Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature...

27
Advanced High Advanced High - - Temperature Thermoelectric Devices Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang, J. Cheng, J.- P. Fleurial, V. Ravi, and E. J. Brandon Jet Propulsion Laboratory/California Institute of Technology DOE Thermoelectric Applications Workshop San Diego, September 2009 For Planning and Discussion Purposes Only

Transcript of Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature...

Page 1: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

Advanced HighAdvanced High--Temperature Thermoelectric DevicesTemperature Thermoelectric Devices

T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang, J. Cheng, J.- P. Fleurial, V. Ravi, and E. J. Brandon

Jet Propulsion Laboratory/California Institute of Technology

DOE Thermoelectric Applications WorkshopSan Diego, September 2009

For Planning and Discussion Purposes Only

Page 2: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

2For Planning and Discussion Purposes Only

Flight Demonstrated Radioisotope Thermoelectric Generators

(3 Most Recently Flown Designs)

285 We (BOM)6.8% system efficiency5.1 We/kg

114 cm (44.9 in) long42.7cm (16.8in) dia56 kg (123 lb)SiGe ThermoelectricsTH

= 1000C, TC

=300C

Galileo, Ulysses, Cassini& New Horizons

158 We (BOM)6.6 % system efficiency4.2 We/kg

58.4 cm (23 in) long39.7 cm (15.64 in) dia38 kg (83.7lb)SiGe ThermoelectricsTH

= 1000C, TC

=300C

LES 8/9, Voyager 1/2

40.3 Watts (BOM)6.2 % system efficiency3 We/kg

22.86 cm (9.0 in) long50.8 cm (20 in) dia~13 kg (28.6 lb)PbTe ThermoelectricsTH

= 525C, TC

=210C

Nimbus B-1/III, Pioneer 10/11, Viking 1/2

SiGe GPHS RTG(1980-2006)

SiGe MHW RTG(1970’s)

SNAP-19 (PbTe/TAGS RTG)(1960-70’s)

Page 3: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

3For Planning and Discussion Purposes Only

NASA Advanced RTG Needs

Near Term Long Term

Specific Power (W/kg)

6 -

8 > 10

Readiness 2015 -

2016 > 2020

Lifetime > 14 years

< 22% degradation

> 14 years

< 22% degradation

Heat Source Step 2 GPHS

(8 to 12 units)Step 2 GPHS

(8 to 12 units)

System Efficiency (%) 8-10 13 -

15

Advanced RTGs–

Require use of advanced TE materials to achieve higher efficiency

Advanced design to minimize electrical and

thermal lossesARTG Conceptual

Design

Advanced RTG Specific Power vs. System Conversion Efficiency(Based on radiatively coupled vacuum operation unicouple based RTG concept)

0

2

4

6

8

10

12

14

0 5 10 15RTG Conversion Efficiency (%)

RTG

Spe

cific

Pow

er (W

/kg)

x 3 ImprovementZTave ~ 1.65

ZTave ~ 2.0

x 2 ImprovementZTave ~ 1.14

NASA's TE Performance

Goal

"RTG" Si-GeZTave ~ 0.55Thot = 1275 K

Tcold = 575 K

Advanced Thermoelectric

Converter (ATEC) Development Program

Advanced TE Materials R&D tasks

Page 4: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

4

Advanced Couple Key Technology Development Elements

TE materials (n-

and p-)•

Establish TE properties: ZT

Establish repeatability of TE properties

Develop sublimation control

Determine mechanical properties

Bonds and legs development•

Develop TE materials metallization

Develop legs fabrication and processing techniques

Develop low

electrical contact resistance bonds between the couple components

Demonstrate mechanical and chemical stability at operating temperatures

Transition piece (as required -

to mitigate CTE mismatch between n-

and p-legs)

