Advanced Building Physics - Thermodynamics · the character of a general law or a principle....

26
L.D.D Advanced Building Physics - Thermodynamics 1 - PHYSICAL QUANTITIES AND MEASUREMENT Quality of an object ---> quasi-serial order (qualitative order)---> number assigned to the quasi-serial order ---> quantitative order In the description of a physical phenomenon, only the terms that can be operationally defined must be used. These are called physical quantities. [Physics textbooks] Each physical quantity is defined by the set of operations that are needed to obtain its measurement. Each entity that can not be operationally defined is an object that should not have a place within physical theories. [Percy Bridgman - manifesto of 'The logic of modern Physics'] The majority of physical quantities are defined by the set of operations (practical of theoretical) that are needed to obtain its measurement. [Moderate attitude - assumed in this course] --> Carnap: A theoretical term is significant if exists a statement s containing t such that from s and the remaining complex of the theory it's possible to derive an observational statement that couldn't be derived without s. (e.g. entropy ---> energy flows from higher to lower temperature) Quantitative description of reality --> measuring process - Choice of fundamental quantities - Choice of unit of measurement - Construction of samples of adopted units We call 'measure of a quantity' the ratio n between the value of the quantity G and that of a quantity homogeneous to the one to be measured, U G , that we choose as measurement unit. To be adopted, a measurement unit has to meet the following requirements: - Precision - Accessibility - Reproducibility - Invariability (--> sth need to use atomic samples for this requirement) Note: - Accuracy: capability of an instrument to indicate the true value of measured quantity - Precision: repetability of measurements of the same quantity under the same conditions - Error, random: statistical error caused by chance and not recurring - Error, systematic: persistent error not due to chance

Transcript of Advanced Building Physics - Thermodynamics · the character of a general law or a principle....

Page 1: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

AdvancedBuildingPhysics-Thermodynamics

1-PHYSICALQUANTITIESANDMEASUREMENT

Qualityofanobject--->quasi-serialorder(qualitativeorder)--->numberassignedtothe

quasi-serialorder--->quantitativeorder

�Inthedescriptionofaphysicalphenomenon,onlythetermsthatcanbeoperationally

definedmustbeused.Thesearecalledphysicalquantities.

[Physicstextbooks]

�Eachphysicalquantityisdefinedbythesetofoperationsthatareneededtoobtainitsmeasurement.Eachentitythatcannotbeoperationallydefinedisanobjectthatshouldnot

haveaplacewithinphysicaltheories.

[PercyBridgman-manifestoof'ThelogicofmodernPhysics']

�Themajorityofphysicalquantitiesaredefinedbythesetofoperations(practicalof

theoretical)thatareneededtoobtainitsmeasurement.

[Moderateattitude-assumedinthiscourse]

-->Carnap:Atheoreticaltermissignificantifexistsastatementscontainingtsuchthat

fromsandtheremainingcomplexofthetheoryit'spossibletoderiveanobservational

statementthatcouldn'tbederivedwithouts.

(e.g.entropy--->energyflowsfromhighertolowertemperature)

Quantitativedescriptionofreality-->measuringprocess

-Choiceoffundamentalquantities

-Choiceofunitofmeasurement

-Constructionofsamplesofadoptedunits

�Wecall'measureofaquantity'therationbetweenthevalueofthequantityGandthatofaquantityhomogeneoustotheonetobemeasured,UG,thatwechooseasmeasurement

unit.

Tobeadopted,ameasurementunithastomeetthefollowingrequirements:

-Precision

-Accessibility

-Reproducibility

-Invariability(-->sthneedtouseatomicsamplesforthisrequirement)

Note:

-Accuracy:capabilityofaninstrumenttoindicatethetruevalueofmeasuredquantity

-Precision:repetabilityofmeasurementsofthesamequantityunderthesameconditions

-Error,random:statisticalerrorcausedbychanceandnotrecurring

-Error,systematic:persistenterrornotduetochance

Page 2: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

2-THREEVIEWSONTHECOGNITIVEVALUEOFSCIENTIFICTHEORIES:

REALISM,POSITIVISMANDAMENDEDREALISM

�Realisminterpretsscienceasasimpletranscriptionoftheobservations,aliteral

descriptionofnature,a'readingofthegreetbookofnature'.

�Positivisminterpretsscientifictheoriesthatgobeyondimmediateexperience,toolsto

correlateandpredicttheresultsofpossibleexperimentsandnotaneffectivedescriptionof

physicalreality.

�AccordingtotheModifiedrealism,scientifictheoriesareneitherasimplereflectionof

thelawsalreadywritteninnature,norsimplecalculationtools.Theyareman-mademodels

continuouslycomparedwithwhatwecallreality.Itispossibletohavealternative

theoreticaldescriptionsofthesamesetofexperimentalobservations.Thedescriptionthat

possiblyprevailsisnotthedescriptionofreality,butthemodelconsideredmore

appropriatetoexplaintheknownfacts.

[Adoptedmodelinthiscourse-lessextremethantheothers]

(e.g.--->Schroedingerequation:Quantummechanic/Relativity)

�Inductiveinferencesbringfrompremisesaroundparticularcasestoaconclusionhaving

thecharacterofagenerallaworaprinciple.

�Deductiveinferencesstartingfrompremisesgenerallyvalidbringtowhathappensina

particularcase.

�Atheoryiscalledscientificifitisconfutablei.e.ifstartingfromaseriesofhypothesis,it

makes(viadeduction)predictionsthatcanbecomparedwithobservationsandexperiments

andifthiscomparisonallows,inprinciple,tofalsifythetheory.

[CarlPopper-CriterionofDemarcation]

Page 3: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

3-THEAXIOMATIZATIONOFTHERMODYNAMICS

1)Clausius/Kelvin/Caratheodory:thermodynamicsystemtreatedasablackboxthat

exchangesenergywithauxiliarysystemsidealizedasreservesofheatandwork.

