Adiabatic Demagnetization Refrigeration -...

31
Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 1 Adiabatic Demagnetization Refrigeration – External magnetic field ( B ) aligns ... – Thermal disorder ( T ) mixes up ... => degree of order ( M ) depends on the ratio B/T Measure M in known B and get T OR Fix M => change in B results in change in T

Transcript of Adiabatic Demagnetization Refrigeration -...

Page 1: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 1

Adiabatic DemagnetizationRefrigeration

– External magnetic field ( B ) aligns ...– Thermal disorder ( T ) mixes up ...

=>degree of order ( M ) depends on the ratio B/T

Measure M inknown B and get T

ORFix M => change in Bresults in change in T

Page 2: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 2

Thermodynamics of Zeeman system:

=x

2 Jcoth

x2 J

−2 J 1 x

2 Jcoth

2 J 1 x2 J

ln [sinh2 J1 x

2 Jsinh−1 x

2 J]

C B

nR= T

∂S /nR

∂T

B

=x2

4 J 2sinh−2 x

2 J−

2 J12 x2

4 J 2sinh−2 2 J 1 x

2 J

MN

=M

M sat

=k B T

N ∂ ln Z∂B

T

= BJ x

=2 J 1

2 Jcoth

2 J1 x2 J

−1

2 Jcoth

x2 J

Z = [ ∑m=−J

J

e−m x / J]

nN A

= [sinh2 J1 x

2 J/sinh

x2 J

]nN A

x = Bk B T

SnR

=∂T ln Z

∂T

Partition function

– Entropy S:

– Heat capacity C:

– Magnetization M:

gives

Page 3: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 3

High-T approximations

Often x << 1 (kBT >> μB) so that it is safe to simplify

SnR

≈ ln 2 J 1 −J16 J

x2

C B

nR≈

J 13 J

x2

MM sat

≈J 13 J

x

Page 4: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 4

Entropy

All relations above, including molar spin entropy Sn = S/n, depend just on the ratio of magnetic field and temperature:

Sn = Sn (B/T)

The limiting value at high temperatures:

Sn → Sn, max = R ln(2J+1)

In adiabatic processes entropy remains constant => T can be made to change in proportion to B. BUT entropy must differ notably from its maximum value to begin with.

T ∞

Page 5: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 5

Internal magnetic fieldThe spins do not respond to externalmagnetic field only, they also feelthe weak fields of each other. This isrepresented by the internal field b .

Roughly speaking b ~ kBTc/μ ,where Tc is the magnetic ordering temperature of the material

This adds quadratically to the external magnetic field:

To have Btot ~ B , one must have rather small b=> we are interested on materials with low Tc ,

i.e. weakly magnetic materials

Btot ≈ B2b2

Page 6: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 6

Magnetic refrigeration

• Initial condition with low entropy S = Si < Smax (ΔS/Smax > 0.1) has to be prepared by high field Bi / low temperature Ti

• No other entropy in the system should be comparable to this• The system must be made isolated (adiabatic); heat switch needed• The magnetic field must be changed reversibly

=> corresponding change in temperature (B/T = const.)• The weaker the magnetic system, the larger Bi/Ti is needed BUT

the lower final temperature is achievable, as Bmin ~ b• Cooling capacity depends on final field & moment strength• When the cooling capacity is exhausted, the process has to

be repeated again (single cycle cooling)

Page 7: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 7

Cooling cycle

• Precool to point A: Bext = 0, T = Ti

• Magnetize A → B,remove heat QAB = TΔS

• Isolate the system, ΔS = 0 thereafter• Demagnetize B → C• Use the capacity C → A,

QCA << QAB

QCA =∫T f

T

T ∂S∂T

B

dT =∫T f

T

C B dT

Zeemanlevels

(J = ½)

Page 8: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 8

Conventional magnetic refrigeration• Uses dilute paramagnetic salts (CMN, CPA, FAA, ...)• Easy initial conditions Bi = 1 T and Ti = 1 K are sufficient• High cooling capacity remains also at Bext = 0• Temperature can be measured from inherent property: χ = λ/T• Fast, demagnetization can be performed in few minutes

BUT• Poor thermal conductivity limits heat transfer• Difficult to mount samples (except liquid 3He immersed

in powdered CMN salt; 2 mK can be achieved)• Single shot cooling

Largely replaced by dilution refrigeratorsSpace applications are still developed

Page 9: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 9

Realizations

Elaborate schemes withmultiple stages producingcontinuous refrigerationfrom 4 K to mK-rangehave been demonstrated

Page 10: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 10

Adiabatic nuclear demagnetization

– Many isotopes carry a nonzero nuclear spin– Very small moment, of order nuclear magneton