Lifetime demonstration•

Test and demonstrate couple interface mechanical and chemical stability

Demonstrate sublimation control efficacy over time

Establish TE properties change over time

Establish couple performance change

Couple assembly and testing•

Develop assembly procedure•

Develop tooling•

Develop couple performance test fixture

Demonstrate BOL couple performance

npCold-shoeCold-shoe

Hot-shoe

For Planning and Discussion Purposes Only

Page 5: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

5

TE Materials Selection for 1st

Generation

ATEC Couples

Baseline•

P-type Yb14

MnSb11

(Zintl)•

N-type nanostructured SiGe

p- Ce1Fe3Ru1Sb12n-CoSb3

Cold-shoe Cold-shoe

Heat Source

Heat Sink

p- HT materialYb14MnSb11

HT-SKDNanostructured SiGe

RTG-SiGe

n- HTNanostructured SiGeHT-SKDLa3-xTe4RTG-SiGe

T ~ 1275K

T ~ 875K

480 K ≤T ≤565K

Cold-shoe Cold-shoe

Heat Source

Heat Sink

p- HT material

Yb14MnSb11(Zintl)

n- HT materialN-nano SiGe

T ~ 1275K

T ~ 565K

Selected p-type Yb14

MnSb11

(Zintl

) and n-type nano SiGe as a baseline for couple development

Alternate•

P-Zintl•

N-type La3-x

Te4

For Planning and Discussion Purposes Only

Page 6: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

6For Planning and Discussion Purposes Only

TE materials synthesis

Approach –

Ball milling •

Planetary ball mill

End product: powder

Scalable technique (100-250 g batches)

(kilograms of TE materials can be synthesized per week)

Hot-pressing of powder into pucks

Applied to Zintl, skutterudites and

n-

and p-type nanostructured SiGe

N-SiGe legs

N-SiGe pucks

Zintl leg

Page 7: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

7For Planning and Discussion Purposes Only

ZT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

ZT

T(K)

YMS71YMS73YMS77YMS78YMS79YMS80Average +/-5%p-GPHS SiGe

N-nanostructured SiGe

0.00.10.20.30.40.50.60.70.80.91.01.11.21.3

200 400 600 800 1000 1200

ZTTemperature (K)

n-GPHS SiGe (larger grains 50-100 microns)

Nanostructured n-GPHS SiGe

P-Yb14

MnSb11

Demonstrated batch-to-

batch reproducibility

Page 8: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

8For Planning and Discussion Purposes Only

ARTG System Design -

Overall Layout (Isometric View)

Radiator

TE Couples

Midspan

Support

Top GPHS Preload Flexure

End Cap

Developed ARTG design•

Evaluated several couple designs•

May use a transition piece and a flexible interconnect that allows for combining TE materials with different coefficient of thermal expansion

Zintl CTE ~ 18.0 ppm–

SiGe CTE ~ 4.1 ppm

Thermalinsulation

Heat Collector

Transition piece for

mitigating CTE mismatchbetween n-

and p-legs

Flexible

interconnect

SiGe leg

Zintl leg

Fastener

Housing

ARTG conceptual design

ATEC couple

conceptual design

Page 9: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

9

Zintl p-leg

NanoSiGe

(n-leg)

Hot-shoe

Cold Electrode

Transition piece

Zintl Leg

La3‐xTe4Leg

Hot Shoe/Heat Collector

Cold Shoes/Heat Sink

Sublimation Control

Couple Configurations in Development

Baseline ATEC Zintl/NanoSiGe Couple

Alternate Baseline ATEC Zintl/NanoSiGe Couple

Aerogel

Heat Collector

Transition piece

Flexibleinterconnect

SiGe leg

Zintl leg

Fastener

Housing

JPL Advanced Zintl/La3-x

Te4

Couple

For Planning and Discussion Purposes Only

Page 10: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

10

Couple Development -

Components for

Reliable Thermal/Mechanical Integration

Aerogel Fastener

Housing

Heat Collector

Transition piece

Flexible

interconnect

Successfully developed flexible interconnect and transition piece that are key components for integrating TE materials with different coefficient of thermal

expansion such as Zintl and nanostructured SiGe

Load-displacement test data validating that the transition piece meets functionality requirements