-->operationaldefinitionofthermalquantities(U,S,T)startingfrommechanical

macroscopicmeasurableparameters(p,v).

2)Gibbs/Tisza/Callen:theconceptsofinternalenergyandentropyareconsideredasastartingdatumandareusedinordertoprovideadetaileddescriptionofthesystemat

equilibrium.

-->describethethermodynamicequilibriumusingtherelationshipbetweenthevariables

u,s,vratherthantheonebetweenp,v,Tthataredirectlymeasurable.

-->usefulbecausep=p(v,T)isderivablefromu=u(s,v)buttheoppositisnottrue.

�Thermodynamicisthestudyofmacroscopiceffectsofthemyriadsofatomiccoordinates

that,duetostatisticalaverages,donotappearexplicitlyinthemacroscopicdescriptionofa

system.

�Theenergytransferredthroughmodeswhicharenotvisibleatamacroscopiclevelis

calledHeat.(-->becauseifitwasmechanic/thermaltransferiwouldhaveseenitatamacroscopiclevel)

Thermodynamicisaverygeneraltheorythatcanbeapplicabletosystemswithany

mechanical,electricorthermalproperty.Inordertosimplifythestudyofthermodynamics,

weintroducesimplesystems:

a)Macroscopicallyhomogeneous

b)Isotropic(propertiesareindependentofdirection)

c)Electricallyneutral(atamacroscopiclevel)

d)Chemicallyinert

e)Freeofsuperficialeffects

f)Notsubjectedtoelectric,magneticorgravitationalfields(isolated)

Significantparametersforasimplesystem:

-Volume(V)

-Numbersofmoles(NK)(k=1,2...c;c=numberofchemicalcomponentsinthesystem)

�WecanfindtheMolarMassexpressingingramstheatomicnumberorthesumofthe

atomicnumbersoftheindividualcomponents(foramolecule).

Acomposedsystemismadebytheunion(U)ofdisjointsimplesystems(i.e.systemshaving

intersectionequaltozero).Thesimplesystemsarecalledsub-systems.

�Theparametersthatinacomposedsystemhavevalueequaltothesumofthevalues

assumedinthesinglesubsystems,arecalledExtensiveParameters.(-->theothersareintensive)

Page 4: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

�TheMolarFractionofthechemicalspecieskisdefinedastheratiobetweenthemolesof

aconstituentandthesumofmolesofalltheconstituents.

Thedefinitionofathermodynamicsystemrequiresthatwemakeitdistinguishablefromthe

restoftheuniverse,thatwetraceaboundarythatrealizesthisseparation.

�Anywallorsurfaceorphysicaleffectthatpreventtheexchangeofanextensivequantity,iscalledRestrictive(withrespecttothisquantity).

Leibnitz:'Principleofconservationofenergy'.

-->Relatedtothesumofkineticandpotentialenergyforamaterialpointsubjectedtothe

earth'sgravitationalfield(frictionsareconsiderednegligible).

[1/2mv2+mgz=costant]

Bohr:'Restrictedvalidity'oftheprincipleofconservationofenergyatsubatomiclevel

Pauli:Hypotesisofconservationofenergyatsubatomiclevelandexistenceofanewparticle

Fermi:NewparticlediscoveredbyPauliiscalled'Neutrino'.Noelectriccharge,massequal

tozero.[1956].

Consideringmacroscopicsystemsasaggregatesofelectronsandnuclei,subjectedto

interactionsforwhichisvalidtheconservationofenergy,wecanformulatesome

hypothesis:

�POSTULATEA:amacroscopicsystemhasineachstateawell-definedenergy,subjectedto

theprincipleofconservation

--->energyisastatefunction

--->energyisconserved

Whenwearetreatingsimplesystems,weareconsideringonlytheenergyboundtothe

hiddencoordinates,thatwecallinternalenergy(U).

�Foranysimplethermodynamicsystemitisnecessarytodefineareferencestatetowhich

isarbitrarilyassignedavalueofinternalenergyequaltozero(U0=0).

--->Foranyotherstatetheinternalenergywillbedeterminedasthedifferencebetween

theinternalenergyofthestateweareconsideringandtheinternalenergyofthereference

state.

�POSTULATEB:weassumethatalsotheinternalenergyisanextensivevariable,suchasV

andNK.

--->Theinternalenergyofacompositesystemisthesumoftheinternalenergiesofthe

subsystemscomponents

Itisimportantatthispointthatinternalenergycanbemeasurable.Inordertomeasurethe

energyofasystemweneedtobesurethatthisoneisdefined(i.e.itdoesn'tchangeduring

themeasurement).

Page 5: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

Forinternalenergy,weneedtohaveawallthatpreventstheexchangeofenergythrough

thehiddenway.

--->1)Considerasystemwithiceandliquidwater;shake(mechanicalenergyprovided)-->

fromstateAtostateB.

--->2)Sameexperimentbutwithheating(nomechanicalwork).

PostulateA:energyin1and2hasincreasedofthesamequantity.

--->3)Sameexperimentof2butwiththickerglass:A-->A.Ifwemeasuretheinternal

energyfasterthanthevelocityoftransmissionofheat,wecanassumetohaveobtaineda

measureofaquantitywhichisnotchangedduringthemeasurement.

�WecallAdiabatic(oradiathermic)thewallsthatareimpermeabletoheat.

�WecallDiathermic(orheatconductor)thewallsthatarepermeabletoheat.

Therearerestrictivewallsinrelationtoeachoftheextensiveparameters:

-Energy:wallrestrictivetothetransferofworkandheat

-Volume:fixedandrigidwalls

-Numberofmoles:impermeablewalls(orsemipermeable).

�Opensystem:canexchangewiththerestoftheuniversemassandenergy

�Closedsystem:cannotexchangemass;canexchangeenergy

�Isolatedsystem:cannotexchangemassnorenergy

Tosimplifyourstudies,wewillconsiderforeachsystemonlystatesthatareparticularly

easytodescribe,saidequilibriumstates.

