Admixture of Poisson MRFs: A New Topic Model with Word Dependencies

42
Admixture of Poisson MRFs: A New Topic Model with Word Dependencies David Inouye*, Pradeep Ravikumar, Inderjit Dhillon April 30, 2015 * Presenter David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Transcript of Admixture of Poisson MRFs: A New Topic Model with Word Dependencies

Admixture of Poisson MRFs: A New TopicModel with Word Dependencies

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon

April 30, 2015

* Presenter

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Analyzing Large Collections of Documents

Doc 1Doc 2Doc 3Doc 4 ...

“netw

orks”

“learn

ing”

“prog

ramming

Digital Representation

Bag of Words Matrix:- Removes order and syntax information- Unrealistic but powerful

2

Model Computation

3

Summary

4

Collection of Documents

1

Titles of Research Papers:1. Machine Learning (ICML, NIPS)2. Communication Netwrks (INFOCOM)3. Programming Languages (PLDI, CAV, POPL, OOPSLA)

Examples:1. Research papers2. News articles3. Twitter posts

1

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Analyzing Large Collections of Documents

Model Computation

3

Summary

4

Collection of Documents

1

Titles of Research Papers:1. Machine Learning (ICML, NIPS)2. Communication Netwrks (INFOCOM)3. Programming Languages (PLDI, CAV, POPL, OOPSLA)

Examples:1. Research papers2. News articles3. Twitter posts

1

Doc 1Doc 2Doc 3Doc 4 ...

“netw

orks”

“learn

ing”

“prog

ramming

Digital Representation

Bag of Words Matrix:- Removes order and syntax information- Unrealistic but powerful

2

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Analyzing Large Collections of Documents

Summary

4

Collection of Documents

1

Titles of Research Papers:1. Machine Learning (ICML, NIPS)2. Communication Netwrks (INFOCOM)3. Programming Languages (PLDI, CAV, POPL, OOPSLA)

Examples:1. Research papers2. News articles3. Twitter posts

1

Doc 1Doc 2Doc 3Doc 4 ...

“netw

orks”

“learn

ing”

“prog

ramming

Digital Representation

Bag of Words Matrix:- Removes order and syntax information- Unrealistic but powerful

2

Model Computation

3

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Analyzing Large Collections of Documents

Collection of Documents

1

Titles of Research Papers:1. Machine Learning (ICML, NIPS)2. Communication Netwrks (INFOCOM)3. Programming Languages (PLDI, CAV, POPL, OOPSLA)

Examples:1. Research papers2. News articles3. Twitter posts

1

Doc 1Doc 2Doc 3Doc 4 ...

“netw

orks”

“learn

ing”

“prog

ramming

Digital Representation

Bag of Words Matrix:- Removes order and syntax information- Unrealistic but powerful

2

Model Computation

3

Summary

4

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Research Paper Example - Top Words

Top Words (Frequency)

Doc 1Doc 2Doc 3Doc 4 ...

“netw

orks”

“learn

ing”

“prog

ramming

Collection of Documents

Digital Representation

Model Computation Summary

Examples:1. Research papers2. News articles3. Twitter posts

Bag of Words Matrix:- Removes order and syntax information- Unrealistic but powerful

1

Titles of Research Papers:1. Machine Learning (ICML, NIPS)2. Communication Networks (INFOCOM)3. Programming Languages (PLDI, CAV, POPL, OOPSLA)

2

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Research Paper Example - Topic Modeling

Topic Modeling

Doc 1Doc 2Doc 3Doc 4 ...

“netw

orks”

“learn

ing”

“prog

ramming

Collection of Documents

Digital Representation

Model Computation Summary

Examples:1. Research papers2. News articles3. Twitter posts

Bag of Words Matrix:- Removes order and syntax information- Unrealistic but powerful

1

Titles of Research Papers:1. Machine Learning (ICML, NIPS)2. Communication Networks (INFOCOM)3. Programming Languages (PLDI, CAV, POPL, OOPSLA)

2

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Applications for Topic Modeling

