ โ„ wehave that

    โˆซ๐œ‘(๐‘)

    ๐œ‘(๐‘Ž)๐‘“(๐‘ง)๐‘‘๐‘ง = โˆซ

    ๐‘

    ๐‘Ž๐‘“ (๐œ‘(๐‘ )) ๐œ‘โ€ฒ (๐‘ )๐‘‘๐‘ .

     

  • Paulo Brito Advanced Mathematical Economics 2020/2021 24

    8.7 Bibiography

    โ€ข Mathematics of PDEโ€™s: introductory Olver (2014), Salsa (2016) and (Pinsky, 2003, ch 5).Advanced (Evans, 2010, ch 3).

    โ€ข Applications to economics (with more advanced material) : Achdou et al. (2014)

    โ€ข Applications to growth theory Brito (2004) and Brito (2011) and the references therein.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 25

    8.A Appendix: Fourier transforms

    Consider a function ๐‘“(๐‘ฅ) such that ๐‘ฅ โˆˆ โ„ and โˆซโˆžโˆ’โˆž |๐‘“(๐‘ฅ)|๐‘‘๐‘ฅ < โˆž. We can define a pair of generalizedfunctions, the Fourier transform of ๐‘“(๐‘ฅ), ๐น(๐‘ ) = โ„ฑ[๐‘“(๐‘ฅ)](๐‘ ) and the inverse Fourier transformโ„ฑโˆ’1[๐น (๐‘ )] (๐‘ฅ) = ๐‘“(๐‘ฅ) (using the definition of Kammler (2000) ), where

    ๐น(๐‘ ) = โ„ฑ[๐‘“(๐‘ฅ)] โ‰ก โˆซโˆž

    โˆ’โˆž๐‘“(๐‘ฅ) ๐‘’โˆ’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ ๐‘‘๐‘ฅ

      where ๐‘–2 = โˆ’1 and๐‘“(๐‘ฅ) = โ„ฑโˆ’1[๐น (๐‘ )] โ‰ก โˆซ

    โˆž

    โˆ’โˆž๐น(๐‘ )๐‘’2๐œ‹๐‘–๐‘ ๐‘ฅ๐‘‘๐‘ .

    There are some useful properties of the Fourier transform that we use in the main text:

    1. the Fourier transform preserves multiplication by a complex number ๐‘Ž โˆˆ โ„‚:

     โ„ฑ[๐‘Ž ๐‘“(๐‘ฅ)]  = ๐‘Ž ๐น(๐‘ ), and โ„ฑโˆ’1[๐‘Ž๐น(๐‘ )]  = ๐‘Ž๐‘“(๐‘ฅ),

      Proof: โ„ฑ[๐‘Ž ๐‘“(๐‘ฅ)]  = โˆซโˆžโˆ’โˆž ๐‘Ž ๐‘“(๐‘ฅ) ๐‘’โˆ’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘Ž โˆซโˆžโˆ’โˆž ๐‘“(๐‘ฅ) ๐‘’

    โˆ’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘Ž ๐น(๐‘ ), and โ„ฑโˆ’1[๐‘Ž ๐น(๐‘ )] โ‰กโˆซโˆžโˆ’โˆž ๐‘Ž ๐น(๐‘ )๐‘’

    2๐œ‹๐‘–๐‘ ๐‘ฅ๐‘‘๐‘  = ๐‘Ž โˆซโˆžโˆ’โˆž ๐น(๐‘ )๐‘’2๐œ‹๐‘–๐‘ ๐‘ฅ๐‘‘๐‘  = ๐‘Ž ๐‘“(๐‘ฅ);

    2. the Fourier transform preserves linearity:

    โ„ฑ[๐‘Ž ๐‘“(๐‘ฅ) + ๐‘ ๐‘”(๐‘ฅ)]  = ๐‘Ž ๐น(๐‘ ) + ๐‘ ๐บ(๐‘ ), and โ„ฑโˆ’1[๐‘Ž ๐น(๐‘ ) + ๐‘ ๐บ(๐‘ )]  = ๐‘Ž ๐‘“(๐‘ฅ) + ๐‘ ๐‘”(๐‘ฅ)

     

    3. the Fourier transform does not preserve multiplication of two functions. However, there isa relationship between convolution of functions and multiplication of Fourier transforms. Aconvolution  between two functions ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) is defined as

    ๐‘“(๐‘ฅ) โˆ— ๐‘”(๐‘ฅ) = โˆซโˆž

    โˆ’โˆž๐‘“(๐‘ฆ) ๐‘”(๐‘ฅ โˆ’ ๐‘ฆ) ๐‘‘๐‘ฆ.

      The inverse Fourier transform of a product of two Fourier transforms is a convolution,

    ๐‘“(๐‘ฅ) โˆ— ๐‘”(๐‘ฅ) = โ„ฑโˆ’1[๐น (๐‘ ) ๐บ(๐‘ )]  = โˆซโˆž

    โˆ’โˆž๐น(๐‘ ) ๐บ(๐‘ ) ๐‘’2๐œ‹๐‘–๐‘ ๐‘ฅ๐‘‘๐‘ 

     

    4. โ„ฑ[๐‘ฅ] = โˆ’ 12 ๐œ‹ ๐‘–๐›ฟโ€ฒ(๐‘ ), where ๐›ฟ(๐‘ฅ) is Diracโ€™s delta. To prove this observe that

    โˆซโˆž

    โˆ’โˆž๐‘’2๐œ‹๐‘–๐‘ ๐‘ฅ๐›ฟ(๐‘ )๐‘‘๐‘  = 1

  • Paulo Brito Advanced Mathematical Economics 2020/2021 26

    Therefore

    ๐‘ฅ = ๐‘ฅ โˆซโˆž

    โˆ’โˆž๐‘’2๐œ‹๐‘–๐‘ ๐‘ฅ๐›ฟ(๐‘ )๐‘‘๐‘ 

    = โˆ’ 12 ๐œ‹ ๐‘– ( โˆซโˆž

    โˆ’โˆž๐‘’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ ๐›ฟ(๐‘ ) โˆ’ โˆซ

    โˆž

    โˆ’โˆž2 ๐œ‹ ๐‘– ๐‘ฅ ๐‘’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ๐›ฟ(๐‘ ) ๐‘‘๐‘  )

    = โˆ’ 12 ๐œ‹ ๐‘– โˆซโˆž

    โˆ’โˆž๐‘’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ๐›ฟโ€ฒ(๐‘ ) ๐‘‘๐‘ 

    = โˆ’ 12 ๐œ‹ ๐‘–โ„ฑโˆ’1[  12 ๐œ‹ ๐‘– ๐›ฟ

    โ€ฒ(๐‘ )]  

    5. โ„ฑ[๐‘ฅ2] = 1(2 ๐œ‹)2 ๐›ฟโ€ณ(๐‘ )

    6. โ„ฑ[๐‘ฅ ๐‘“(๐‘ฅ)]  = โˆ’ 12 ๐œ‹ ๐‘– ๐นโ€ฒ(๐‘ )

    Proof:

    โ„ฑ[๐‘ฅ ๐‘“(๐‘ฅ)]  = โˆซโˆž

    โˆ’โˆž๐‘ฅ ๐‘“(๐‘ฅ) ๐‘’โˆ’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ ๐‘‘๐‘ฅ

    = โˆ’ 12 ๐œ‹ ๐‘–  โˆซโˆž

    โˆ’โˆžโˆ’2๐œ‹ ๐‘– ๐‘ฅ ๐‘“(๐‘ฅ) ๐‘’โˆ’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ ๐‘‘๐‘ฅ

    = โˆ’ 12 ๐œ‹ ๐‘–  โˆซโˆž

    โˆ’โˆž๐‘“(๐‘ฅ) ๐‘‘๐‘‘๐‘ (๐‘’

    โˆ’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ) ๐‘‘๐‘ฅ

    = โˆ’ 12 ๐œ‹ ๐‘– ๐‘‘๐‘‘๐‘ ๐น(๐‘ ) =

    ๐‘‘๐‘‘๐‘ [  โˆซ

    โˆž

    โˆ’โˆž๐‘“(๐‘ฅ) ๐‘’โˆ’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ ๐‘‘๐‘ฅ] 

    = โˆ’ 12 ๐œ‹ ๐‘– ๐นโ€ฒ(๐‘ )

      Alternative proof:

    โ„ฑ[๐‘ฅ ๐‘“(๐‘ฅ)]  = โ„ฑ[๐‘ฅ] โˆ— โ„ฑ[๐‘“(๐‘ฅ)] = โˆซโˆž

    โˆ’โˆžโˆ’ 12 ๐œ‹ ๐‘– ๐›ฟ

    โ€ฒ(๐‘ฆ) ๐น(๐‘  โˆ’ ๐‘ฆ)๐‘‘๐‘ฆ = โˆ’ 12 ๐œ‹ ๐‘– ๐นโ€ฒ(๐‘ )

     