�POSTULATEI:simplesystemscanbeinsomeparticularstatesthat,atamacroscopic

level,arecompletelydeterminedbythevaluesofinternalenergyU,volumeVandnumber

ofmolesNk.Wecallequilibriumstatesthosparticularstates.

--->Thosevariables(U,V,Nk)areindependentfromthepasthistoryofthesystem

-Operativedefinitionofinternalenergyandheat

Considerametalcontainercontainingwaterinliquidandsolidform.

Transformation1:

Adiabaticwall.Amixerproducesmechanicalenergy.SystemfromstateMtostateN.We

haveprovidedmechanicalworkbutworknolongerappearsinmacroscopicform:ithas

beentransferredbyhiddencoordinatesandtransformedintointernalenergy.

ThesysteminthefinalstateNhasgotanhigherinternalenergy.

�Heatisthermalenergytransferredfromasystemtoanother.Whenwerefertothe

'content'ofenergyofabodyorsystemwearereferringtotheinternalenergy.

Wecanrepeattheexperimentseveraltimes.Theworkdonebyexternalforcestobringthe

systemfromstateMtostateNisalwaysthesame.

--->UN-UM=WINAdiabatic(operativedefinitionofinternalenergy)

--->UN-UM=-Wout

Adiabatic

Page 6: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

Transformation2:

ThesamestatetransitionM--->Ncanbeachievedbyputtingthesystemincontactwitha

flameorawarmerbody.WhenstateNisreached,Uisincreasedofthesameamountofthe

firsttransformation,becausethesystemstillundergoesthesametransformationfromMto

NandforthepostulateA.

Nowwehaveawaytomeasuretheheattransfer:

QIN=UN-UM(operativedefinitionofheat)

(where:UN-UM=WINAdiabatic)

Page 7: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

4-FIRSTLAWOFTHERMODYNAMICS:STATEMENTFORACLOSEDSYSTEM

Inthegeneralcaseinwhichthesystemexchangesenergycontemporaneouslyasheatand

workalongatransformationA-->B,makingtheassumptionthattheprincipleof

conservationofenergyisstillvalidandrememberingthattheheatisdefinedastheamount

ofenergytransferrednotaswork,wecandefineheat:

QIN=ΔU-WIN=ΔU+WOUT(operativedefinitionofheatinthegeneralcase)

Wecannowdefine:

�Firstlawofthermodynamicsforaclosedsystem:

ΔU=QIN+WIN

ΔU=QIN-WOUT

IfwemovethesystemfromanequilibriumstateAtoandequilibriumstateBinanadiabatic

way,theworkisthesameforalltheadiabaticpaths(AandBset).

--->Theadiabaticworkisastatefunction(itisonlyfunctionoftheinitialstateAandthe

finalstateB).

WAdiabatic=f(A,B)

RememberingthatΔU=UB-UA=-WOUT

Adiabatic=WINAdiabatic

--->InternalenergyisdefinedasafunctionsuchasΔUdependsonlyontheinitialandfinal

stateofthetransformation.

--->Uisastatefunction(itdoesnotdependonthepath)

Viceversa,QisNOTastatefunction.

AlsoWisNOTastatefunction.

Soheatandworkareformsofenergiesintransit,nolongerdistinguishableoncetheprocessisover,whenthey'reconvertedininternalenergyofasystem(i.e.inenergy

associatedwiththehiddencoordinates).

�Firstlawofthermodynamicsforaclosedsystem(whentherearemultipleexchangesof

heatandwork):

ΔU=∑QIN+∑WIN

ΔU=∑QIN-∑Wout

� Wedefinequasistaticatransformationcompletelyformedofanorderedsequenceof

(infinite)equilibriumstates.

Inpracticeweareabletoapproximateaquasistatictransformationwithasequenceof

equilibriumstatesmakingthetransformation'slowly'applyingactionsontheconstraints.

Page 8: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

With'slowly'weintendslowinrelationtotherelaxationtimeofthesystem(timeneededto

thesystemtoturnbackinequilibriumafterthatthechangeoftheconstraintshasmovedit

fromitsinternalequilibrium).

Thetransformationcanbeconsideredquasistaticift>>τ(timeinwhichthe

transformationoccursismuchgreaterthantherelaxationtimeofthesystem).

(e.g.compressionofagas-->applyresistanceonpiston).

-Formulationofworkforclosedsystemsandquasistatictransformation

Considerathermodynamicsystemmadeofthegasinsidecontainercylinder+piston.

Assumethat:-Thesystemisclosed

-Duringthetransformationthere'savariationinvolume

-Thetransformationisquasi-static.(-->pressuremustbeuniforminsidethe

system)

Theinfinitesimalworkdonebythesystemcanbeexpressedas:

Sinceinthiscasetheforceandthedisplacementoccuralongthesamedirection,wecan

simplywrite:

W=Fdx=(F/A)Adx=pdV

weseethat:δW>0whendV>0

Thismeansthattheworkispositivewhenthesystem(gas)expands.

� Infinitesimalworkincaseofquasi-statictransformationscanbeexpressedas:

δW=pdV=δWout

Page 9: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

5-FUNDAMENTALPROBLEMOFTHERMODYNAMICSANDSECONDLAW

Consideranisolatedcomposedsystemmadeoftwosimplesystemscontainedinacylinder

andseparatedbyapiston.

-Systemisisolated-->can'texchangeenergynormasswiththeexternalenvironment

-Thetwosubsystemscanexchangeextensivevariables

1.Cylinderandpiston:rigid,fixed,adiabatic,waterproof.

2.Removeaconstraint-->transformation-->newequilibriumstate-->newvaluesofU,V,Nk

�Fundamentalproblemofthermodynamics:determinetheequilibriumstatetowards

whichanisolatedcomposedsystemevolves,whensomeofitsinternalconstraintsare

removed.