I Applications

1. Summarize/Visualize [Hall et al. 2008]

2. Word sense disambiguation [Boyd-Graber et al. 2007]

3. Multi-lingual understanding [Mimno et al. 2009]

4. Information retrieval [Wei & Croft 2006]

I Different domains

1. Genetics [Pritchard et al. 2000 (14,000 citations)]

2. Computer vision [Li et al. 2010]

3. Social networks [Airoldi et al. 2008]

4. Social science surveys [Roberts et al. 2014]

5. Social E-commerce [Hu et al. 2014]

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Brief History - Latent Semantic Analysis (LSA)

2

k p

n

kk k

U VTΣ

Singular Value Decomposition

3

Low Dimensional Document Representation

“Latent Topic”

4

1

Doc 1Doc 2Doc 3Doc 4 ...

“netw

orks”

“learn

ing”

“prog

ramming

Digital Representation

n

p

I Positive and negative values difficult to interpret

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Brief History - Latent Semantic Analysis (LSA)

3

Low Dimensional Document Representation

“Latent Topic”

4

1

Doc 1Doc 2Doc 3Doc 4 ...

“netw

orks”

“learn

ing”

“prog

ramming

Digital Representation

Singular Value Decomposition

n

p

2

k p

n

kk k

U VTΣ

I Positive and negative values difficult to interpret

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Brief History - Latent Semantic Analysis (LSA)

“Latent Topic”

4

1

Doc 1Doc 2Doc 3Doc 4 ...

“netw

orks”

“learn

ing”

“prog

ramming

Digital Representation

Singular Value Decomposition

n

p

2

k p

n

kk k

U VTΣ3

Low Dimensional Document Representation

I Positive and negative values difficult to interpret

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Brief History - Latent Semantic Analysis (LSA)

1

Doc 1Doc 2Doc 3Doc 4 ...

“netw

orks”

“learn

ing”

“prog

ramming

Digital Representation

Singular Value Decomposition

n

p

2

k p

n

kk k

U VTΣ

“Latent Topic”

4

3

Low Dimensional Document Representation

I Positive and negative values difficult to interpret

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Brief History - Probabilistic Topic Models

3

Topic Weights per Document

“Topics”(Word weights)

4

1

Doc 1Doc 2Doc 3Doc 4 ...

“netw

orks”

“learn

ing”

“prog

ramming

Digital Representation

n

p

2

k p

n

k

Probabilistic Topic Models

Related through probability model

I Probability vectors are much easier to interpret

I LDA - Added Bayesian priors for regularization

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Comparison of 2D Projections

I SVD dimensions are difficultto interpret

I APM has smoothdistribution compared toLDA

SVD

LDA

APM

comm−net.6978

mach−learn.8925

prog−lang.6618

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Brief History - Extensions/Variants

1. Add time information [Blei & Lafferty 2006]

2. Add author information [Rosen-Zvi et al. 2004]

3. Add document category information [Mcauliffe & Blei 2008]

4. Automatically discover number of topics [Teh et al. 2006]

5. Model correlation between topics [Blei & Lafferty 2006]

6. . . .

7. . . .

I Previous models - topics only have weights for single words

I Our model - topics have weights for pairs of words

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Brief History - Extensions/Variants

1. Add time information [Blei & Lafferty 2006]

2. Add author information [Rosen-Zvi et al. 2004]

3. Add document category information [Mcauliffe & Blei 2008]

4. Automatically discover number of topics [Teh et al. 2006]

5. Model correlation between topics [Blei & Lafferty 2006]

6. . . .

7. . . .

I Previous models - topics only have weights for single words

I Our model - topics have weights for pairs of words

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Interpreting Topics

LDA 3 topics

LDA 30 topics

APM 3 topics

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Interpreting Topics

LDA 3 topics

LDA 6 topics

LDA 30 topics

APM 3 topics

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Interpreting Topics

LDA 3 topics

LDA 30 topics

APM 3 topics

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Interpreting Topics

LDA 3 topics

LDA 30 topics

APM 3 topics

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Overview of APM

Admixture of Poisson MRFS (APM)

Multinomial Admixture Poisson MRF

Gaussian MRFMixture

LDA

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Overview of APM

Admixture of Poisson MRFS (APM)

Multinomial Admixture Poisson MRF

Gaussian MRFMixture

LDA

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Mixtures

I Multiple sub-populationsI The sub-populations are usually unknown a prioriI Each individual from the population comes from exactly one

subpopulation

Figure source: Kalai, Moitra, and Valiant. Disentangling Gaussians. Communications

of the ACM. 2012.