    7. if ๐‘“ = ๐‘“(๐‘ฅ, ๐‘ก) where ๐‘ก is a real variable then ๐น(๐‘ , ๐‘ก) = โ„ฑ[๐‘“(๐‘ฅ, ๐‘ก)] and ๐‘“(๐‘ฅ, ๐‘ก) =  โ„ฑโˆ’1[๐น (๐‘ , ๐‘ก)].Also ๐น๐‘ก(๐‘ , ๐‘ก) = โ„ฑ[๐‘“๐‘ก(๐‘ฅ, ๐‘ก)] and ๐‘“๐‘ก(๐‘ฅ, ๐‘ก) =  โ„ฑโˆ’1[๐น๐‘ก(๐‘ , ๐‘ก)]

    8. โ„ฑ[๐‘“ โ€ฒ(๐‘ฅ)]  = 2 ๐œ‹ ๐‘– ๐‘  ๐น(๐‘ )

  • Paulo Brito Advanced Mathematical Economics 2020/2021 27

    Proof:

    โ„ฑ[๐‘“ โ€ฒ(๐‘ฅ)]  = โˆซโˆž

    โˆ’โˆž๐‘“ โ€ฒ(๐‘ฅ) ๐‘’โˆ’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ ๐‘‘๐‘ฅ

    integration by parts 

    = โˆซโˆž

    โˆ’โˆž๐‘“(๐‘ฅ) ๐‘’โˆ’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ โˆ’ โˆซ

    โˆž

    โˆ’โˆž๐‘“(๐‘ฅ) ๐œ•๐œ•๐‘ฅ(๐‘’

    โˆ’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ) ๐‘‘๐‘ฅ 

    because ๐‘’โˆ’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ is symmetric the first integral is equal to zero

    = 2 ๐œ‹ ๐‘– ๐‘  โˆซโˆž

    โˆ’โˆž๐‘“(๐‘ฅ) ๐‘’โˆ’2 ๐œ‹ ๐‘– ๐‘  ๐‘ฅ ๐‘‘๐‘ฅ 

    = 2 ๐œ‹ ๐‘– ๐‘  ๐น(๐‘ ) 

    9. โ„ฑ[๐‘ฅ๐‘“ โ€ฒ(๐‘ฅ)]  = โˆ’(๐น(๐‘ ) + ๐‘ ๐น โ€ฒ(๐‘ )) if ๐‘  โˆˆ โ„Proof:

     

     โ„ฑ[๐‘ฅ ๐‘“ โ€ฒ(๐‘ฅ)]  = โ„ฑ[๐‘ฅ] โˆ— โ„ฑ[๐‘“ โ€ฒ(๐‘ฅ)]

    = โˆซโˆž

    โˆ’โˆž( โˆ’ 12 ๐œ‹ ๐‘– ๐›ฟ

    โ€ฒ(๐‘ฆ)) (2 ๐œ‹ ๐‘– (๐‘  โˆ’ ๐‘ฆ) ๐น(๐‘  โˆ’ ๐‘ฆ))๐‘‘๐‘ฆ

    = โˆ’ โˆซโˆž

    โˆ’โˆž๐›ฟโ€ฒ(๐‘ฆ) (๐‘  โˆ’ ๐‘ฆ) ๐น(๐‘  โˆ’ ๐‘ฆ)๐‘‘๐‘ฆ

    = โˆ’๐‘  โˆซโˆž

    โˆ’โˆž๐›ฟโ€ฒ(๐‘ฆ) ๐น(๐‘  โˆ’ ๐‘ฆ)๐‘‘๐‘ฆ + โˆซ

    โˆž

    โˆ’โˆž๐›ฟโ€ฒ(๐‘ฆ) ๐‘ฆ ๐น(๐‘  โˆ’ ๐‘ฆ)๐‘‘๐‘ฆ

    = โˆ’๐‘ ๐น โ€ฒ(๐‘ ) + โˆซโˆž

    โˆ’โˆž๐›ฟ(๐‘ฆ) ๐‘ฆ ๐น(๐‘  โˆ’ ๐‘ฆ) โˆ’ โˆซ

    โˆž

    โˆ’โˆž๐›ฟ(๐‘ฆ) ๐น(๐‘  โˆ’ ๐‘ฆ)๐‘‘๐‘ฆ

    = ๐‘ ๐น โ€ฒ(๐‘ ) โˆ’ ๐น(๐‘ ) 

    10. โ„ฑ[๐‘“โ€ณ(๐‘ฅ)]  = โˆ’4 ๐œ‹2 ๐‘ 2 ๐น(๐‘ )

    11. โ„ฑ[๐‘ฅ ๐‘“โ€ณ(๐‘ฅ)]  = 2 ๐œ‹ ๐‘ ๐‘–  (2 ๐น(๐‘ ) + ๐‘  ๐นโ€ฒ(๐‘ ))

    12. โ„ฑ[๐‘ฅ2 ๐‘“โ€ณ(๐‘ฅ)]  = โˆ’๐‘ 2 ๐น โ€ณ(๐‘ )

    Some useful results:

  • Paulo Brito Advanced Mathematical Economics 2020/2021 28

    Table 8.1: Fourier and inverse Fourier transforms of some functions

    ๐‘“(๐‘ฅ) for โˆ’โˆž < ๐‘ฅ < โˆž ๐น(๐‘ ) for โˆ’โˆž < ๐‘  < โˆž obs๐‘˜๐›ฟ(๐‘ฅ) ๐‘˜ ๐‘˜ constant

    ๐‘˜ ๐‘˜ ๐›ฟ(๐‘ ) ๐‘˜ constant๐›ฟ(๐‘ฅ โˆ’ ๐‘Ž) ๐‘’โˆ’2 ๐œ‹ ๐‘– ๐‘  ๐‘Ž

    1โˆš4๐œ‹๐‘Ž๐‘’โˆ’

    ๐‘ฅ24๐‘Ž ๐‘’โˆ’๐‘Ž(2๐œ‹๐‘ )2 ๐‘Ž > 0

    1โˆš4๐œ‹๐‘Ž๐‘’โˆ’

    (๐‘ฅ+๐‘)24๐‘Ž ๐‘’โˆ’๐‘Ž(2๐œ‹๐‘ )2+๐‘(2๐œ‹๐‘–๐‘ ) ๐‘Ž > 0, ๐‘ โˆˆ โ„

    1โˆš4๐œ‹๐‘Ž๐‘’๐‘โˆ’

    ๐‘ฅ24๐‘Ž ๐‘’โˆ’๐‘Ž(2๐œ‹๐‘ )2+๐‘ ๐‘Ž > 0, ๐‘ โˆˆ โ„

    1โˆš4๐œ‹๐‘Ž๐‘’๐‘โˆ’

    (๐‘ฅ+๐‘)24๐‘Ž ๐‘’โˆ’๐‘Ž(2๐œ‹๐‘ )2+๐‘(2๐œ‹๐‘–๐‘ )+๐‘ ๐‘Ž > 0, (๐‘, ๐‘) โˆˆ โ„2

    ๐‘“(๐‘ฅ) โˆ— ๐‘”(๐‘ฅ) ๐น(๐‘ ) ๐บ(๐‘ )

  • Chapter 9

    Optimal control of parabolic partialdifferential equations

     

    9.1 Introduction

    The optimal control of parabolic PDE is sometimes called optimal control of distributions.Similarly to the optimal control of ODEโ€™s, the first order conditions include a system of forward-

    backward parabolic PDEโ€™s together with boundary conditions. The requirements for the existenceof solutions are clearly very strong, because the general solutions of the PDE system may not allowfor the boundary conditions to be satisfied. Ill-posedness is, therefore, an important issue here.

    Next we present the necessary conditions for three different optimal control of parabolic PDEโ€™s:a simple infinite horizon problem in section 9.2, an average optimal control problem in subsection9.2.1, and the optimal control of a Fokker-Planck-Kolmogorov equation in section 9.3.

    9.2 A simple optimal control problem

    Next we consider a simple optimal control problem for a system governed by a parabolic PDE.We have two independent variables, time ๐‘ก โˆˆ โ„+ and another independent variable ๐‘ฅ โˆˆ โ„ and

    two dependent functions, the control ๐‘ข = ๐‘ข(๐‘ก, ๐‘ฅ), mapping ๐‘ข โˆถ โ„+ ร— โ„ โ†’ โ„ and a state ๐‘ฆ = ๐‘ฆ(๐‘ก, ๐‘ฅ),mapping ๐‘ข โˆถ โ„+ ร— โ„ โ†’ โ„.

    The system to be controlled is given by a semi-linear parabolic partial differential equation๐‘ฆ๐‘ก = ๐‘ฆ๐‘ฅ๐‘ฅ + ๐‘”(๐‘ก, ๐‘ฅ, ๐‘ข, ๐‘ฆ) where ๐‘”(โ‹…, ๐‘ข, ๐‘ฆ) is smooth, by an initial condition ๐‘ฆ(0, ๐‘ฅ) = ๐‘ฆ0(๐‘ฅ), wherefunction ๐‘ฆ0 โˆถ โ„ โ†’ โ„ is and bounded, and a Neumann boundary condition lim๐‘ฅโ†’ยฑโˆž ๐‘ฆ๐‘ฅ(๐‘ก, ๐‘ฅ) = 0 isgiven for every ๐‘ก. The boundary condition means that the state variable should be โ€flatโ€ for verylarge absolute values of variable ๐‘ฅ.