Tryingtodefinethestateoftheisolatedcomposedsystemunderconsideration,wetryto

understandhowmanyparametersarenecessarytodescribeitandhowmanyequationscan

bewrittenundertheexistingconstraints.Inthiswaywecandeterminethenumberoffree

variables:

�Thedifferencebetweenthetotalnumberofvariablesandthenumberofconstraints

equationsdeterminesthenumberoffreevariables,calledYi

cdenotesthenumberofchemicalcomponentsinourIsolatedComposedSystemandthe

constraintindicatingitsbeingisolatedrequires:

NSCIj=Nj1+Nj2=cost=Xc(j=1,2,..c)

Assumingthatinsidethesystemtherewon’tbechemicalreactions,itwillalsobevalid:

USCI=U1+U2=cost=Xc+1

VSCI=V1+V2=cost=Xc+2

Page 10: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

Wehaveintotal2c+4variablesdescribingthestateofthetwosubsystemsandc+2constraintequations.Thenumberoffreevariablesisequaltothedifferencebetweenthe

totalnumberofvariableslessthenumberofconstraintequations.

f=(2c+4)-(c+2)=c+2�

--->fromthisappearsthatfvariablescanhavearbitraryvalues.TheothervariableswillhavevaluesdeterminedbytheequationsandbytheconstantsXk.��

� Byvaryingthefreevariableswithintheirrangeofvariability,weobtainthevirtualstatesofthesystem,(i.e.thestatescompatiblewiththeconstraintsandwiththevaluesofthe

fixedvariablesXk).

-PostulateII:Secondlawofthermodynamics

TheIIPostulateexpressestheprincipleofmaximumentropyforanisolatedcomposed

systemandcorrespondstothesecondlawofthermodynamics.

�POSTULATEII:Isolatedcomposedsystemstendtoaquiescentstate,calledstateof

thermodynamicequilibrium,inwhichthefreevariablesassumeconstantvaluesspecifiedas

solutionsofaproblemofextreme.

Anentropyfunctionisassignedtoeachsimplesystem:

Sa=Sa(Xia)=Sa(Ua,Va,Nja)�

TheentropyfunctionoftheIsolatedcomposedsystemisthesumoftheentropiesofthe

Simplesystemscomposingthesystem:

(SS.C.I.)(U1,U2,...Un,V1,V2,...Vn,Nj1,Nj2,...Njn)=

=S1(U1,V1,Nj1)+S2(U2,V2,Nj2)....+Sn(Un,Vn,Njn)

ThestableequilibriumstateistheoneforwhichtheEntropyoftheIsolatedcomposed

system(SS.C.I.)assumesmaximumvalue.

Notethattheentropy(SS.C.I.)variesinrelationtothevariationofthedistributionofthe

extensivevariablesbetweenthesubsystems.

--->wecanreformulatethesecondlawasitfollows:

�POSTULATEII:inanIsolatedcomposedsystem,atequilibrium,theextensiveparameters

Ua,Va,Nja(thosewhicharefreetochange)ofthesubsystemsassume,amongallthe

possiblevaluescompatiblywiththeconstraints,thosevaluesthatmaximisetheentropy

(SS.C.I.)oftheisolatedcomposedsystem.

Page 11: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

Considerathermodynamicoperationinwhichsomeconstraints,withintheisolated

composedsystem,areremoved.Thedomainofvirtualstatesisincreased.

So,theentropycanincreaseoratleastcanremainconstant.

--->consequenceofthePostulateII:

ThepostulateIIanditsconsequenceareourstatementoftheSecondlawof

thermodynamics.ThereareotherstatementsreferredtoasPhenomenologicalstatements

ofthesecondlaw:

� Firstphenomenologicalstatementofthesecondlaw:

Noprocessispossiblewhosesoleresultisthetransferofheatfromabodyoflower

temperaturetoabodyofhighertemperature[Clausiusstatement]

� Secondphenomenologicalstatementofthesecondlaw:

Noprocessispossibleinwhichthesoleresultistheconversionofthermalenergyfroma

body,intomechanicalwork[Kelvin/Planckstatement]

� Thirdphenomenologicalstatementofthesecondlaw:

Theenergyoftheuniverseisconserved,theentropyincreases[Clausiusstatement]

� POSTULATEIII:Theentropyofasimplesystemisafunctionwhichiscontinuous,

differentiableandmonotonicallyincreasingwithinternalenergyU

--->ThispropertyisNOTvalidforacomposedsystem!

AsaconsequenceofthePostulateIII,forasimplesystemwecanextractfromS=S(U,V,Nk)

functiontheinverseU=U(S,V,Nk)function;thisisalsocalledfundamentalrelation:

� S = S(U,V,Nk)[Fundamentalrelationinformofentropy]

� U=U(S,V,Nk)[Fundamentalrelationinformofenergy]

Page 12: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

� POSTULATEIV:Theentropyofasimplesystemisequaltozerowhenthefollowing

conditionisverified:

(i.e.atabsolutezerotemperature)

Note:entropyisproportionaltothenaturallogarithmofthenumberofpossible

microstates.S=kln(microstatesnumber)

--->atabsolutezeroasystemisinamacroscopicstate(atabsolutezeroallthemolecules

areattheminimumenergylevel,andthenumberofmicrostatesisequalto1).

-HomogeneityofSfunction

ConsiderasimplesystemS=S(U,V,Nj).Supposetodivideitin2subsistems,only

conceptually,withamathematicalsurfacethatseparatesthem.Consideritasacomposed

system.