Goal

For Planning and Discussion Purposes Only

Page 11: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

11

Lifetime Validation -

TE properties

Demonstrated stability of TE properties for Zintl and nanostructured SiGe up to 1273K for ≥

6 months

→ Enables couple-level lifetime demonstrationFor Planning and Discussion Purposes Only

Page 12: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

12

TE materials -

Sublimation Rate Life Testing

Successfully developed coatings to control sublimation of Zintl and Nano SiGe materials to the desired rates for a 14 year operation

Coated Nano SiGe coupon coated after 9000 hrs of testing at 1273K

Coated Zintl coupon coated after 7000 hrs of testing at 1273K

Sublimation rate goal

Uncoated Nano SiGe Uncoated Zintl

Sublimation rate goal

For Planning and Discussion Purposes Only

Page 13: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

13

Couple Development –

Stable Zintl metallization

As prepared After aging for 1500 hrs at 1273 KMetal interface

Metallized p-type Yb14

MnSb11 (Zintl) leg

Developed a metallization for Zintl and demonstrated stability of metallization for up to 1500hrs at 1273K

Meets the goal of 25 -cm2

or less for the interface electrical contact resistance

For Planning and Discussion Purposes Only

Page 14: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

14For Planning and Discussion Purposes Only

ATEC Baseline Couple Assembly

Prototype couple assembly completed–

Employs a low modulus transition piece –

Minimize thermal stresses due to CTE mismatch between n and p-type legs

14

N-leg P-leg

Bonding fixture base

Hot shoe

0

50

100

150

200

250

300

350

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

P (

mW

)

E (m

V)

I (A)

1000 C (Couple), 0hr

E (mV)

P (mW)

Page 15: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

15

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

200 300 400 500 600 700 800 900 1000 1100 1200 1300

ZT

T (K)

LTP6‐3

LTP6‐4

LTP12‐3

LTP13‐3

LTP18‐2

Developed reproducible synthesis process for La3-x

Te4

Used ATEC process for Zintl

Developed low resistance thermally stable metallizations

Built “Short”

Couples–

Used for demonstrating bonding processes, couple assembly and mechanical compliance of high CTE components:•

Negligible contact resistances•

Survived several thermal cycles

“Tall”

couples fabricated to operate across large temperature differential

Conductively coupled configuration for short term testing

Initiated development of segmented legs for 2nd

generation couple

n-type CoSb3

/La3-x

Te4

leg

Zintl/La3-x

Te4

Couple Development

n-leg La3-xTe4

Hot Shoe Metal

Interconnect

Reproducible TE Properties for scaled up synthesis of La3-x

Te4

“Short”

Zintl/La3-x

Te4 couples

La3-xTe4 / metal/ Zintl Mechanically Strong

Diffusion Bond

“Tall”

Zintl/La3-x

Te4 couple for conductive coupling to heat source

For Planning and Discussion Purposes Only

Page 16: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

16

Advanced TE Couple Performance

(p-Yb14

Mn Sb11

Zintl/n-La3-x

Te4

)

•Performance within 3% of predictions (based on measured TE materials properties)•

~ 30% better than “Heritage RTG”

Si0.8

Ge0.2

unicouple for same 700 K T•Achieved ~ 10% efficiency for 750 K T

Zintl Leg

La3‐xTe4Leg

Hot Shoe/Heat Collector

Cold Shoes/Heat Sink

Sublimation Control

0

25

50

75

100

125

150

175

200

225

250

275

300

325

0

50

100

150

200

250

300

350

400

450

500

550

600

650

0 1 2 3 4 5 6 7 8 9 10 11

Voltage (m

V)

Power (m

W)

Current (A)

Zintl ‐ La3‐xTe4 Couple #4

Power (exp.)

Power (calc.)

Voltage (exp.)

Voltage (calc.)