    29

  • Paulo Brito Advanced Mathematical Economics 2020/2021 30

    The utility functional involves both integration in time and in the other independent variable

    ๐ฝ[๐‘ข, ๐‘ฆ]  = โˆซโˆž

    0โˆซ

    โˆž

    โˆ’โˆž๐‘“(๐‘ก, ๐‘ฅ, ๐‘ข(๐‘ก, ๐‘ฅ), ๐‘ฆ(๐‘ก, ๐‘ฅ)) ๐‘‘๐‘ฅ ๐‘‘๐‘ก

      where we assume that ๐‘“(โ‹…, ๐‘ข, ๐‘ฆ) is smooth and measurable, in the sense 1

    โˆซโ„+ร—โ„

    |๐‘“(๐‘ก, ๐‘ฅ)|๐‘‘(๐‘ก, ๐‘ฅ) < โˆž.

     Therefore our problem is to find the optimal ๐‘ขโˆ— = (๐‘ขโˆ—(๐‘ก, ๐‘ฅ))(๐‘ก,๐‘ฅ)โˆˆโ„+ร—โ„ and ๐‘ฆ

    โˆ— = (๐‘ฆโˆ—(๐‘ก, ๐‘ฅ))(๐‘ก,๐‘ฅ)โˆˆโ„+ร—โ„that solve the problem:

    max๐‘ข(โ‹…)

    โˆซโˆž

    0โˆซ

    โˆž

    โˆ’โˆž๐‘“(๐‘ก, ๐‘ฅ, ๐‘ข(๐‘ก, ๐‘ฅ), ๐‘ฆ(๐‘ก, ๐‘ฅ))๐‘‘๐‘ฅ๐‘‘๐‘ก (9.1)

      subject to the constraints

    โŽง{{โŽจ{{โŽฉ

    ๐œ•๐‘ฆ๐œ•๐‘ก =

    ๐œ•2๐‘ฆ๐œ•๐‘ฅ2 + ๐‘”(๐‘ก, ๐‘ฅ, ๐‘ข(๐‘ก, ๐‘ฅ), ๐‘ฆ(๐‘ก, ๐‘ฅ)), for (๐‘ก, ๐‘ฅ) โˆˆ โ„+ ร— โ„

    ๐‘ฆ(0, ๐‘ฅ) = ๐‘ฆ0(๐‘ฅ), for (๐‘ก, ๐‘ฅ) โˆˆ { ๐‘ก = 0}  ร— โ„lim๐‘ฅโ†’ยฑโˆž

    ๐œ•๐‘ฆ(๐‘ก, ๐‘ฅ)๐œ•๐‘ฅ = 0 for (๐‘ก, ๐‘ฅ) โˆˆ โ„+ ร— {(๐‘ฅ = โˆ’โˆž), (๐‘ฅ = โˆž) } 

      (9.2)

    Next we find the optimality conditions for this problem applying a distributional Pontriyaginmaximum principle.

    We define the Hamiltonian

    ๐ป(๐‘ก, ๐‘ฅ, ๐‘ข, ๐‘ฆ, ๐œ†) = ๐‘“(๐‘ก, ๐‘ฅ, ๐‘ข, ๐‘ฆ) + ๐œ†(๐‘ก, ๐‘ฅ)๐‘”(๐‘ก, ๐‘ฅ, ๐‘ข, ๐‘ฆ)

      and call ๐œ† = ๐œ†(๐‘ก, ๐‘ฅ) the co-state variable.

    Proposition 1 (Necessary first-order conditions ). Let (๐‘ขโˆ—, ๐‘ฆโˆ—) be a solution to problem (9.1)-(9.2). Then there is a co-state variable ๐œ† such that the following necessary conditions hold

    ๐œ•๐ปโˆ—(๐‘ก, ๐‘ฅ)๐œ•๐‘ข = 0  (9.3)

    ๐œ•๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ก = โˆ’

    ๐œ•2๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ฅ2 โˆ’

    ๐œ•๐ปโˆ—(๐‘ก, ๐‘ฅ)๐œ•๐‘ฆ (9.4)

    lim๐‘กโ†’โˆž

    ๐œ†(๐‘ก, ๐‘ฅ) = 0 (9.5)

    lim๐‘ฅโ†’ยฑโˆž

    ๐œ•๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ฅ = 0. (9.6)

    together with equations (9.2)1This condition requires that the function is bounded for every value of ๐‘ข(.) and ๐‘ฆ(.) and allow for the use of

    Fubiniโ€™s theorem, i.e, for the interchange of the integration for ๐‘ก and ๐‘ฅ. Intuitively, we should consider functions suchthat the order of integration does not matter.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 31

    See the proof in the appendix. Equation (9.3) is a static optimality condition, that if function๐ป(๐‘ข, .) is sufficiently smooth, allows for the determination of the optimal control ๐‘ขโˆ— as a function ofthe co-state variable, and the state variable. Equation (9.4) is a Euler-equation. In this case it is abackward parabolic PDE which encodes the incentives for changing the control variable. Equations(9.5) and (9.6) are transversality conditions, which are dual to the boundary conditions in (9.2)related to the asymptotic properties of the solution.

    If functions ๐‘“(โ‹…) and ๐‘”(โ‹…) are sufficiently smooth in (๐‘ข, ๐‘ฆ) , we can use the implicit functiontheorem to obtain from equation (9.3) 

    ๐‘ขโˆ— = ๐‘ˆ(๐‘ก, ๐‘ฅ, ๐‘ฆ(๐‘ก, ๐‘ฅ), ๐œ†(๐‘ก, ๐‘ฅ)),

      yielding๐บ(๐‘ก, ๐‘ฅ, ๐‘ฆ(๐‘ก, ๐‘ฅ), ๐œ†(๐‘ก, ๐‘ฅ)) = ๐‘”(๐‘ก, ๐‘ฅ, ๐‘ขโˆ—(๐‘ก, ๐‘ฅ), ๐‘ฆ(๐‘ก, ๐‘ฅ))

      and

    ๐ฟ(๐‘ก, ๐‘ฅ, ๐‘ฆ(๐‘ก, ๐‘ฅ), ๐œ†(๐‘ก, ๐‘ฅ)) = ๐‘“๐‘ฆ(๐‘ก, ๐‘ฅ, ๐‘ขโˆ—(๐‘ก, ๐‘ฅ), ๐‘ฆ(๐‘ก, ๐‘ฅ)) + ๐œ†(๐‘ก, ๐‘ฅ) ๐‘”๐‘ฆ(๐‘ก, ๐‘ฅ, ๐‘ขโˆ—(๐‘ก, ๐‘ฅ), ๐‘ฆ(๐‘ก, ๐‘ฅ))

      we have a distributional MHDS system

    โŽง{โŽจ{โŽฉ

    ๐œ•๐‘ฆ๐œ•๐‘ก =

    ๐œ•2๐‘ฆ๐œ•๐‘ฅ2 + ๐บ(๐‘ก, ๐‘ฅ, ๐‘ฆ, ๐œ†), for (๐‘ก, ๐‘ฅ) โˆˆ โ„+ ร— โ„

    ๐œ•๐œ†๐œ•๐‘ก = โˆ’

    ๐œ•2๐œ†๐œ•๐‘ฅ2 โˆ’ ๐ฟ(๐‘ก, ๐‘ฅ, ๐‘ฆ, ๐œ†) for (๐‘ก, ๐‘ฅ) โˆˆ โ„+ ร— โ„.

      This system has two semi-linear parabolic PDEโ€™s: a forward parabolic PDE for the state variableand a backward parabolic PDE for the co-state variable. It is a distributional generalization of theMHDS for an optimal control problem of ODEโ€™s.

    9.2.1 Average optimal control problem

    Next we consider a particular case of the previous problem in which the planner maximizes thepresent-value of an average utility function

    ๐ฝ(๐‘ฆ, ๐‘ข) = lim๐‘ฅโ†’โˆž

    12๐‘ฅ  โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅโˆซ

    โˆž

    0๐‘“(๐‘ฆ(๐œ‰, ๐‘ก), ๐‘ข(๐œ‰, ๐‘ก))๐‘’โˆ’๐œŒ๐‘ก๐‘‘๐‘ก๐‘‘๐œ‰ (9.7)

      where ๐œŒ > 0 and ๐‘“(.) is continuous and differentiable. We assume the same semi-linear parabolicconstraint.