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Admixtures

I Mixtures - Draws from singlecomponent distribution. (Top)

I Admixtures - Draws from adistribution whose parameters are aconvex combination of componentparameters. (Bottom)

x2

x1

"Documents"Mixture

Components

x2

x1

Dense "Topic"

Sparse "Document"

Dense "Document”

Sparse "Topic"

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Overview of APM

Admixture of Poisson MRFS (APM)

Multinomial Admixture Poisson MRF

Gaussian MRFMixture

LDA

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Gaussian MRFs

I Allows for dependencies between variables

I What if the data dimension is large?I If dimension is 1000, 10002/2 =500,000 parametersI Assume some conditional independence between variables.

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Independent PMRFIndependent PMRF

Count of Word 1

Co

un

t o

f W

ord

2

0 2 4 6 8

8

6

4

2

0

1. Each conditional (”slice”)of a PMRF is 1-D Poisson.

2. Distinct from GaussianMRF

3. Positive dependencies canmodel word co-occurence.

Positive Dependency PMRFPMRF Positive Dependency

Count of Word 1

Co

un

t o

f W

ord

2

0 2 4 6 8

8

6

4

2

0

Negative Dependency PMRFPMRF Negative Dependency

Count of Word 1

Co

un

t o

f W

ord

2

0 2 4 6 8

8

6

4

2

0

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Poisson MRFs [Yang et al., 2012]

P(A | B, C) P(B | A, C) P(C | A, B)

P(A, B, C) ??

If we assume the node conditional distributions are Poisson,

does there exist a joint MRF distribution that has these conditionals?

I Poisson MRF joint distribution:

PrPMRF

(x |θ,Θ) ∝ exp

{θTx + xTΘx−

p∑s=1

ln(xs !)

}.

I Node conditionals are 1-D Poissons:

Pr(xs | x−s , θs ,Θs) ∝ exp{ (θs + xTΘs︸ ︷︷ ︸ηs

) xs − ln(xs !) }.

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Overview of APM

Admixture of Poisson MRFS (APM)

Multinomial Admixture Poisson MRF

Gaussian MRFMixture

LDA

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Admixture of Poisson MRFs (APM) [Inouye et al. 2014]

I APM replaces standard Multinomial with Poisson MRF

PrAPM

(x,w,θ1...k ,Θ1...k)

= PrPMRF

(x

∣∣∣∣∣ θ̄ =k∑

j=1

wjθj , Θ̄ =

k∑j=1

wjΘj

)PrDir

(w)k∏

j=1

Pr(θj ,Θj)

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

APM Algorithm

1. Optimization problem is not convex

2. Want to exploit parallel computing

3. Large optimization problem: APM has O(kp2) parametersversus O(kp) for LDA

I LDA(k = 5, p = 1000) ⇒ 5,000 parameters

I APM(k = 5, p = 1000) ⇒ 5,000,000 parameters

I APM(k = 5, NNZ(Θ) = 10 per word) ⇒ 50,000 freeparameters

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Parallel Alternating Newton-like Algorithm

1. Split the algorithm into alternating convex problems

arg minΦ1,Φ2,··· ,Φp

−1

n

p∑s=1

[tr(ΨsΦs)−

n∑i=1

exp(zTi Φswi )

]+

p∑s=1

λ‖vec(Φs)\1‖1

arg minw1,w2,··· ,wn∈∆k

−1

n

n∑i=1

[ψT

i wi −p∑

s=1

exp(zTi Φswi )

]

where zi = [1 xTi ]T Ψs = f (X ,W)

φjs = [θjs (Θj

s)T ]T ψi = f (X ,Φ1...k)

Φs = [φ1s φ

2s · · ·φk

s ]

2. Subproblems in summation can be computed in parallel

3. Use fast Newton-like optimization method [Hsieh et al. 2014]

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Timing Results on Wikipedia Dataset (k = 5, λ = 0.5)

1

3.1 3.4

0.6

2.2 2.2

0

1

2

3

4

n = 20,000 p = 5,000

# of Words = 50M

n = 100,000 p = 5,000

# of Words = 133M

n = 20,000 p = 10,000

# of Words = 57M

Tim

e (

hrs

)

APM Training Time on Wikipedia Dataset

1st Iter. Avg. Next 3 Iter.