-Addittivity:S(U,V,Nj)=S1(U1,V1,Nj1)+S2(U2,V2,Nj2)

Choosethe2subsystemssothattheyhavethesamedimensions:

U1=U2V1=V2Nj1=Nj2

Sinceweareconsidering2portionsofthesamesimplesystem,forwhichthefunctional

formofentropyisthesame,itresults:S1=S2

(a)

Besides:

(b)

Comparing(a)and(b),weget:

or,whichisthesame:

Ifwerepeattheprocessbydividingthroughmathematicalsurfacesthesysteminnparts

(withnintegerorreal),weobtain:

Ingeneral,wecanthereforesaythattheEntropyisahomogeneousfunctionoforder1,i.e.:

[perogniλεR]

Soforeveryλthatbelongstothedomainofrealnumbers.

Page 13: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

6-EXTENSIVE,INTENSIVEVARIABLESANDTHEIRRELATIONSHIP

Forasimplesystem,Uisanhomogeneousfunctionoforder1.

SincewehaveshownthatUisastatefunction,weknowthatthedifferentialofUexists:

dU=(δU/δS)V,NjdS+(δU/δV)S,NjdV+Σ(δU/δNj)S,V,Nk≠jdNj

Forasimplesystem,wecandefinethefollowingquantities:

T=δU/δS)V,Nj

p=-δU/δV)S,Nj

μj=δU/δNj)S,V,Nk

sowecannowintroduce:

�Differentialformofthefundamentalrelationintermsofenergy:

dU=TdS-pdV+ΣμjdNj

Temperature,pressureandchemicalpotentialaretheintensivethermodynamicvariables

thatcanbedefinedforasimplesystem.

Considernowasystemwithconstantnumberofmoles,i.e.nomassexchangewithoutside

andnochemicalreactionsinside(-->closedsymplesystem).

Nj=constant∀j--->dNj=0∀j

so,fromthedifferentialformofthefundamentalrelationweget:

dU=TdS-pdV

whileaccordingtothefirstprincipleforclosedsystems,foraninfinitesimaltransf.weget:

dU=δQIN-δWOUT

forquasistatictransformationsofaclosed,simplesystem:

δWOUT=+pdV

--->thus:dU=δQIN-pdV

�Consideringquasistatictransformationsandsimple,closedsysteminwhichnochemical

reactionstakeplace,wheredSisthevariationofentropyofthesystemthatexchangesthe

heatδQINandTisitstemperature:

[δQIN=TdS]or[dS=δQIN/T]

SinceTisalwaysgreaterthanzero,thisrelationtellsusthatifthere'sheatphysically

enteringthesystem,thenanincreaseofentopywilltakeplace,andviceversa.

[δQIN>0-->dS>0][δQIN<0-->dS<0]

Page 14: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

Notethatasimplesystemcanreduceitsentropy(itisn'tincontraddictionwiththesecond

principle,asthesystemisnotisolated)ifanothersimplesystemincreasesitsentropyina

quantitythatensuresΔSS.C.I≥0.

Foropenedsystems,inthepresenceofmassexchange,thefollowingrelationisvalid:

dS=δQIN/T+dSmin(wheredSm

inistheentropyassociatedtothemassentering)

SinceT=δU/δSandUishomogeneousofdegree1,Tishomogeneousofdegree0.

--->Following,demonstration:

T(λS,λV,λNj)=λ0T(S,V,Nj)=T(S,V,Nj)

infact,being:

df(λx)=d[λnf(x)]=λndf(x)andd(λx)=λd(x)

f'(λx)=df(λx)/d(λx)=λndf(x)/λdx=λ(n-1)!"($)!$

=λ(n-1)f'(x)

--->thederivativeofanhomogeneousfunctionofdegree'n'isanhomogeneousfunctionof

degree'n-1'.

� Wecallintensivequantitiesthethermodynamicquantitiesthatarehomogeneousof

degreezero,asT,pandμ.

Notethatwhenasimplesystemdoublesitsdimensions,anextensivequantitydoublesits

value,whileanintensivequantityremainsunchanged.

-Equationsofstateoftheenergyformulation

� Therelationsthatexpresstheintensivevariablesasfunctionsoftheextensiveonesarecalledstateequations.

1)T=δU/δS)V,Nj=T(S,V,Nj)

2)p=δU/δV)S,Nj=p(S,V,Nj)

3)μj=δU/δN)V,S,Nk≠j=μj(S,V,Nj)

Whenallthestateequationsareknown,wehaveacompleteknowledgeofthesystemfrom

thethermodynamicpointofview.

Page 15: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

-Molarquantitiesandtheirrelation

� Themolarquantitiesarerelatedtoamoleofthesubstanceinexam.

Considerasimplemono-componentsystem(i.e.consistingofasinglechemicalspecies).

TakingintoaccountthehomogeneitypropertyofthefunctionSandusing1/Nas

multiplicativefactor,weget:

&'S(U,V,N)=S(

(' ,

*' ,

'')=S(u,v,1)=S(u,v)

fromwhich:S(U,V,N)=Ns(u,v)

andsimilarly:U(S,V,N)=Nu(s,v)

where:

s=+'isthemolarentropy

v=*'isthemolarvolume

u=('isthemolarinternalenergy

Differentiatingu=u(s,v),weobtain:

du=δu/δs)vds+δu/δv)sdv

where:

δu/δs)v=N/Nδu/δs)v=δU/δS)V,N=Tδu/δv)s=N/Nδu/δv)s=δU/δV)S,N=-p

fromtheselasttworelations,wecanwrite:

du=Tds-pdv

Page 16: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

7-DERIVATESOFIMPLICITFUNCTIONS

....

IfweconsiderthefunctionsS(U,V,Nj)andU(S,V,Nj)relatedtoasimplesystemandwetake

intoaccountquasi-statictransformationsforwhichisvalid:

dU=TdS-pdV+ΣμjdNj

itfollows:

1)δS/δU)V,Nj=1/(δU/δS)V,Nj=1/T

This,togetherwiththeassumptionthatS,forsimplesystem,ismonotonicallyincreasing

withU,leadsustoconcludethatT(Kelvin)isarealnumbergreaterthanzero.