    The problem is

    max๐‘ข

    lim๐‘ฅโ†’โˆž

    12๐‘ฅ  โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅโˆซ

    โˆž

    0๐‘“(๐‘ฆ(๐œ‰, ๐‘ก), ๐‘ข(๐œ‰, ๐‘ก))๐‘’โˆ’๐œŒ๐‘ก๐‘‘๐‘ก๐‘‘๐œ‰

      subject to

     ๐‘ฆ๐‘ก = ๐œŽ2๐‘ฆ๐‘ฅ๐‘ฅ + ๐‘”(๐‘ฆ, ๐‘ข), (๐‘ก, ๐‘ฅ) โˆˆ โ„+ ร— โ„ (9.8)๐‘ฆ(๐‘ฅ, 0) = ๐œ™(๐‘ฅ), ๐‘ฅ โˆˆ โ„ (9.9)

    lim๐‘กโ†’โˆž

    ๐‘…(๐‘ก)๐‘ฆ(๐‘ก, ๐‘ฅ) โ‰ฅ 0, ๐‘ฅ โˆˆ โ„ (9.10)

    lim๐‘ฅโ†’ยฑโˆž

    ๐‘ฆ(๐‘ก, ๐‘ฅ)๐‘ฅ = 0, ๐‘ก โˆˆ โ„+. (9.11)

  • Paulo Brito Advanced Mathematical Economics 2020/2021 32

      where ๐‘…(๐‘ก) โ‰ค ๐‘…0๐‘’โˆ’๐œŒ๐‘ก, where โ„Ž0 is a constant.The (current-value) Hamiltonian function is

    ๐ป(๐‘ฆ, ๐‘ข, ๐‘ž) โ‰ก ๐‘“(๐‘ฆ, ๐‘ข) + ๐‘ž๐‘”(๐‘ฆ, ๐‘ข)

      where ๐‘ž(๐‘ก, ๐‘ฅ) is the current value co-state variable.The necessary first order conditions, according to the Pontryaginโ€™s maximum principle are the

    following.

    Proposition 2 (Necessary conditions for the optimal average problem). Assume there are optimalprocesses for the state and the control variable, ๐‘ฆโˆ— = (๐‘ฆโˆ—(๐‘ก, ๐‘ฅ))(๐‘ก,๐‘ฅ)โˆˆโ„ร—โ„+ and ๐‘ขโˆ— = (๐‘ขโˆ—(๐‘ก, ๐‘ฅ))(๐‘ก,๐‘ฅ)โˆˆโ„ร—โ„+then there is a (current-value) co-state variable ๐‘ž(๐‘ก, ๐‘ฅ) such that the following conditions hold:

    โ€ข the optimality condition  

     ๐œ•๐ป๐œ•๐‘ข  (๐‘ฆโˆ—(๐‘ก, ๐‘ฅ), ๐‘ขโˆ—(๐‘ก, ๐‘ฅ), ๐‘ž(๐‘ก, ๐‘ฅ) ) = 0, (๐‘ก, ๐‘ฅ) โˆˆ (๐‘ก, ๐‘ฅ) โˆˆ โ„++ ร— โ„

     

    โ€ข the distributional Euler equation

    ๐‘ž๐‘ก = โˆ’๐œŽ2๐‘ž๐‘ฅ๐‘ฅ + ๐‘ž (๐œŒ โˆ’๐œ•๐ป๐œ•๐‘ฆ  (๐‘ฆ

    โˆ—(๐‘ก, ๐‘ฅ), ๐‘ขโˆ—(๐‘ก, ๐‘ฅ), ๐‘ž(๐‘ก, ๐‘ฅ) ))), (๐‘ก, ๐‘ฅ) โˆˆ (๐‘ก, ๐‘ฅ) โˆˆ โ„++ ร— โ„

     

    โ€ข the boundary condition, dual to equation (9.11)

    lim๐‘ฅโ†’ยฑโˆž

    ๐‘’โˆ’๐œŒ๐‘ก ๐‘ž(๐‘ก, ๐‘ฅ)๐‘ฅ = 0, ๐‘ก โˆˆ โ„++

     

    โ€ข the transversality condition

    lim๐‘กโ†’โˆž

    ๐‘’โˆ’๐œŒ๐‘ก lim๐‘ฅโ†’โˆž

    โˆซ๐‘ฅ

    โˆ’๐‘ฅ๐‘ž(๐œ‰, ๐‘ก)๐‘ฆ(๐œ‰, ๐‘ก) = 0, {๐‘ก = โˆž 

     

    See the proof in the Appendix

    9.2.2 Application: the distributional ๐ด๐พ modelAs application consider a simple model in which there is a central planner in a dynastic economy whowants to maximize the average (un-weighted) utility of an economy composed with heterogeneousagents, distributed in space from a central point ๐‘ฅ = 0. Assume that the heterogeneity is onlygiven by their initial asset position, ๐‘˜0(๐‘ฅ). Each agent produces a different quantity of a good,depending only on their endowment of capital and the central planner assigns consumption which

  • Paulo Brito Advanced Mathematical Economics 2020/2021 33

    varies between consumers and can be different from their production (given the capital endowment).Therefore there is a distribution of savings in the economy allowing some agents to use more (less)capital than they have at the beginning of every (infinitesimal) period. This section draws uponBrito (2004) and Brito (2011), which present this model with more detail.

    Consider agents located at ๐‘Ÿ and having the capital stock ๐พ(๐‘ก, ๐‘Ÿ) and having savings ๐‘†(๐‘ก, ๐‘Ÿ) attime ๐‘ก. Savings is equal to income minus consumption, where we assume that income is generatedby a linear production function

    ๐‘Œ (๐‘ก, ๐‘Ÿ) = ๐ด ๐พ(๐‘ก, ๐‘Ÿ).

      Savings can be applied in the own region, ๐ผ(๐‘ก, ๐‘Ÿ), or in other regions ๐‘‡ (๐‘ก, ๐‘Ÿ) : therefore ๐‘†(๐‘ก, ๐‘Ÿ) =๐ผ(๐‘ก, ๐‘Ÿ) + ๐‘‡ (๐‘ก, ๐‘Ÿ) where is trade balance. If there is no depreciation then ๐ผ(๐‘ก, ๐‘ ) = ๐œ•๐พ๐œ•๐‘ก . We order theregions according to their capital endowment then ๐‘ฅ can be used as a index for the regions. If, inaddition, we consider that: first, the flow of capital runs from regions with high capital intensityto regions to low capital intensity and, second, that the flow is proportional to the gradient of thecapital intensity at the boundary of region ๐‘Ÿ = [๐‘ฅ, ๐‘ฅ + ฮ”๐‘ฅ], then flow

    ๐‘‡ (๐‘ก, ๐‘Ÿ) = ๐œ2 โˆซโˆ†๐‘ฅ

    ๐‘ฅ

    ๐œ•๐พ๐œ•๐‘ฅ (๐‘ก, ๐‘ ) ๐‘‘๐‘ .

      If we let ฮ”๐‘ฅ โ†’ 0 then we find distributional capital accumulation constraint for every location ๐‘ฅ๐œ•๐พ(๐‘ก, ๐‘ฅ)

    ๐œ•๐‘ก = ๐œ2 ๐œ•2๐พ(๐‘ก, ๐‘ฅ)

    ๐œ•๐‘ฅ2 + ๐ด๐พ(๐‘ก, ๐‘ฅ) โˆ’ ๐ถ(๐‘ก, ๐‘ฅ) โˆ€(๐‘ก, ๐‘ฅ) โˆˆ โ„+ ร— โ„ (9.12)

    The problem is to maximize the average intertemporal discounted utility of consumption, ๐ถ,

    ๐ฝ(๐ถ, ๐พ) โ‰ก max[๐ถ]

    lim๐‘ฅโ†’โˆž

    12๐‘ฅ โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅโˆซ

    โˆž

    0

    ๐ถ(๐œ‰, ๐‘ก)1โˆ’๐œƒ1 โˆ’ ๐œƒ  ๐‘’

    โˆ’๐œŒ๐‘ก๐‘‘๐‘ก๐‘‘๐œ‰. (9.13)

    subject to the distributional capital accumulation equation (9.12) and the terminal, the boundaryand the initial conditions

    lim๐‘กโ†’โˆž

    ๐‘’โˆ’ โˆซ๐‘ก

    0 ๐‘Ÿ(๐‘ฅ,๐‘ )๐‘‘๐‘ ๐พ(๐‘ก, ๐‘ฅ) โ‰ฅ 0, โˆ€๐‘ฅ โˆˆ โ„ (9.14)

    lim๐‘ฅโ†’โˆ“โˆž

    ๐พ(๐‘ก, ๐‘ฅ)๐‘ฅ = 0, โˆ€๐‘ก โˆˆ โ„+ (9.15)

    ๐พ(๐‘ฅ, 0) = ๐œ™(๐‘ฅ), โˆ€๐‘ฅ โˆˆ โ„ given. (9.16)

    According to the distributional Pontriyagin maximum principle (see the Appendix) the distri-butional MHDS is

    ๐œ•๐พ๐œ•๐‘ก = ๐œ

    2 ๐œ•2๐พ๐œ•๐‘ฅ2 + ๐ด๐พ โˆ’ ๐ถ, ๐‘ฅ โˆˆ โ„, ๐‘ก > 0 (9.17)

    ๐œ•๐ถ๐œ•๐‘ก = โˆ’๐œ

    2 [๐œ•2๐ถ

    ๐œ•๐‘ฅ2 โˆ’1 + ๐œƒ

    ๐ถ (๐œ•๐ถ๐œ•๐‘ฅ )

    2] + ๐›พ๐ถ, ๐‘ฅ โˆˆ โ„, ๐‘ก > 0 (9.18)

    where the endogenous growth rate i s๐›พ โ‰ก ๐ด โˆ’ ๐œŒ๐œƒ , (9.19)

  • Paulo Brito Advanced Mathematical Economics 2020/2021 34

    the transversality condition

    lim๐‘กโ†’โˆž

    lim๐‘ฅโ†’โˆž

    12๐‘ฅ โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅ๐‘’โˆ’๐œŒ๐‘ก๐พ(๐œ‰, ๐‘ก)๐ถ(๐œ‰, ๐‘ก)โˆ’๐œƒ๐‘‘๐œ‰ = 0, (9.20)

    and the dual boundary conditions

    lim๐‘ฅโ†’ยฑโˆž

    (๐‘’๐œŒ๐‘ก๐ถ(๐‘ก, ๐‘ฅ)๐œƒ๐‘ฅ)โˆ’1 = 0, ๐‘ก โ‰ฅ 0. (9.21)

    In system (9.18)-(9.17), ๐ด is the net total factor productivity and ๐›พ is equal to the endogenousgrowth rate in the benchmark homogeneous ๐ด๐พ model. The initial condition ๐พ(๐‘ฅ, 0) = ๐œ™(๐‘ฅ) andthe boundary condition (9.15) should also hold.