=> Tc ~ pK ... μK

• Very low temperatures can be achieved• Moments need not be diluted

=> good moment density (more heat capacity)• Metals can (must) be used

– Good thermal conductivity– Reasonable thermal contacts

n =e ℏ

2mn

=me

mn

B ≈ B /1840 ≈ 5.05⋅10−27 J /T

Page 11: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 11

The challenge

Small μ => need very large Bi/Ti

For example: Ti = 10 mKBi = 6 T

=> ΔS/Smax = 5% for Cu

To maintain sufficient heat capacity, one cannot demag. to zero field(for nuclear magnets b ~ 0.1 mT)

Usually Bf ~ 10 ... 100 mT (limits achievable Tf )

{

Page 12: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 12

Possible material choices● Pure metal for sufficient thermal conductivity● Reasonable moment, high isotope abundance● No strong superconductivity or electronic magnetism● Spin lattice coupling has to be sufficient● Large spin may or may not be good

Candidates with ~ 100% abundance:

isotope μ/μn I note

27Al 3.64 5/2 SC, Bc = 10 mT, tolerable 63,65Cu 2.3 3/2113,115In 5.5 9/2 SC, Bc = 30 mT, questionable51V 5.14 7/2 SC, Bc = 0.1 T, ruled out 93Nb 8.07 9/2 SC, Bc = 0.2 T, ruled out

Page 13: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 13

Further requirement

• Cubic lattice or spin I = 1/2

otherwise electric field gradient at nuclear positionsmay produce large quadrupole splitting (unless I = 1/2),which contributes to b, possibly making it too large

For example, indium has tetragonal lattice, whereby the quadrupole moment produces an effective field

bq ~ 0.25 T => demagnetization is limited to this

All in all, copper is the best choice(aluminum might do in some cases)

Page 14: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 14

Thermodynamics (again)• High temperature expansions are sufficient in most cases

SnR

≈ ln 2 J 1 −J16 J

x2

C B

nR≈

J 13 J

x2

MM sat

≈J 13 J

x

Page 15: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 15

Cooling cycle

1) Magnetize to Bi (1 ... 2 h), usually as quickly as the magnet permits(large heat of magnetization, DR copes with it better, T1 ~ 50 ... 100 mK)

2) Precool to Ti (one to several days)nuclear stage (NS) size + efficiency of DR + quality of heat switch

3) Thermal isolation of the nuclear cooling stage (15 min)superconducting heat switch between the DR & NS made SC

4) Demagnetization to Bf ~ 10 ... 100 mT (1/2 ... 1 day)speed limit is set by losses due to eddy current heating

5) Thermalize the experiment (hours ... days)

6) Maintain the low T (days ... weeks)

7) Connect NS to DR (heat switch made normal by magnetic field) forthe next precool; GOTO 1)

Page 16: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 16

Precooling

Dilution refrigerator absorbs heat

where is the background heat load

Base temperature without extra load is

Thermal resistance of the link between NS and DR (heat switch in normal state)is characterized by the coefficient R ~ 2 ... 20 K2/W, giving

The power originates from heat of magnetization of nuclear spins

Precooling time to temperature T can be solved from these:

Q = aT DR2

−q ; a = 84 n J /mol K2

q

T 0 = q /a

2 RQ = T NS2

−T DR2

Q

dQ =−C B dT NS ; C B =V

0

B2

T NS2

t T = 1a2R

V B2

0T 02

1

2T 0

lnTT 0

T−T 0

−1T

≈ 1a2R

V B2

30T 3

Page 17: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 17

Change of magnetic field must be made as reversibly as possibleLosses may be assumed to result from

– constant background heat load

– induced eddy current heating

where γ = ΓV RRR/ρ0 depends on el. resistivity and geometry

for a cylinder for a slabΓ = r 2/8 Γ = d 2/12

r ww/d >> 1 d

Demagnetization

q NS

B 2 Q NS = q NS B 2}

Page 18: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 18

Eddy currentsTo reduce detrimental influence of eddy currents, the nuclear stage must be constructed from thin filaments or slabs

2r or d ~ 1 mm or less

or

Filling factor should be good, but the slabs or filaments must be insulated from each other (from the flat side)

Page 19: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 19

Optimum demagnetizationBest possible demagnetization in time tdm has parabolic profile:

For example: nCu = 100 mold = 2 mm, w >> d => γ = 10.6 Ws2/T2

RRR ~ 1000

qNS =10 nW demag. time profile loss Δ(Bf /Tf )/(Bi /Ti )

Bi = 9T topt = 3 days linear 1.2 % (too slow)Ti = 10 mK 10 h linear 5 % (reasonable)Bf = 50 mT 10 h parabolic 3 % (fine)

}

}.