Continuingwiththederivations,wegetthefollowingtworelations:

2)δS/δV)U,Nj=-δS/δU)V,NjδU/δV)S,Nj=-1/T(-p)=p/T3)δS/δNk)V,S,Nj≠k=-δS/δU)V,NjδU/δNk)S,V,Nj≠k=-1/Tμk=-μk/T

Andsince:

dS=δS/δU)V,NjdU+δS/δV)S,NjdV+ΣδS/δNk)S,V,Nj≠kdNk

thenwecanobtainthe:

� Differentialformofthefundamentalrelationinentropicform

dS=1/TdU+p/TdV-Σ(μk/T)dNk

Notethatthisrelationisvalidforquasistatictransformayionsandforsimplesystems

(becauseScanonlybeinvertedifthesystemissimple,asaconsequenceofentropy

postulates).

Page 17: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

8-CONDITIONSOFEQUILIBRIUMFORISOLATEDCOMPOSEDSYSTEMS

Thesecondlawofthermodynamicsassertsthatthestateofstableequilibriumistheonefor

whichtheentropyoftheIsolatedcomposedsystem(SS.C.I.)hasmaximumvalue.Theaimof

thischapteristotransformthisconditionontheentropyintoconditionsontheintensive

variables.

1-ThermalequilibriumforIsolatedcomposedsystem

Considertwosubsystems,separatedbyarigid,fixed,impermeableandconductivewall.

Theycanexchangeheatbetweenthembutnotmassnorheatwiththeoutside.

Theyareinequilibrium(U1,U2,V1,V2,Nj1,Nj2)

Constraints:-V1,V2=const.

-Nj1,Nj2=const.

-USCI=U1+U2=const.--->dU1+dU2=0

Undertheseboundaryconditions,theentropyfunctionofthecomposedsystemisgivenby:

SSCI=S1(U1,V1,Nj1)+S2(U2,V2,Nj2)=S1(U1)+S2(U2)=SSCI(U1,U2)

--->SSCIisafunctionofU1andU2separatelyandnotofUSCI

CASEA:StableEquilibrium

TheIsolatedcomposedsystemisinstableequilibrium,withrigid,impermeableand

conductivewalls.SSCIhasmaximumvalue.

WechooseU1asafreevariable.ThevirtualdisplacementfromtheequilibriumstateisdU1

anditcantakeallthevaluescompatiblewiththeconstraints(positive,zeroornegative).

WhateveristhevalueofdU1,dSSCImustbezero.

dSSCI=0∀dU1

dsSCI=dS1+dS2=(δS1/δU1)dU1+(δS2/δU2)dU2=

=(1/T1)dU1+(1/T2)dU2=dU1(1/T1-1/T2)=0∀dU1

InordertohavedSSCIequaltozeroforanyvalueofdU1,itmustbe:1/T1=1/T2-->T1=T2

� Conditionofthermalequilibrium

T1=T2istheconditionofequilibriumforanIsolatedsystemformedbytwosubsystems

separatedbyarigid,impermeableandconductivewall.

Page 18: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

CASEB:Transformation

Considerthesameprevioussystembutwithadiabaticwallbetweenthetwosubsystems,so

thattheyhaveinitiallydifferenttemperaturesT1andT2.SupposethatT1>T2.

--->Makethewallconductive-->transformationtillreachthermalequilibrium

Thesystemisnowchoosinganewsetofvirtualstatesinordertoreachmaximumentropy.

Betweentheinitalandfinalstate,asaconsequenceofthePostulateII,itmustbe:

SSCIf-SSCI

i=ΔSSCI≥0.

Assumingthetwostatesiandfveryclose-->ΔSSCI≈dSSCI=(1/T1-1/T2)dU1≥0AssumedthatT1>T2-->(1/T1-1/T2)<0-->dU1<0

-->Thesystemathighertemperaturelosesenergy

TheinternalenergyflowsasheatspontaneouslyfromthebodiesathigherTtotheonesat

lowerTandnotviceversa.

--->Itisnotpossibletorealiseatransformationwhichonlyresultistotransferenergyas

heatfromalowertemperaturesystemtoanhigherone(asseeninthePhenomenologicalstatementofthesecondprinciple,[Clausius]).

2-Mechanicalandthermalequilibrium

CASEA:Stableequilibrium

Thecomposedsystemisalwaysisolated.Iftheseptumdividingtheisolatedsystemis

conductive,movableandimpermeable,wehave:

-V1+V2=const.--->dV1+dV2=0

-U1+U2=const.--->dU1+dU2=0

-Nj1,Nj2=const.--->dNj1=0,dNj2=0

Sincethetwosubsystemscanexchangebothheatandwork,U1andV1areindependentof

eachother.Theentropyoftheisolatedcomposedsystemis:

SSCI=S1(U1,V1,Nj1)+S2(U2,V2,Nj2)

-->dSSCI=(δS1/δU1)dU1+(δS1/δV1)dV1+(δS2/δU2)dU2+(δS2/δV2)dV2=0

-->dSSCI=(1/T1)dU1+(p1/T1)dV1+(1/T2)dU2+(p2/T2)dV2=0

-->dSSCI=(1/T1-1/T2)dU1+(p1/T1-p2/T2)dV1=0

Page 19: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

ForarbitraryvaluesofdU1anddV1,itmustbe-->dSSCI=0,thatimplies:

1)1/T1=1/T2--->T1=T22)p1/T1=p2/T2-->p1=p2

CASEB:Transformation

Considerthesameprevioussystembutwithfixedwallbetweenthetwosubsystems,sothat

theyhaveinitiallydifferentpressuresp1andp2.Supposethatp1>p2.

--->Makethewallmovable-->transformationtillreachequilibrium

Thesystemisnowchoosinganewsetofvirtualstatesinordertoreachmaximumentropy.