    The coupled system (9.18)-(9.17) has the closed form solution

    ๐พ(๐‘ก, ๐‘ฅ) = ๐‘’๐›พ๐‘ก๐‘˜(๐‘ก, ๐‘ฅ), ๐ถ(๐‘ก, ๐‘ฅ) = ๐‘’๐›พ๐‘ก๐‘(๐‘ก, ๐‘ฅ), ๐‘ก โ‰ฅ 0, ๐‘ฅ โˆˆ โ„ (9.22)

    where๐‘˜(๐‘ก, ๐‘ฅ) = 1

    2๐œโˆš

    ๐œ‹๐œƒ๐‘กโˆซ

    โˆž

    โˆ’โˆž๐œ™(๐œ‰)๐‘’โˆ’( ๐‘ฅโˆ’๐œ‰2๐œ )

    2 1๐œƒ๐‘ก ๐‘‘๐œ‰,  ๐‘ก > 0, ๐‘ฅ โˆˆ โ„

      and

    ๐‘(๐‘ก, ๐‘ฅ) = 12๐œ

    โˆš๐œ‹๐œƒ๐‘ก

    โˆซโˆž

    โˆ’โˆž๐œ™(๐œ‰) [๐‘Ÿ โˆ’ ๐›พ + (๐œƒ โˆ’ 1) ( 12๐œƒ๐‘ก โˆ’ (

    ๐‘ฅ โˆ’ ๐œ‰2๐œ๐œƒ๐‘ก  )

    2)]  ๐‘’โˆ’( ๐‘ฅโˆ’๐œ‰2๐œ  )

    2 1๐œƒ๐‘ก  ๐‘‘๐œ‰,  ๐‘ก > 0, ๐‘ฅ โˆˆ โ„.

     A necessary condition for the existence of a solution of the centralized problem is that ๐ด >

    ๐›พ. This model displays convergence to a time-unbounded balanced growth path similar to thehomogeneous-agent ๐ด๐พ model: capital will be equalized among regions. Figure ?? presents agraphic depiction of the detrended-solution for ๐œ™(๐‘ฅ) = ๐‘’โˆ’|๐‘ฅ|. We observe that the initial hetero-geneity is eliminated along the transition

    Figure 9.1: Convergence to a homogeneous asymptotic: local dynamics for the detrended ๐‘˜(๐‘ก, ๐‘ฅ)and ๐‘(๐‘ก, ๐‘ฅ) for the case ๐ด๐พ.

  • Paulo Brito Advanced Mathematical Economics 2020/2021 35

    9.3 Optimal control of the Fokker-Planck-Kolmogorov equation

    In this section we consider a problem in which the PDE constraint of the economy is representedby a Fokker-Planck-Kolmogorov equation, which, as we saw models probabilities of distributionsacross time.

    This problem has two particularities: first, the transport and the diffusion terms are controledendogeneously by the. control variable, second, the state variable enters in the objective functionalas a weighting variable.

    In principle, this problem has other particular properties that should be highlighted:

    1. the boundary conditions (9.25) introduce an initial condition is a density function such that

    โˆซ๐‘‹

    ๐‘ฆ0(๐‘ฅ) ๐‘‘๐‘ฅ = 1

      and for every point in time the density zero in the extremes of the support. This impliesthat the a conservation law should hold for every ๐‘ก โˆˆ ๐‘‡ ,

    โˆซ๐‘‹

    ๐‘ฆ(๐‘ก, ๐‘ฅ) ๐‘‘๐‘ฅ = 1

      and that the state variable is bounded in ๐‘‹ for every point in time (it is a ๐ฟ2 function);

      However, in order to have this conservative property several technical problems have to be

    solved. Although first-order PDEโ€™s satisfy a conservation law for ๐‘ก > 0 if the initial condition, for๐‘ก = 0 does satisfy it, this property does not hold generally for parabolic PDEโ€™s. Some normalizationhas to be introduced in the solution for single equations. We are not aware of the effect of this onthe solution to optimal control problem.

    Therefore, the version we present next does not necessary satisfy a conservation law.Let ๐‘‡ = [๐‘ก,ฬฒ ๐‘ก] and ๐‘‹ = [๏ฟฝฬฒฬฒฬฒฬฒ๏ฟฝ, ๐‘ฅ], the state variable ๐‘ฆ โˆถ ๐‘‡ ร— ๐‘‹ โ†’ โ„ and the control variable

    ๐‘ข โˆถ ๐‘‡ ร— ๐‘‹ โ†’ โ„.We consider the optimal control problem of a Fokker-Planck equation

    max๐‘ข(โ‹…)

    โˆซ๐‘‡

    โˆซ๐‘‹

    ๐‘“(๐‘ก, ๐‘ฅ, ๐‘ข(๐‘ก, ๐‘ฅ)) ๐‘ฆ(๐‘ก, ๐‘ฅ) ๐‘‘๐‘ฅ ๐‘‘๐‘ก (9.23)

    subject to

    ๐œ•๐‘ก๐‘ฆ(๐‘ก, ๐‘ฅ) + ๐œ•๐‘ฅ(๐‘”(๐‘ฅ, ๐‘ข(๐‘ก, ๐‘ฅ)) ๐‘ฆ(๐‘ก, ๐‘ฅ)) โˆ’ ๐œ•๐‘ฅ๐‘ฅ(โ„Ž(๐‘ฅ, ๐‘ข(๐‘ก, ๐‘ฅ)) ๐‘ฆ(๐‘ก, ๐‘ฅ)) = 0, a.e.  (๐‘ก, ๐‘ฅ) โˆˆ ๐‘‡ ร— ๐‘‹ (9.24)

    and the boundary constraints

    โŽง{โŽจ{โŽฉ

    ๐‘ฆ(๐‘ก,ฬฒ ๐‘ฅ) = ๐‘ฆ0(๐‘ฅ), (๐‘ก, ๐‘ฅ) โˆˆ {๐‘ก = ๐‘ก}ฬฒ  ร— ๐‘‹๐‘ฆ(๐‘ก, ๐‘ฅ) = 0, (๐‘ก, ๐‘ฅ) โˆˆ ๐‘‡   ร— {๐‘ฅ = ๏ฟฝฬฒฬฒฬฒฬฒ๏ฟฝ, ๐‘ฅ = ๐‘ฅ}

      (9.25)

    We assume that functions ๐‘“(โ‹…), ๐‘”(โ‹…) and โ„Ž(โ‹…) are continuous and continuously differentiable asregards the control variable ๐‘ข(โ‹…).

  • Paulo Brito Advanced Mathematical Economics 2020/2021 36

    Proposition 3 (Optimal control of the FPK equation).  Let ๐‘ขโˆ—(โ‹…) and ๐‘ฆโˆ—(โ‹…) be the solution of problem (9.23)-(9.24)-(9.25). Then there is a function ๐œ† โˆถ๐‘‡ ร— ๐‘‹ โ†’ โ„ such that:

    1. the optimality condition

    ๐œ•๐‘ข๐‘”(๐‘ฅ, ๐‘ขโˆ—(๐‘ก, ๐‘ฅ))๐œ•๐‘ฅ๐œ†(๐‘ก, ๐‘ฅ) + ๐œ•๐‘ขโ„Ž(๐‘ฅ, ๐‘ขโˆ—(๐‘ก, ๐‘ฅ))๐œ•๐‘ฅ๐‘ฅ๐œ†(๐‘ก, ๐‘ฅ) + ๐œ•๐‘ข๐‘“(๐‘ก, ๐‘ฅ, ๐‘ขโˆ—(๐‘ก, ๐‘ฅ)) = 0 a.e (๐‘ก, ๐‘ฅ) โˆˆ ๐‘‡ ร— ๐‘‹(9.26)

    2. the distributional Euler equation

    ๐œ•๐‘ก๐œ†(๐‘ก, ๐‘ฅ)+๐‘”(๐‘ฅ, ๐‘ขโˆ—(๐‘ก, ๐‘ฅ))๐œ•๐‘ฅ๐œ†(๐‘ก, ๐‘ฅ)+โ„Ž(๐‘ฅ, ๐‘ขโˆ—(๐‘ก, ๐‘ฅ))๐œ•๐‘ฅ๐‘ฅ๐œ†(๐‘ก, ๐‘ฅ)+๐‘“(๐‘ก, ๐‘ฅ, ๐‘ขโˆ—(๐‘ก, ๐‘ฅ)) = 0 a.e (๐‘ก, ๐‘ฅ) โˆˆ ๐‘‡ ร—๐‘‹(9.27)

    3. the transversality condition

    ๐œ†(๐‘ก, ๐‘ฅ) = 0, (๐‘ก, ๐‘ฅ) โˆˆ {๐‘ก = ๐‘ก}  ร— ๐‘‹

     

    4. and the admissibility constraints (9.24) and (9.25) evaluated at the optimum.