Thot = 1246 KTcold = 463 KPmax ~ 607 mWEfficiency ~ 9.7%

For Planning and Discussion Purposes Only

Page 17: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

17

Extended testing of spring loaded couples:–

Very stable performance for first 600 hours

Validates TE properties of Zintl and La3-x

Te4

and their stability during in-

gradient testing

Operated across T as large as 850 K

Extended tests under way–

Up to 1600 hours so far(For RTG development

>10,0000 hours of testing required)

Advanced Yb14

MnSb11

/La3-x

Te4

Couple –

Life tests

0

5

10

15

20

25

30

35

40

45

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800

Coup

le Internal Resistance (mΩ

)

V oc(m

V); P m

ax(m

W); ΔK

Time (hrs)

Zintl LaTe Couple # 4

Delta T Max Power

Open Circuit Voltage Couple Resistance

For Planning and Discussion Purposes Only

Page 18: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

18For Planning and Discussion Purposes Only

Skutterudites

Skutterudite crystal structure

Skutterudite materials have relatively high TE efficiency in the 300-600C temperature range

Page 19: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

19For Planning and Discussion Purposes Only

Mechanical Properties

* Preliminary Data ** Estimated (not measured) *** Calculated from speed of sound data

Melting or Decompositi

on temperature

(C)

Density

(g/cm3)

DynamicYoung’sModulus,

E

(GPa)

DynamicShear

Modulus, G

(GPa)

Poisson’

s Ratio

Modulus in Compressio

n

(GPa)

Compressi

ve Strength

(MPa)

FlexuralModulu

s

(GPa)

Flexura

lStrengt

h

(MPa)

Fracture Toughne

ss

(MPa

m)

Average CTE

(ppm/K)

P-

SKD 825 7.92 133 54 0.22 –

0.29 115 657 ~ 93 ~ 37 ~ 2.9 *14.5

(200 –

600ºC)

N-

SKD 876 7.61 136 60 ~ 0.14 *0.25*** 92 766 ~ 102 ~ 86 1.6 *

12.2(200 –

600º

C)

Skutterudite mechanical properties are acceptable for device integration

Page 20: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

20For Planning and Discussion Purposes Only

Skutterudite-based Segmented Unicouple Development at JPL

Skutterudites are among the few new materials developed since 1991 to have been integrated into unicouples

Experimental I-P curves fully validated projected performance

~ 14% efficiency for 975K-300K T•

Results independently confirmed at the University of New Mexico

p-

Ce

0.85

Fe3.5

Co

0.5

Sb12

n-CoSb

3

p- Bi0.4Sb1.6Te3 n- Bi2Te2.85Se0.15

A B

Cold shoe

Cold-shoe

Hot-shoe interconnect975K

300K

525K

Heat Source

Heat Sink0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30Current (A)

0

2

4

6

8

10

12

14

16

Effic

ienc

y (%

)

Skutterudite/Bi2Te3 segmented unicoupleTH = 700CTC = 20C

Peak efficiency~ 14%

Skutterudite based unicouple

Page 21: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

21For Planning and Discussion Purposes Only

Assembly of Skutterudite TE Modules

Stacked & Aligned Components

Die Fixture

Assembled 2x4 Module after bonding cycle and egg-crate vaporized

Eggcrates

n-type Skutterudite Legs p-type Skutterudite Legs

High VoltageInsulator Assemblies

Individual Module Component Technologies

Current/ Voltage StrapHigh -Voltage Insulator

Cold Side Electrodes

Hot Side Electrodes

High -Voltage Insulator

Hot Side Heat Exchanger

Cold Side Heat Exchanger

Skutterudite ElementsCurrent/ Voltage StrapHigh -Voltage Insulator

Cold Side Electrodes

Hot Side Electrodes

High -Voltage Insulator

Hot Side Heat Exchanger

Cold Side Heat Exchanger

Skutterudite Elements

Page 22: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

22For Planning and Discussion Purposes Only

Bax

Yby

Co4

Sb12

: ZT

Ball milled Bax

Yby

Co4

Sb12 –

ZTmax

~ 1.2 at 873K (consistent with previous reports)