B t = a t / t dm2−bt /t dmBi

a = BiB f −4 Bi B f q NS / t dm2

b = 2 Bi−4 Bi B f q NS / t dm2{

Page 20: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 20

Thermalization processNuclear demag cools down the nuclear spin ensemble.How does this couple to your sample?

Spin system has internal relaxation time τ2 ~ 0.1 ... 10 ms (fast)

Energy exchange between nuclear spins and conduction electrons is characterized by spin-lattice relaxation time τ1

metals obey the Korringa law: τ1 = κ/Te

typically κ ~ 0.01 ... 10 sKwhen Te ~ 50 µK => τ1 ~ 200 s ... 200 ks >> τ2

THEREFORE Te ≠ Tn , conduction electrons may be much HOTTER than the nuclear spins

Page 21: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 21

NMR equationsThermal equilibrium can be analyzed in terms of NMR relations

Magnetization relaxes as:

with

towards equilibrium

=>

Since

=>

dMdt

=−11

M −M 0

M =−I13 I

M sat B

k B T n

∝1T n

M 0 =−I13 I

M sat B

k B T e

∝1T e

ddt

1T n

=−11

1

T n

−1T e

d 1/T

dt=−

1

T 2

dTdt

& 1=/T e

dT n

dt= T e−T n

T n

Page 22: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 22

Warm up relationsHeat loads typically burden the conduction electrons, which eventually dump the heat to the nuclear spin system

Nuclei warm up as

=>

where

is the “characteristic load”, depending on the magnetic field Bf – Te ~ Tn if

dT n

dt=

QC B

=0 T n

2

V B f2 Q

T e

T n

= 10 Q

V B f2

= 1QQ n

Q n =V B f

2

0

Q ≪ Q n

Page 23: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 23

Characteristic loadBf = 50 mT

For example nCu = 100 mol => 0.7 µW κCu = 1.2 sK

For constant Tn–1 decreases linearly:

and so does Te–1

Q n =V B f

2

0≈

Q

dT n−1

dt=−

0 Q

V B f2 =−

Q Q n

dT e−1

dt=

Q n

QQ n

dT e−1

dt=−

Q QQ n

{

Page 24: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 24

Warm up curves

Page 25: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 25

Lowest possible Te

Conduction electron temperature cannot be made arbitrarily low

=>

Bi, Ti = 8 T, 5 mK

This is at minimum, when dQ/dt = 0.1 nW/mol

Here Te, f = 2 Tn, f

This is impractically low field for most purposesTo maintain more heat capacity, field is usually kept larger(mind also that b = 0.34 mT for Cu)

T e , f

T n , f

= 10 Q

V B f2

T n , f = T i

B f

Bi

{ T e , f =T i

Bi

B f 0 Q

V

1B f

B f = 0 Q

V i.e. Q n = Q

Page 26: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 26

Heat leaksSuccess or failure of nuclear demag is determined by heat leaks ...

• thermal conduction (support, electric leads, heat switch, ...)– thermal anchoring is crucial

• thermal radiation (radiation shield at T < 1 K)• remnant gas in vacuum space (pHe < 10–10 Pa)• mechanical motion (pumps, boiling fluids, people, traffic, ...)

– big mass (several tons)– flexible support (air springs, soft tubing, rubber fittings, ...)

• radioactivity & cosmic radiation• electric and magnetic interference

– passive & active shielding, filtering• internal time-dependent heat leaks (e.g. H2 ortho-para conversion)

Page 27: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 27

Cryostat support

Typically one achieves 10 ... 50 pW/mol(best cases 5 ... 10 pW/mol)

Page 28: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 28

Double nuclear demagnetization

Page 29: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 29

Helsinki cryostat

Page 30: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 30

Refrigerating heliumLancasterdesign: NS inside helium cell toovercomeenormousKapitzaresistancebetweenliquid He& metalcoolant

Page 31: Adiabatic Demagnetization Refrigeration - Aaltocryocourse2016.aalto.fi/.../Tuoriniemi-Demagnetization.pdf · 2016-09-28 · Cryocourse 2016 / Aalto University / Demagnetization refrigeration

Cryocourse 2016 / Aalto University / Demagnetization refrigeration - J. Tuoriniemi 31

Low-temperature recordsRecord-low temperatures have been achieved by operating two nuclear demagnetization stages in cascade

Lowest nuclear spin temperatures:– silver ~ 500 pK (Helsinki 1991)– rhodium ~ 100 pK (Helsinki 1999)

Lowest conduction electron temperatures:– platinum ~ 2 µK (Bayreuth 1996)– copper ~ 5 µK (Lancaster 1999)