     

    9.3.1 Application: optimal distribution of capital with stochastic redistribution

    Consider an economy with heterogeneous households and that the household with capital stock๐‘˜(๐‘ก), at time ๐‘ก has the accumulation equation

    ๐‘‘๐‘˜(๐‘ก) = (๐ด๐‘˜(๐‘ก) โˆ’ ๐‘(๐‘ก)) ๐‘‘๐‘ก + ๐œŽ๐‘˜(๐‘ก)๐‘‘๐‘Š(๐‘ก)

      where ๐‘‘๐‘Š is a Wiener process. We assume that ๐‘˜ โˆˆ [0, โˆž). If ๐‘›(๐‘ก, ๐‘˜) is the density of householdswith capital ๐‘˜ at time ๐‘ก the distribution function for households satisfies

    โˆซโˆž

    0๐‘›(๐‘ก, ๐‘˜)๐‘‘๐‘ก = 1, for every ๐‘ก โˆˆ [0, โˆž).

      Therefore, the distribution of households satisfies the FPK equation

    ๐œ•๐‘›(๐‘ก, ๐‘˜) + ๐œ•๐‘˜((๐ด๐‘˜ โˆ’ ๐‘) ๐‘›(๐‘ก, ๐‘˜)) โˆ’12๐œ•๐‘˜๐‘˜ ((๐œŽ๐‘˜)

    2 ๐‘›(๐‘ก, ๐‘˜)) = 0

      where ๐‘›(0, ๐‘˜) = ๐œ™(๐‘˜) is given and ๐‘›(๐‘ก, 0) = lim๐‘˜โ†’โˆž ๐‘›(๐‘ก, ๐‘˜) = 0.We assume a central planer wants to allocate consuming among households, and through time,

    in order to maximize a social welfare function. We assume the social welfare function is

    โˆซโˆž

    0โˆซ

    โˆž

    0ln (๐‘(๐‘˜, ๐‘ก)) ๐‘›(๐‘˜, ๐‘ก)๐‘’โˆ’๐œŒ๐‘ก ๐‘‘๐‘˜ ๐‘‘๐‘ก, ๐œŒ > 0

  • Paulo Brito Advanced Mathematical Economics 2020/2021 37

      Applying Proposition 3 the necessary first order conditions lead to the forward-backward parabolicPDE-system

    ๐œ•๐‘ก๐‘ž(๐‘ก, ๐‘˜) + ๐ด๐‘˜ ๐œ•๐‘˜ ๐‘ž(๐‘ก, ๐‘˜) + ln ((๐œ•๐‘˜๐‘ž(๐‘ก, ๐‘˜))โˆ’1) +12 ๐œŽ

    2๐‘˜2๐œ•๐‘˜๐‘˜๐‘ž(๐‘ก, ๐‘˜) โˆ’ ๐œŒ๐‘ž(๐‘ก, ๐‘˜) โˆ’ 1 = 0 (9.28)

    ๐œ•๐‘ก๐‘›(๐‘ก, ๐‘˜) + ((๐ด๐‘˜ โˆ’ (๐œ•๐‘˜๐‘ž(๐‘ก, ๐‘˜))โˆ’1) ๐‘›(๐‘ก, ๐‘˜))๐‘˜ โˆ’๐œŽ22 ๐œ•๐‘˜๐‘˜ (๐‘˜

    2๐‘›(๐‘ก, ๐‘˜)) = 0 (9.29)

    together with a transversality condition

    lim๐‘กโ†’โˆž

    ๐‘’โˆ’๐œŒ๐‘ก๐‘ž(๐‘ก, ๐‘˜) = 0.

      where ๐‘ž(๐‘ก, ๐‘˜) = ๐‘’๐œŒ๐‘ก๐œ†(๐‘ก, ๐‘˜) is the current distributional co-state variable.Because the system is recursive, we can solve the Euler equation together with the transversality

    condition for ๐‘ž(๐‘ก, ๐‘˜). Substituting in the constraint (9.29) we obtain a linear parabolic PDE for theoptimal dynamics of the distribution

    ๐œ•๐‘ก๐‘›(๐‘˜, ๐‘ก) + ๐œ•๐‘˜ (๐›พ๐‘˜๐‘›(๐‘˜, ๐‘ก)) โˆ’๐œŽ22 ๐œ•๐‘˜๐‘˜ (๐‘˜

    2๐‘›(๐‘˜, ๐‘ก)) = 0.

      Solving the Cauchy problem with ๐‘›(0, ๐‘˜) = ๐œ™(๐‘˜) a closed form solution can be obtained

    ๐‘›โˆ—(๐‘ก, ๐‘ฅ) = โˆซโˆž

    0๐œ™(๐œ‰) ๐‘” (๐‘ก, ln (๐‘˜๐œ‰ ))

    1๐œ‰ ๐‘‘๐œ‰. (9.30)

    where

    ๐‘”(๐‘ก, ๐‘ฆ) = (2๐œ‹๐œŽ2๐‘ก)โˆ’ 12 exp [(๐›พ โˆ’ ๐œŽ2)๐‘ก โˆ’ (๐‘ฆ โˆ’ ๐‘ก(๐›พ โˆ’32  ๐œŽ2))

    2

    2๐œŽ2๐‘ก  ], ๐‘ฅ โˆˆ โ„. . (9.31)

     This solution contains both a transport mechanism, which tends to generate growth at a rate

    ๐›พ โ‰ก ๐ด โˆ’ ๐œŒ > 0 and a diffusion mechanism, with strength ๐œŽ2. We can show that the average capitalstock is

    ๐‘€๐‘˜(๐‘ก) = โˆซโˆž

    0๐‘˜ ๐‘›(๐‘ก, ๐‘˜) ๐‘‘๐‘˜ = ๐‘€๐‘˜(0) ๐‘’(๐›พโˆ’๐œŽ

    2)๐‘ก, ๐‘ก โˆˆ [0, โˆž)

      meaning that there is long run growth if ๐›พ โˆ’๐œŽ2 > 0, that is if the stochastic distribution of growthis not too volatile.

    9.4 References

    โ€ข Optimal control problem of partial differential equations or an optimal distributed controlproblem Butkovskiy (1969), Lions (1971), Derzko et al. (1984) or Neittaanmaki and Tiba(1994) present optimality results with varying generality. We draw mainly upon the last tworeferences. See also the textbooks: Fattorini (1999) and Trรถltzsch (2010).  

    โ€ข Applications in economics Carlson et al. (1996, chap.9)

  • Paulo Brito Advanced Mathematical Economics 2020/2021 38

    9.A Proofs

    Next we present heuristic proofs of the three versions of the distributional PMP presented in themain text.

    Proof of Proposition 1. The value functional is

    ๐‘‰ [๐‘ข, ๐‘ฆ] = โˆซโˆž

    0โˆซ

    โˆž

    โˆ’โˆž๐‘“(๐‘ก, ๐‘ฅ, ๐‘ข(๐‘ก, ๐‘ฅ), ๐‘ฆ(๐‘ก, ๐‘ฅ))๐‘‘๐‘ฅ๐‘‘๐‘ก,

      considering the constraint we have

    ๐‘‰ [๐‘ข, ๐‘ฆ] = โˆซโˆž

    0โˆซ

    โˆž

    โˆ’โˆž[๐‘“(๐‘ก, ๐‘ฅ, ๐‘ข(๐‘ก, ๐‘ฅ), ๐‘ฆ(๐‘ก, ๐‘ฅ)) + ๐œ†(๐‘ก, ๐‘ฅ) (๐‘”(๐‘ก, ๐‘ฅ, ๐‘ข(๐‘ก, ๐‘ฅ), ๐‘ฆ(๐‘ก, ๐‘ฅ)) โˆ’ ๐œ•๐‘ฆ๐œ•๐‘ก +

    ๐œ•2๐‘ฆ๐œ•๐‘ฅ2 )] ๐‘‘๐‘ฅ ๐‘‘๐‘ก =

    = โˆซโˆž

    0โˆซ

    โˆž

    โˆ’โˆž[๐ป(๐‘ก, ๐‘ฅ, ๐‘ข(๐‘ก, ๐‘ฅ), ๐‘ฆ(๐‘ก, ๐‘ฅ), ๐œ†(๐‘ก, ๐‘ฅ)) โˆ’ ๐œ†(๐‘ก, ๐‘ฅ) ๐œ•๐‘ฆ๐œ•๐‘ก + ๐œ†(๐‘ก, ๐‘ฅ)