~ 40% improvement in ZT over n-type PbTe in the 873K-373K temperature range

p-Ce

1 Fe3 R

u1 Sb

12

n-Ba

x Yby C

o4 Sb

12

p- Bi0.4Sb1.6Te3 n- Bi2Te2.9Se0.1

Cold-shoe Cold-shoe

Hot-shoe

873K

373K

~ 473K

Illustration of skutterudite-Bi2

Te3 couple

TH

= 873K -

TC

= 373KTH

= 773K -

TC

= 373KTH

= 673K -

TC

= 373K

With Bi2

Te3

segments 11.8 10.0 7.9

Without Bi2

Te3

segments 10.7 8.8 6.8

Couple efficiency (%)

0.00.10.20.30.40.50.60.70.80.91.01.11.21.3

300 400 500 600 700 800 900 1000

ZT

Temperature (K)

n-PbTe

BaxYbyCo4Sb12

Page 23: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

23For Planning and Discussion Purposes Only

Metallization

SEM images showing the SKD/metallization interface at beginning of life (BOL) and after 2 weeks aging at 600C. After aging, no degradation of the interface and no significant metal/SKD diffusion is observed.

Metal 1

nSKD

Metal 2

Reaction layer

BOL

Metal 1

Metal 2

Epoxy

nSKD

After 2 weeks at 600C

Metallized n-skutterudite puck

n-BaYbCo4

Sb12

Metallizationp-Ce

1 Fe3 R

u1 Sb

12

n-Ba

x Yby C

o4 Sb

12

p- Bi0.4Sb1.6Te3 n- Bi2Te2.9Se0.1Cold-shoe

Cold-shoe

Hot-shoe

873K

373K

~ 473K

Challenge: develop a chemically and mechanically stable metallization for operation up to ~ 600C

JPL’s experience is that Ti-

based metallization do not work

Page 24: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

24For Planning and Discussion Purposes Only

Metallization

Metal 1

Metal 2

n-BaYbCo4

Sb12

Metal 1

n-BaYbCo4

Sb12

Metal 2 SEM images showing the SKD/metallization interface at beginning of life (BOL) and after 8 weeks of aging at 600C. After aging, no degradation of the interface and no significant metal/SKD diffusion is observed.

After 8 weeks of ageing at 500C

After 8 weeks of ageing at 600C

SEM images showing the SKD/metallization interface at beginning of life (BOL) and after 2 weeks aging at 600C. After aging, no degradation of the interface and no significant metal/SKD diffusion is observed.

Page 25: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

25For Planning and Discussion Purposes Only

Aerogel for SKD

SKD

After 15hrs at 873K in air

Silica aerogel

Sublimation

Thermal insulation

Page 26: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

26

Summary

TE materials (n-

and p-)•

Establish TE properties: ZT

Establish repeatability of TE properties

Develop sublimation control

Determine mechanical properties

Bonds and legs development•

Develop TE materials metallization

Develop legs fabrication and processing techniques

Develop low

electrical contact resistance bonds between the couple components

Demonstrate mechanical and chemical stability at operating temperatures

Transition piece (as required -

to mitigate CTE mismatch between n-

and p-legs)

Lifetime demonstration•

Test and demonstrate couple interface mechanical and chemical stability

Demonstrate sublimation control efficacy over time

Establish TE properties change over time

Establish couple performance change

Couple assembly and testing•

Develop assembly procedure•

Develop tooling•

Develop couple performance test fixture

Demonstrate BOL couple performance

npCold-shoeCold-shoe

Hot-shoe

For Planning and Discussion Purposes Only

Significant progress achieved in the development of:•Zintl/nano

SiGe•Zintl/LaTe•SKDcouples

Page 27: Advanced High-Temperature Thermoelectric Devices · 2009. 10. 28. · Advanced High-Temperature Thermoelectric Devices T. Caillat, S. Firdosy, B. Li, S. Chi, J- A. Paik, C- K. Huang,

27For Planning and Discussion Purposes Only

Acknowledgments

Pratt and Whitney Rocketdyne–

Bill Determan, Dan Matejczyk, Karl Wefers, Sherwin Yang

NASA, DOE, ONR, and DARPA for support

This research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, funded through the JPL Research and Technology Development fund, under a contract with the National Aeronautics and Space Administration.