ADG08

29
Problem Our approach Example Future work Closed formulae for distance functions involving ellipses. F. Etayo 1 , L. Gonzalez-Vega 1 , G. R. Quintana 1 , W. Wang 2 1 Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria 2 Department of Computer Science University of Hong Kong VII International Workshop on Automated Deduction in Geometry F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

description

Presentation at the conference ADG in Shanhai, China, in 2008

Transcript of ADG08

Page 1: ADG08

ProblemOur approach

ExampleFuture work

Closed formulae for distance functionsinvolving ellipses.

F. Etayo1, L. Gonzalez-Vega1, G. R. Quintana1, W. Wang2

1Departamento de Matemáticas, Estadística y ComputaciónUniversidad de Cantabria

2Department of Computer ScienceUniversity of Hong Kong

VII International Workshop on Automated Deduction inGeometry

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 2: ADG08

ProblemOur approach

ExampleFuture work

Contents

1 Problem

2 Our approach

3 Example

4 Future work

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 3: ADG08

ProblemOur approach

ExampleFuture work

Introduction

We want to compute the distance between two coplanarellipses.

The minimum distance between a given point and one ellipse isa positive algebraic number: our goal is to determine apolynomial with this number as a real root.

This way of presenting the distance is independent of thecorresponding footpoints and provides the distance directly. Wecan use this formula for analyzing the Ellipses Moving Problem(EMP).

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 4: ADG08

ProblemOur approach

ExampleFuture work

Applications

The computation of the minimum distance between two ellipses(static or dynamic) is a fundamental task in variousapplications:

collision detection in robotics,interference avoidance in CAD/CAM,interactions in virtual reality,computer games,orbit analysis (non-coplanar ellipses),interference analysis of molecules in computationalphysics and chemistry,etc.

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 5: ADG08

ProblemOur approach

ExampleFuture work

Previous works

I. Z. EMIRIS, E. TSIGARIDAS, G. M. TZOUMAS. Thepredicates for the Voronoi diagram of ellipses. Proc. ACMSymp. Comput. Geom., 2006.I. Z. EMIRIS, G. M. TZOUMAS. A Real-time and ExactImplementation of the predicates for the Voronoi Diagramfor parametric ellipses. Proc. ACM Symp. Solid PhysicalModelling, 2007.C. LENNERZ, E. SCHÖMER. Efficient DistanceComputation for Quadratic Curves and Surfaces.Geometric Modelling and Processing Proceedings, 2002.

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 6: ADG08

ProblemOur approach

ExampleFuture work

Previous works

J.-K. SEONG, D. E. JOHNSON, E. COHEN. A HigherDimensional Formulation for Robust and InteractiveDistance Queries. Proc. ACM Solid and PhysicalModeling, 2006.K.A. SOHN, B. JÜTTLER, M.S. KIM, W. WANG.Computing the Distance Between Two Surfaces via LineGeometry. Proc. Tenth Pacific Conference on ComputerGraphics and Applications, 236-245, IEEE Press, 2002.

Common aspect: the problem is always solved by determining,first, the footpoints and then the searched distance.

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 7: ADG08

ProblemOur approach

ExampleFuture work

Our approach

We do not make the minimum distance computation dependingon the determination of the footpoints. We study the ellipseseparation problem by analyzing the univariate polynomialproviding the distance.

Parameters of our problem: center coordinates, axes length,inclination of the axes.

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 8: ADG08

ProblemOur approach

ExampleFuture work

Our approach

We do not make the minimum distance computation dependingon the determination of the footpoints. We study the ellipseseparation problem by analyzing the univariate polynomialproviding the distance.

Parameters of our problem: center coordinates, axes length,inclination of the axes.Is there any advantage?

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 9: ADG08

ProblemOur approach

ExampleFuture work

Our approach

We do not make the minimum distance computation dependingon the determination of the footpoints. We study the ellipseseparation problem by analyzing the univariate polynomialproviding the distance.

Parameters of our problem: center coordinates, axes length,inclination of the axes.Is there any advantage?