    ๐œ•2๐‘ฆ๐œ•๐‘ฅ2 ]   ๐‘‘๐‘ฅ ๐‘‘๐‘ก

    = โˆซโˆž

    0โˆซ

    โˆž

    โˆ’โˆž[๐ป(๐‘ก, ๐‘ฅ, ๐‘ข(๐‘ก, ๐‘ฅ), ๐‘ฆ(๐‘ก, ๐‘ฅ), ๐œ†(๐‘ก, ๐‘ฅ)) + (๐œ•๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ก +

    ๐œ•2๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ฅ2 (๐‘ก, ๐‘ฅ)) ๐‘ฆ(๐‘ก, ๐‘ฅ)]   ๐‘‘๐‘ฅ ๐‘‘๐‘ก+

    โˆ’ โˆซโˆž

    โˆ’โˆž๐œ†(๐‘ก, ๐‘ฅ)๐‘ฆ(๐‘ก, ๐‘ฅ) ๐‘‘๐‘ฅ โˆฃ

    โˆž

    ๐‘ก=0+ โˆซ

    โˆž

    0(๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ฆ(๐‘ก, ๐‘ฅ)๐œ•๐‘ฅ โˆ’

    ๐œ•๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ฅ ๐‘ฆ(๐‘ก, ๐‘ฅ)) ๐‘‘๐‘ก โˆฃ

    โˆž

    ๐‘ฅ=โˆ’โˆž

      for any control and state variables.Let us assume we know the optimal control and state variables ๐‘ขโˆ—(๐‘ก, ๐‘ฅ) and ๐‘ฆโˆ—(๐‘ก, ๐‘ฅ) then

    ๐‘‰ [๐‘ขโˆ—, ๐‘ฆโˆ—] = โˆซโˆž

    0โˆซ

    โˆž

    โˆ’โˆž๐‘“(๐‘ก, ๐‘ฅ, ๐‘ขโˆ—(๐‘ก, ๐‘ฅ), ๐‘ฆโˆ—(๐‘ก, ๐‘ฅ))๐‘‘๐‘ฅ๐‘‘๐‘ก,

      and let ๐‘ข(๐‘ก, ๐‘ฅ) and ๐‘ฆ(๐‘ก, ๐‘ฅ) be admissible perturbations over the optimal levels

    ๐‘ข(๐‘ก, ๐‘ฅ) = ๐‘ขโˆ—(๐‘ก, ๐‘ฅ) + ๐œ€โ„Ž๐‘ข(๐‘ก, ๐‘ฅ)๐‘ฆ(๐‘ก, ๐‘ฅ) = ๐‘ฆโˆ—(๐‘ก, ๐‘ฅ) + ๐œ€โ„Ž๐‘ฆ(๐‘ก, ๐‘ฅ)

     

      where ๐œ– is a constant, and โ„Ž๐‘ฆ(0, ๐‘ฅ) = 0, for every ๐‘ฅ โˆˆ โ„, and lim๐‘ฅยฑโˆž๐œ•โ„Ž๐‘ฆ(๐‘ก, ๐‘ฅ)

    ๐œ•๐‘ฅ = 0, for every๐‘ก โˆˆ โ„+.The integral derivative evaluated at ๐œ€ = 0 is

    ๐›ฟ๐‘‰ [๐‘ขโˆ—, ๐‘ฆโˆ—] = โˆซโˆž

    0โˆซ

    โˆž

    โˆ’โˆž[ ๐œ•๐ป

    โˆ—(๐‘ก, ๐‘ฅ)๐œ•๐‘ข  โ„Ž๐‘ข(๐‘ก, ๐‘ฅ) + ( 

    ๐œ•๐ปโˆ—(๐‘ก, ๐‘ฅ)๐œ•๐‘ฆ +

    ๐œ•๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ก +

    ๐œ•2๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ฅ2   ) โ„Ž๐‘ฆ(๐‘ก, ๐‘ฅ)]    ๐‘‘๐‘ฅ ๐‘‘๐‘กโˆ’

    โˆ’ โˆซโˆž

    โˆ’โˆž๐œ†(๐‘ก, ๐‘ฅ)โ„Ž๐‘ฆ (๐‘ก, ๐‘ฅ) ๐‘‘๐‘ฅ โˆฃ

    โˆž

    ๐‘ก=0+ โˆซ

    โˆž

    0๐œ†(๐‘ก, ๐‘ฅ)๐œ•โ„Ž๐‘ฆ (๐‘ก, ๐‘ฅ)๐œ•๐‘ฅ โˆ’

    ๐œ•๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ฅ โ„Ž๐‘ฆ (๐‘ก, ๐‘ฅ)) ๐‘‘๐‘ก

    โˆž

    ๐‘ฅ=โˆ’โˆž=

      where ๐ปโˆ—(๐‘ก, ๐‘ฅ) = ๐ป(๐‘ก, ๐‘ฅ๐‘ขโˆ—(๐‘ก, ๐‘ฅ), ๐‘ฆโˆ—(๐‘ก, ๐‘ฅ), ๐œ†(๐‘ก, ๐‘ฅ)). From admissibility conditions, we have

    ๐›ฟ๐‘‰ [๐‘ขโˆ—, ๐‘ฆโˆ—] = โˆซโˆž

    0โˆซ

    โˆž

    โˆ’โˆž[ ๐œ•๐ป

    โˆ—(๐‘ก, ๐‘ฅ)๐œ•๐‘ข  โ„Ž๐‘ข(๐‘ก, ๐‘ฅ) + ( 

    ๐œ•๐ปโˆ—(๐‘ก, ๐‘ฅ)๐œ•๐‘ฆ +

    ๐œ•๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ก +

    ๐œ•2๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ฅ2   ) โ„Ž๐‘ฆ(๐‘ก, ๐‘ฅ)]   ๐‘‘๐‘ฅ๐‘‘๐‘กโˆ’

    โˆ’ lim๐‘กโ†’โˆž

    โˆซโˆž

    โˆ’โˆž๐œ†(๐‘ก, ๐‘ฅ)โ„Ž๐‘ฆ (๐‘ก, ๐‘ฅ)๐‘‘๐‘ฅ โˆ’ โˆซ

    โˆž

    0(๐œ•๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ฅ โ„Ž๐‘ฆ (๐‘ก, ๐‘ฅ)) ๐‘‘๐‘ก โˆฃ

    โˆž

    ๐‘ฅ=โˆ’โˆž

  • Paulo Brito Advanced Mathematical Economics 2020/2021 39

     Optimality requires that ๐‘‰ [๐‘ขโˆ—, ๐‘ฆโˆ—] โ‰ฅ ๐‘‰ [๐‘ข, ๐‘ฆ] which holds only if ๐›ฟ๐‘‰ [๐‘ขโˆ—, ๐‘ฆโˆ—] = 0. Then optimality

    conditions are as in equation (9.2).

    Proof of Proposition 2. Let us assume that there is a solution (๐‘ขโˆ—, ๐‘ฆโˆ—), for the problem, and definethe value function as

    ๐‘‰ [๐‘ขโˆ—, ๐‘ฆโˆ—] = lim๐‘ฅโ†’โˆž

    12๐‘ฅ โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅโˆซ

    โˆž

    0๐‘“(๐‘ฆโˆ—(๐œ‰, ๐‘ก), ๐‘ขโˆ—(๐œ‰, ๐‘ก))๐‘’โˆ’๐œŒ๐‘ก๐‘‘๐‘ก๐‘‘๐œ‰.

    Consider a small continuous perturbation (๐‘ข(๐œ–), ๐‘ฆ(๐œ–)) = {(๐‘ข(๐‘ก, ๐‘ฅ), ๐‘ฆ(๐‘ก, ๐‘ฅ)) โˆถ (๐‘ก, ๐‘ฅ) โˆˆ โ„ ร— โ„+}, where๐œ– is any positive constant, such that ๐‘ข(๐‘ก, ๐‘ฅ) = ๐‘ขโˆ—(๐‘ก, ๐‘ฅ) + ๐œ–โ„Ž๐‘ข(๐‘ก, ๐‘ฅ) and ๐‘ฆ(๐‘ก, ๐‘ฅ) = ๐‘ฆโˆ—(๐‘ก, ๐‘ฅ) + ๐œ–โ„Ž๐‘ฆ(๐‘ก, ๐‘ฅ),for ๐‘ก > 0, and โ„Ž๐‘ข(๐‘ฅ, 0) = โ„Ž๐‘ฆ(๐‘ฅ, 0) = 0, for every ๐‘ฅ โˆˆ โ„. The value of this strategy is

    ๐‘‰ (๐œ–) = lim๐‘ฅโ†’โˆž

    12๐‘ฅ โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅโˆซ

    โˆž

    0๐‘“(๐‘ข(๐œ‰, ๐‘ก), ๐‘ฆ(๐œ‰, ๐‘ก))๐‘’โˆ’๐œŒ๐‘ก๐‘‘๐‘ก๐‘‘๐œ‰.