Betweentheinitalandfinalstate,asaconsequenceofthePostulateII,itmustbe:dSSCI≥0AddingtheassumptionthatsincethebeginningT1=T2andthattemperautresremain

constant:

dSSCI=(p1/T1-p2/T2)dV1≥0

andsincep1/T1-p2/T2≥0---->dV1≥0

-->Thesubsystemathigherpressureexpands

3-Thermalequilibriumandwithrespecttothepassageofmatter

CASEA:Stableequilibrium

Thecomposedsystemisalwaysisolated.Theinternalwallisrigid,fixed,conductiveand

permeabletoasinglechemicalspecies(1).

V1,V2=const.--->dV1,dV2=0

U1+U2=const.--->dU1+dU2=0

Nj1+Nj2=const.--->dNj1+dNj2=0

dSSCI=1/T1dU1-µj1/T1dNj1+1/T2dU2-µj2/T2dNj2=

=dU1(1/T1-1/T2)+dNj1(µj2/T2-µj1/T1)=0

Theequilibriumconditionwillbe:

1)1/T1=1/T2--->T1=T22)µj1/T1=µj2/T2--->µj1=µj2

Page 20: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

CASEB:Transformation

Considerthesameprevioussystembutwithimpermeablewallbetweenthetwo

subsystems,sothattheyhaveinitiallydifferentchemicalpotentialsµj1andµj2.

Supposethatµj1>µj2.

--->Makethewallpermeable(tothechemicalspecies1)

--->transformationtillreachequilibrium

Thesystemisnowchoosinganewsetofvirtualstatesinordertoreachmaximumentropy.

dSSCI=(µj2-µj1)/TdNj1

andbeingdSSCI≥0,ifµj1>µj2thendNj1<0

Therefore,thechemicalspecies1goesfromthesystemwithhigherchemicalpotentialto

thesystemwithlowerchemicalpotential(relativetothecomponent1).Thedifference

betweenchemicalpotentialsinthetwosubsystemsgeneratesaforceactingonthetransfer

ofmatter.

Note:osmosisphenomenon

Experimentallywecanseethatthesolventmovestowardhigherconcentrationsofthe

soluteor(whichisthesame)towardslowerconcentrationsofsolvent.

--->themoleculesofanysubstancedissolvedinwaterexertpressurethattendstoincrease

thespaceattheirdisposal;thispressureiscalledosmoticpressureanddenotedbyπ.

� Ifyoudissolveinanequalvolumeofwaterthesamenumberofmoleculesofdifferent

substances,thesolutionsobtainedinthiswayhaveallthesameosmoticpressure,aslong

asmaintainedatthesametemperature.

Note:Vant'Hoff'slaw

πV=nRT(V=solventvolume,n=numberofmolesofsolute,R=universalgasconstant)

--->lawexperimentallyverifiedwithPfeffercell

Page 21: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

9-THEIDEALGASMODEL

Assumptionsoftheidealgasmodel:

1-Eachmoleculeisconsideredasapoint,withzerovolume

2-Moleculesinteractbycontact.Inparticular,thecontactinteractionsareintheformof

elasticcollisions

3-Thegasisnotsubjecttothepresenceofexternalfields,suchasgravitationalor

electromagneticfields

Also,weassumetoconsideramonocomponentsystem(asinglechemicalspecies).

Wecan,withallthesesimplifications,write:

� FundamentalrelationforIdealgases

S=S(U,V,N)=Nf(U/N)+NRln[(V/V0)(N0/N)]+(N/N0)S0(R=8.314[kj/kmolK])

whereU0,N0,V0,S0arethevaluesoftheextensivevariablesinthereferencestate.

Sisastatefunction-->weareinterestedinthevariationbetween2states

--->chooseS0asreferencestate(fundamentalrelationisvalidalsointhisstate)

S0=S(N0,V0,U0)=N0f(U0/N0)+NRln[(V0/V0)(N0/N0)]+(N0/N0)S0

therefore--->f(U0/N0)=0

Notethattheequationisnotvalidatlowtemperatures(itdoesnotsatisfythePostulateIVwhichrequiresS=0atT=0).

-Derivationofthefundamentalequationwithrespecttotheinternalenergy

Rememberingthat:

1/T=δS/δU)V,N

-->derivethefundamentalequationwithrespecttothethreevariablesU,N,Vstarting

fromtheinternalenergy

δS/δU)V,N=δ/δU[Nf(U/N)]=N(δ/δU)f(U/N)=N(df/du)(du/dU)=N(df/du)(1/N)=df/du=df/du(u)--------->1/T=df/du(u)

Sowecanconcludethatforanidealgasthetemperatureisafunctiononlyofthemolar

internalenergyu(andviceversa).

�Firstequationofstateofidealgases:u=u(T)

Note:U=Nu=Nu(T)

--->thetotalinternalenergydependsonTandN

Page 22: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

-Derivationofthefundamentalequationwithrespecttothevolume

Rememberingthat:

p/T=δS/δV)U,N

--->derivethefundamentalequationwithrespecttothevolumeV

S=S(U,V,N)=Nf(U/N)+NRln[(V/V0)(N0/N)]+(N/N0)S0

δS/δV)U,N=NR1/[(V/V0)(N0/N)][N0/(V0N)]=(NR)/V

--->p/T=(NR)/V

�Secondequationofstateofidealgases:pV=NRT

Note

1:ifwedividebythenumberofmoles-->pv=RT(v=V/N)

2:ifwedividebythemass

---->pvsp=NRT/M=RT/(M/N)=RT/Mm=R0T--->pvsp=R0T

(R0=R/Mm=characteristicconstantoftheparticulargas)

-Coefficientofexpansion,compressibilityandspecificheat

-Molarheat:amountofenergythatmustbeprovidedintheformofheat,inorderto

increaseof1Kthetemperatureofonemoleofthesubstancecomposingthebodyunder

consideration

-Thermalcapacity:amountofenergythatmustbeprovidedasheat,inordertoincreaseof

1Kthetemperatureofthewholebody

Notethatmolarheat,specificheatandthermalcapacitydependbothon:

-Thetypeoftransformationx

-Thepoint(state)alongthetransformation

Page 23: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

Examples:

1-Molarheatalongaquasistatictransformationforaclosedsystem

cx=1/N[(TdS)/dT]x=T(ds/dT)x[J/(molK)]

2-Molarheatalongatransformationatconstantpressure(isobaric)cp=1/N(dQ

in/dT)p[J/(molK)]

3-Molarheatalongatransformationatconstantvolume(isochoric)

cv=1/N(dQin/dT)v[J/(molK)]

-Mayer'srelation

Connectsthemolarheatatconstantpressurecpandthemolarheatatconstantvolumecv

totheidealgasconstantR.