I Algorithm scales approximately as O(np2)

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Parallel Speedup

0

5

10

15

20

0 5 10 15 20

Spe

ed

up

# of MATLAB Workers

Parallel Speedup on BNC Dataset

Perfect Speedup

Actual Speedup

I BNC dataset has n = 4049 and p = 1646

I Speedup could be O(min(n, p)) on distributed system

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Evaluating APM: No Direct Evaluation of Edge Parameters

I Previous metrics evaluate the similarity of word pairs[Newman et al. 2010, Mimno et al. 2011, Aletras and Court 2013]

I Averaged statistic for all(

102

)pairs of top words computed

I Attempted to correlate with human judgment

I Unlike previous topic models, APM explicitly modelsdependencies between words

I How can we semantically evaluate the parameters for thesedependencies?

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Evocation [Boyd-Graber et al. 2006]

I Evocation denotes the idea of which words “evoke” or “bringto mind” other words

I Different types of evocation:

1. Rose - Flower (example)2. Brave - Noble (kind)3. Yell - Talk (manner)4. Eggs - Bacon (co-occurence)5. Snore - Sleep (setting)6. Wet - Desert (antonymy)7. Work - Lazy (exclusivity)8. Banana - Kiwi (likeness)

I Distinctive from word similarity or synonymy

I Collected human scores for approximately 15% of word pairs

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Evocation Metric Illustration

Word Pair H M

w1 ↔ w2

w1 ↔ w3

w1 ↔ w4

w2 ↔ w3

w2 ↔ w4

w3 ↔ w4

w2 ↔ w3

w2 ↔ w4

w3 ↔ w4

w1 ↔ w3

w1 ↔ w2

w1 ↔ w4

Word Pair H M

w2 ↔ w4

w3 ↔ w4

w1 ↔ w3

w1 ↔ w4

Word Pair H M

Rank by model weights M Sum top-m human scores H

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Models for Comparison

I APM: Admixture of Poisson MRFs

I APM-LowReg: Very small regularization parameter

I APM-HeldOut: Chooses λ from held-out documents

I CTM: Correlated Topic Models

I HDP: Hierarchical Dirichlet Process (Non-parametric)

I LDA: Latent Dirichlet Allocation

I RSM: Replicated Softmax (Undirected Topic Model)

I RND: Random baseline

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Evocation Metric Results

0

200

400

600

800

1000

1200

1400

1600

k = 1 3 5 10 25 50 k = 1 3 5 10 25 50

Evoc-1 (Avg. Evoc. of Topics) Evoc-2 (Evoc. of Avg. Topic)

Evo

cati

on

(m

= 5

0)

APM APM-LowReg APM-HeldOut CTM HDP LDA RSM RND

0

200

400

600

800

1000

1200

1400

1600

k = 1 3 5 10 25 50 k = 1 3 5 10 25 50

Evoc-1 (Avg. Evoc. of Topics) Evoc-2 (Evoc. of Avg. Topic)

Evo

cati

on

(m

= 5

0)

APM APM-LowReg APM-HeldOut CTM HDP LDA RSM RND

0

200

400

600

800

1000

1200

1400

1600

k = 1 3 5 10 25 50 k = 1 3 5 10 25 50

Evoc-1 (Avg. Evoc. of Topics) Evoc-2 (Evoc. of Avg. Topic)

Evo

cati

on

(m

= 5

0)

APM APM-LowReg APM-HeldOut CTM HDP LDA RSM RND

0

200

400

600

800

1000

1200

1400

1600

k = 1 3 5 10 25 50 k = 1 3 5 10 25 50

Evoc-1 (Avg. Evoc. of Topics) Evoc-2 (Evoc. of Avg. Topic)