    But,

    ๐‘‰ (๐œ–) โˆถ= lim๐‘ฅโ†’โˆž

    12๐‘ฅ โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅโˆซ

    โˆž

    0๐‘“(๐‘ข(๐œ‰, ๐‘ก), ๐‘ฆ(๐œ‰, ๐‘ก))๐‘’โˆ’๐œŒ๐‘ก๐‘‘๐‘ก๐‘‘๐œ‰โˆ’

    โˆ’ lim๐‘ฅโ†’โˆž

    12๐‘ฅ โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅโˆซ

    โˆž

    0๐œ†(๐œ‰, ๐‘ก) [๐œ•๐‘ฆ(๐œ‰, ๐‘ก)๐œ•๐‘ก โˆ’

    ๐œ•2๐‘ฆ(๐œ‰, ๐‘ก)๐œ•๐œ‰2 โˆ’ ๐‘”(๐‘ข(๐œ‰, ๐‘ก), ๐‘ฆ(๐œ‰, ๐‘ก))] ๐‘‘๐‘ก๐‘‘๐œ‰+

    + lim๐‘กโ†’โˆž

    lim๐‘ฅโ†’โˆž

    12๐‘ฅ โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅ๐‘’โˆ’๐‘Ÿ(๐œ‰,๐‘ก)๐œ‡(๐œ‰, ๐‘ก)๐‘ฆ(๐œ‰, ๐‘ก)๐‘‘๐œ‰ (9.32)

    where ๐œ†(.) is the co-state variable and ๐œ‡(.) is a Lagrange multiplier associated with the solvabilitycondition. In the optimum, the Kuhn-Tucker condition should hold

    lim๐‘กโ†’โˆž

    lim๐‘ฅโ†’โˆž

    12๐‘ฅ โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅ๐‘’โˆ’๐‘Ÿ(๐œ‰,๐‘ก)๐œ‡(๐œ‰, ๐‘ก)๐‘ฆ(๐œ‰, ๐‘ก)๐‘‘๐œ‰ = 0.

    By using integration by parts we find that

    โˆซโˆž

    0๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ฆ(๐‘ก, ๐‘ฅ)๐œ•๐‘ก ๐‘‘๐‘ก = ๐œ†(๐‘ก, ๐‘ฅ)๐‘ฆ(๐‘ก, ๐‘ฅ)|

    โˆž๐‘ก=0 โˆ’ โˆซ

    โˆž

    0

    ๐œ•๐œ†(๐‘ก, ๐‘ฅ)๐œ•๐‘ก ๐‘ฆ(๐‘ก, ๐‘ฅ)๐‘‘๐‘ก

    and that

    โˆซ๐‘ฅ

    โˆ’๐‘ฅโˆซ

    โˆž

    0๐œ†(๐œ‰, ๐‘ก)๐œ•

    2๐‘ฆ(๐œ‰, ๐‘ก)๐œ•๐œ‰2 ๐‘‘๐‘ก๐‘‘๐œ‰ =

    = โˆซโˆž

    0๐œ†(๐œ‰, ๐‘ก)๐œ•๐‘ฆ(๐œ‰, ๐‘ก)๐œ•๐œ‰ โˆฃ

    ๐‘ฅ

    ๐œ‰=โˆ’๐‘ฅโˆ’ ๐‘ฆ(๐œ‰, ๐‘ก)๐œ•๐œ†(๐œ‰, ๐‘ก)๐œ•๐œ‰ โˆฃ

    ๐‘ฅ

    ๐œ‰=โˆ’๐‘ฅ๐‘‘๐‘ก + โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅโˆซ

    โˆž

    0

    ๐œ•2๐œ†(๐œ‰, ๐‘ก)๐œ•๐œ‰2 ๐‘ฆ(๐œ‰, ๐‘ก)๐‘‘๐‘ก๐‘‘๐œ‰, (9.33)

    where the second term is canceled by the boundary conditions (9.15). Then

    ๐‘‰ (๐œ–) = lim๐‘ฅโ†’โˆž

    12๐‘ฅ โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅโˆซ

    โˆž

    0(๐‘“(๐‘ข(๐œ‰, ๐‘ก), ๐‘ฆ(๐œ‰, ๐‘ก))๐‘’โˆ’๐œŒ๐‘ก+

    +๐œ•๐œ†(๐œ‰, ๐‘ก)๐œ•๐‘ก ๐‘ฆ(๐œ‰, ๐‘ก) +๐œ•2๐œ†(๐œ‰, ๐‘ก)

    ๐œ•๐œ‰2 ๐‘ฆ(๐œ‰, ๐‘ก) + ๐œ†(๐œ‰, ๐‘ก)๐‘”(๐‘ข(๐œ‰, ๐‘ก), ๐‘ฆ(๐œ‰, ๐‘ก))) ๐‘‘๐‘ก๐‘‘๐œ‰ โˆ’

    โˆ’ lim๐‘ฅโ†’โˆž

    12๐‘ฅ (โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅ๐œ†(๐œ‰, ๐‘ก)๐‘ฆ(๐œ‰, ๐‘ก)|โˆž๐‘ก=0 ๐‘‘๐œ‰ + โˆซ

    โˆž

    0๐œ†(๐œ‰, ๐‘ก)๐œ•๐‘ฆ(๐œ‰, ๐‘ก)๐œ•๐œ‰ โˆฃ

    ๐‘ฅ

    ๐œ‰=โˆ’๐‘ฅ๐‘‘๐‘ก)

  • Paulo Brito Advanced Mathematical Economics 2020/2021 40

    If an optimal solution exists, then we may characterize it by applying the variational principle,๐œ•๐ฝ(๐‘ขโˆ—, ๐‘ฆโˆ—)

    ๐œ•๐œ– = lim๐œ–โ†’0๐ฝ(๐‘ข(๐œ–), ๐‘ฆ(๐œ–)) โˆ’ ๐ฝ(๐‘ขโˆ—, ๐‘ฆโˆ—)

    ๐œ– = 0.

    But, defining the Hamiltonian function as ๐ป(๐‘ข, ๐‘ฆ, ๐œ†) = ๐‘“(๐‘ข, ๐‘ฆ) + ๐œ†๐‘”(๐‘ข, ๐‘ฆ), then

    ๐œ•๐ฝ๐œ•๐œ– = lim๐‘ฅโ†’โˆž

    12๐‘ฅ {โˆซ

    ๐‘ฅ

    โˆ’๐‘ฅโˆซ

    โˆž

    0[ ๐ป๐‘ข(๐‘ขโˆ—(๐œ‰, ๐‘ก), ๐‘ฆโˆ—(๐œ‰, ๐‘ก), ๐œ†(๐œ‰, ๐‘ก))โ„Ž๐‘ข(๐œ‰, ๐‘ก)+

    + (๐œ•๐œ†(๐œ‰, ๐‘ก)๐œ•๐‘ก +๐œ•2๐œ†(๐œ‰, ๐‘ก)

    ๐œ•๐œ‰2 + ๐œ†(๐œ‰, ๐‘ก)๐ป๐‘ฅ(๐‘ขโˆ—(๐œ‰, ๐‘ก), ๐‘ฆโˆ—(๐œ‰, ๐‘ก), ๐œ†(๐œ‰, ๐‘ก))) โ„Ž๐‘ฆ(๐œ‰, ๐‘ก)] ๐‘‘๐‘ก๐‘‘๐œ‰

    โˆ’ โˆซ๐‘ฅ

    โˆ’๐‘ฅ๐œ†(๐œ‰, ๐‘ก)โ„Ž๐‘ฆ(๐œ‰, ๐‘ก)โˆฃ

    โˆž๐‘ก=0 ๐‘‘๐œ‰ + โˆซ

    โˆž

    0๐œ†(๐œ‰, ๐‘ก)๐œ•โ„Ž๐‘ฆ(๐œ‰, ๐‘ก)๐œ•๐œ‰ โˆฃ

    ๐‘ฅ

    ๐œ‰=โˆ’๐‘ฅ๐‘‘๐‘ก โˆ’

    โˆ’ lim๐‘กโ†’โˆž

    โˆซ๐‘ฅ

    โˆ’๐‘ฅ๐œ‡(๐œ‰, ๐‘ก)๐‘’โˆ’๐‘Ÿ(๐œ‰,๐‘ก)โ„Ž๐‘ฆ(๐œ‰, ๐‘ก)๐‘‘๐œ‰} . (9.34)

    The last and the third to last expressions are canceled if lim๐‘กโ†’โˆž[๐œ‡(๐‘ก, ๐‘ฅ)๐‘’โˆ’๐‘Ÿ(๐‘ก,๐‘ฅ) โˆ’ ๐œ†(๐‘ก, ๐‘ฅ)] = 0,and by the fact that โ„Ž๐‘˜(๐‘ฅ, 0) = 0, for any ๐‘ฅ. Then, substituting in the Kuhn-Tucker conditionwe get a generalized transversality condition. We get the first order conditions by equating tozero all the remaining components of ๐œ•๐ฝ๏ฟฝ