-->Nmoles(const.)ofidealgas+infinitesimalquantityofheat(atconstantpressure)

δQ=NcpdTFirstlawofthermodynamics:δQ=dU+δW

Considerthatforanidealgas,molarinternalenergydependsonlyontemperature

--->dU=cvdT-->dU=NcvdT

so-->NcpdT=NcvdT+pdV(butfortheequationofstate:pdV=NRdT)

--->NcpdT=NcvdT+NRdT

�Mayer'srelationbetweenmolarheats(foridealgas):cp=cv+R[J/(molK)]

NotethatMayer'srelationcanalsobeexpressedfortheheatcapacities

Cp=Cv+NR[J/K]

-Coefficientofexpansion,compressibilityandspecificheatforidealgases

Foridealgases,somecoefficientsassumeparticularvalues.

Coefficientofthermalexpansion

α=(1/V)(δV/δT)p,N=(1/V)[δ(NRT/p)/δT]p,N=(1/V)(NR/p)=NR/NRT=1/T

Coefficientofisothermalcompressibility

KT=-(1/V)(δV/δp)T,N=-(1/V)(-NRT/p2)=1/p

NotethatαandKT,andalsothedifferencecp-cv=R,foridealgases,donotdependontheparticulargasweareconsidering.(cpandcvdoessingularlydepend)

--->weintroducetheadiabaticexponent

γ=cp/cv>1

Page 24: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

-Theteoremofequipartitionofenergy

Atordinarytemperatures,thevibrationdoesnotcomeintoplayindeterminingthespecific

heat.Itfollowsthereforethatweconsideronlytranslationalenergy,evaluatingthe

contributioninthedeterminationofthemolarheatsatconstantvolume:

cv=(1/N)(δQ/dT)v

�Thetheoremstatesthateachdegreeoffreedommovementofamoleculeleadstoa

contributionequaltoR/2tothevalueofcv

1)MonoatomicMoleculeThreetranslationaldegreeoffreedom.Locationofthemoleculeisuniquelydeterminedby

3spatialcoordinates.

cv=(3/2)R

cp=cv+R=(3/2)R+R=(5/2)R

γ=cp/cv=5/3

2)DiatomicMoleculeFivedegreesoffreedom.Assumefixeddistancebetweenatoms.6coordinatesforagiven

positionfortwoatoms,butthedistancebetweenthemisfixed,so:

cv=(5/2)R

cp=cv+R=(5/2)R+R=(7/2)R

γ=cp/cv=7/3

2)Non-linearpolyatomicMoleculeAssumethreeatoms.9Cartesiancoordinatesforagivenposition,butlinkedwith3stiffness

conditions-->6.Theadditionofafourthatomlinkedtotheothersrisetothreenew

coordinatesbutalsotothreenewstiffnessconditions.Sothenumberofdegreesof

freedomisstill6.Thisistrueforanynumberofaddedatoms,so:

cv=(6/2)R=3R

cp=cv+R=3R+R=4R

γ=cp/cv=4/3

Notethatinrealexperience,weshouldknowthatcpandcvalsodependontemperature.

Athightemperatures,thevaluesobtainedbytheformulacanbenotcorrect.

-Formonoatomicgaseswehaveagoodapproximationofthebehaviourwiththemodel

-Fordiatomicgasesweshoulddistinguishbetweencasesatordinarytemperaturesand

casesathightemperatures

-Forpolyatomicgasesthevaluesobtaineddiffersignificantlyfromtherealvalues

(molecularcomplexity-->increaseofpossiblevibrationalmodes)

Page 25: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

-Fundamentalequationinparametricform

Consideramonocomponent,closedsystemconsistingofanidealgasandsubjectedto

quasi-statictransformations.

u=u(T)

du=δQin-δWout=δqin-pdv

bydefinition:cv=(1/N)(dQin/dT)V

atconstantvolume:pdv=0--->du=δqin

-->cv=(1/N)(δQin/dT)=(1/N)(δU/δT)V=δu/δT)V=du/dT=cv(T)

Fromabove,sinceuisafunctiononlyofT,itfollowsthatalsocv,beingthederivativeofa

functionofTalone,isafunctionofTalone.

-->du=cv(T)dT

Theresultisvalidalonganutransformation,withoutbeinglimitedonlytotransformations

atconstantV(uisastatefunctions-->doesnotdependonthetransformation).

Integratingbothsides,weobtain:

but recalling that df / du = 1 / T,

from which:

�Thesetofequations1and2istheFundamentalequationinparametricform,with

parameterT.

Page 26: Advanced Building Physics - Thermodynamics · the character of a general law or a principle. Deductive inferences starting from premises generally valid bring to what happens in a

L.D.D

EliminatingTbetweenthetwoequations,weobtainarelationbetweenonlytheextensive

variablesS=S(U,V,N),whichisafundamentalequation.

Then,ifcvisconstant,theparametricequationbecomes:

DividingbyNweobtainthemolarexpressions:

soweobtain:

Expressionofmolarentropysvalidforanideal

gaswithconstantcv(andsoalsoconstantcp)