Evo

cati

on

(m

= 5

0)

APM APM-LowReg APM-HeldOut CTM HDP LDA RSM RND

0

200

400

600

800

1000

1200

1400

1600

k = 1 3 5 10 25 50 k = 1 3 5 10 25 50

Evoc-1 (Avg. Evoc. of Topics) Evoc-2 (Evoc. of Avg. Topic)

Evo

cati

on

(m

= 5

0)

APM APM-LowReg APM-HeldOut CTM HDP LDA RSM RND

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Evocation Metric Top Word Pairs

Table: Top 20 Word Pairs for Best LDAHuman

Score

Human

Score

Human

Score

Human

Score

100 run.v ↔ car.n 38 woman.n ↔man.n 100 telephone.n ↔ call.n 57 question.n ↔ answer.n82 teach.v↔ school.n 38 give.v ↔ church.n 97 husband.n↔wife.n 57 prison.n ↔ cell.n69 school.n ↔ class.n 38 wife.n ↔ man.n 82 residential.a ↔ home.n 51 mother.n ↔ baby.n63 van.n ↔ car.n 38 engine.n ↔ car.n 76 politics.n ↔ political.a 50 sun.n ↔ earth.n51 hour.n ↔ day.n 35 publish.v ↔ book.n 75 steel.n↔ iron.n 50 west.n ↔ east.n50 teach.v ↔ student.n 32 west.n ↔ state.n 75 job.n↔ employment.n 44 weekend.n ↔ sunday.n44 house.n ↔ government.n 32 year.n ↔ day.n 75 room.n ↔ bedroom.n 41 wine.n ↔ drink.v44 week.n ↔ day.n 25 member.n ↔ give.v 72 aunt.n↔ uncle.n 38 south.n ↔ north.n38 university.n ↔ institution.n 25 dog.n ↔ animal.n 72 printer.n ↔ print.v 38 morning.n ↔ afternoon.n38 state.n ↔ government.n 25 seat.n ↔ car.n 60 love.v ↔ love.n 38 engine.n ↔ car.n

Word Pair Word Pair Word Pair Word Pair

Table: Top 20 Word Pairs for Best APMHuman

Score

Human

Score

Human

Score

Human

Score

100 run.v ↔ car.n 38 woman.n ↔man.n 100 telephone.n ↔ call.n 57 question.n ↔ answer.n82 teach.v↔ school.n 38 give.v ↔ church.n 97 husband.n↔wife.n 57 prison.n ↔ cell.n69 school.n ↔ class.n 38 wife.n ↔ man.n 82 residential.a ↔ home.n 51 mother.n ↔ baby.n63 van.n ↔ car.n 38 engine.n ↔ car.n 76 politics.n ↔ political.a 50 sun.n ↔ earth.n51 hour.n ↔ day.n 35 publish.v ↔ book.n 75 steel.n↔ iron.n 50 west.n ↔ east.n50 teach.v ↔ student.n 32 west.n ↔ state.n 75 job.n↔ employment.n 44 weekend.n ↔ sunday.n44 house.n ↔ government.n 32 year.n ↔ day.n 75 room.n ↔ bedroom.n 41 wine.n ↔ drink.v44 week.n ↔ day.n 25 member.n ↔ give.v 72 aunt.n↔ uncle.n 38 south.n ↔ north.n38 university.n ↔ institution.n 25 dog.n ↔ animal.n 72 printer.n ↔ print.v 38 morning.n ↔ afternoon.n38 state.n ↔ government.n 25 seat.n ↔ car.n 60 love.v ↔ love.n 38 engine.n ↔ car.n

Word Pair Word Pair Word Pair Word Pair

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Current and Future Work

networksnetworks

learninglearning

basedbased

usingusing

analysisanalysis

networknetwork

wirelesswireless

datadata

modelmodel

multimulti

controlcontrol

efficientefficient

timetime

performanceperformance

routingrouting

distributeddistributed

optimaloptimal

algorithmsalgorithms

algorithmalgorithm

sensorsensor

traffictraffic

schedulingscheduling

highhigh

largelarge

multiplemultiple

mobilemobile

atmatm

packetpacket

delaydelay

allocationallocation

flowflow

protocolprotocol

accessaccess

multicastmulticast

energyenergy

channelchannel

realreal

scalescale

powerpower

locallocal

hochoc

raterate

randomrandom

serviceservice

evaluationevaluation

codingcoding

radioradio

bandwidthbandwidth

opticaloptical

speedspeed

videovideo

endend

peerpeer

resourceresource

cloudcloud

computingcomputing

congestioncongestion

hophop

distributiondistributioncontentcontent

cognitivecognitive

switchswitch

spectrumspectrum

switchingswitching

privacyprivacy

wdmwdm

layerlayer

streamingstreaming

locationlocation

queueingqueueing

engineeringengineering

inputinput

crosscross

areaarea

qualityquality

loadload

wavelengthwavelength

preservingpreserving

admissionadmission

assignmentassignment

reliablereliable

switchesswitches

macmac

faultfaulttoleranttolerant

balancingbalancing

switchedswitched

varyingvarying

registerregister

widewide

centercenter

networksnetworks

learninglearning

basedbased

usingusing

analysisanalysis

networknetwork

wirelesswireless

datadata

modelmodel

multimulti

systemssystems

modelsmodels

timetime

neuralneural

objectobject

optimaloptimal

informationinformation

highhigh

bayesianbayesian

largelarge

optimizationoptimization

multiplemultiple

inferenceinferencelinearlinearnonnon

sparsesparse

clusteringclustering

estimationestimation

selectionselection

kernelkernel

supportsupport

stochasticstochastic

scalescale

gaussiangaussian

featurefeature

markovmarkov

processprocess

processesprocessesrandomrandom

codingcoding

temporaltemporal

classclass

decisiondecision

recognitionrecognition machinesmachines

predictionprediction

visualvisual

vectorvector

approximationapproximation

lowlow

supervisedsupervised

structuredstructured

policypolicy

treestrees

functionfunction

approximateapproximate

continuouscontinuous

semisemi

gradientgradient

reductionreduction

maximummaximum

latentlatent

dimensionaldimensional

matrixmatrix

convexconvex

propagationpropagation

marginmargin

graphicalgraphical

variablevariable

hiddenhidden

variationalvariational

tasktask

componentcomponent

mixturemixture

speechspeech

spectralspectral

rankrank

theoretictheoretic

neuronsneurons

fieldsfields

densitydensity

vlsivlsi

instanceinstance

analoganalog

montemonte

messagemessage

carlocarlo topictopic

labellabel

entropyentropy

neighborneighbor

nearnear

dirichletdirichlet

spikingspiking

seriesseries

beliefbelief

factorizationfactorization

dynamicaldynamical

partiallypartially

descentdescent

differencedifference

nearestnearest

dimensionalitydimensionality

passingpassing

completioncompletion principalprincipal

leastleast

boltzmannboltzmann

likelihoodlikelihood

squaressquares

observableobservable

networksnetworkslearninglearning

basedbased

usingusing

analysisanalysis

networknetworkwirelesswireless

datadata

modelmodel

multimulti

systemssystemstimetime

approachapproach

programmingprogramming

objectobjectdistributeddistributed

languagelanguage

designdesign

orientedoriented

systemsystem

informationinformation

highhigh

softwaresoftware

programsprogramsinferenceinference

verificationverification

checkingchecking

flowflow

codecode

typetype

realrealprogramprogram

languageslanguages

orderorder

machinemachine

levellevel

temporaltemporal

studystudy

domaindomain

virtualvirtual

logiclogic

generationgeneration

implementationimplementation

casecase

staticstatic

hybridhybrid

abstractabstract

structuresstructures

formalformal

higherhigher

sessionsession

specificspecific

collectioncollection

firstfirst

garbagegarbage

extendedextended

posterposter

aspectaspect

1. Visualization

2. Better inference ofparameters

3. Extension to other domains

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs

Thanks for listening!

Admixture of Poisson MRFS (APM)

Multinomial Admixture Poisson MRF

Gaussian MRFMixture

LDA

David Inouye*, Pradeep Ravikumar, Inderjit Dhillon Admixture of Poisson MRFs