Indeed: the distance behaves continuously but footpoints donot.

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 10: ADG08

ProblemOur approach

ExampleFuture work

The distance of a point to an ellipse

We consider the parametric equations of an ellipse, ε0:

x =√a cos t, y =

√b sin t, t ∈ [0, 2π)

in order to construct a function fd whose minimum positivevalue, d, gives the square of the distance between a point(x0, y0) and the ellipse:

fd := (x0 −√a cos t)2 + (y0 −

√b sin t)2 − d

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 11: ADG08

ProblemOur approach

ExampleFuture work

The distance of a point to an ellipse

We want to solve a system of equations:fd(t) = 0

∂fd

∂t(t) = 0

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 12: ADG08

ProblemOur approach

ExampleFuture work

The distance of a point to an ellipse

We want to solve a system of equations:fd(t) = 0

∂fd

∂t(t) = 0

There are two posibilities:rational change of variablecomplex change of variable

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 13: ADG08

ProblemOur approach

ExampleFuture work

The distance of a point to an ellipse

Rational change of variable:

cos t = 1−t21+t2

sin t = 2t1+t2

Disadvantage: more complicated.

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 14: ADG08

ProblemOur approach

ExampleFuture work

The distance of a point to an ellipse

Rational change of variable:

cos t = 1−t21+t2

sin t = 2t1+t2

Disadvantage: more complicated.

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 15: ADG08

ProblemOur approach

ExampleFuture work

The distance of a point to an ellipse

Since z = cos t+ i sin t, z = 1z and we can use the complex

change of variable:

sin t = z− 1z

2i

cos t = z+ 1z

2

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 16: ADG08

ProblemOur approach

ExampleFuture work

The distance of a point to an ellipse

The new system:

(b− a)z4 + 2(x0

√a− iy0

√b)z3 − 2(x0

√a+ iy0

√b)z + a− b = 0

(b− a)z4 − 4(x0√a− iy0

√b)z3 − 2(2(x2

0 + y20 − d))z2+

+4(x0√a+ iy0

√b)z + b− a = 0

Using resultants we eliminate the variable z(and, as a by-product, i disappears).

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 17: ADG08

ProblemOur approach

ExampleFuture work

The distance of a point to an ellipse

TheoremIf d0 is the distance of a point (x0, y0) to the ellipse ε0 withcenter (0, 0) and semiaxes of length

√a and

√b then d = d2

0 isthe smallest nonnegative real root of the polynomial F [x0,y0]

[a,b] (d).

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 18: ADG08

ProblemOur approach

ExampleFuture work

F[x0,y0][a,b] (d) =

= (a− b)2d4 + 2(a− b)(b2 + 2x20b+ y2

0b− 2ay20 − a2 − x2

0a)d3

+(y40b

2 − 8y20ba

2 − 6b2a2 + 6a3y20 − 2x2

0a3 + a4 + 6x2

0y20b

2 − 2y20b

3

+6y40a

2 + 4x20a

2b+ 2b3a+ 6x20y

20a

2 + 2a3b− 6x40ab+ 4y2

0b2a

+6x40b

2 + 4x40a

2 + 6b3x20 − 10x2

0y20ab+ b4 − 8x2

0ab2 − 6y4

0ab)d2

−2(ab4 + y40 − a2b3 + a4b+ 2y6

0a2 + 2b2x6

0 − a3b2 − bx20ay

40

−bx40ay

20 + 3x2

0ay20b

2 + 3x20a

2y20b− by6

0a+ b2y40x

20 + 3x4

0b3

+3y40a

3 + x20b

4 + x40a

2y20 − bx6

0a− 5x40ab

2 + 3b2y20x

40 + 3y4

0ab2

−2x20a

3u20 + 3x4

0a2b+ 3x2

0b2y2

0 − 2x20ab

3 − 2y20a

3b− 3y20ab

3

−3x20a

3b− 2x20b

3y20 − 5y4

0a2b+ 4x2

0a2b2 + 4y2

0a2b2)d

+(x40 + 2x2

0b+ b2 − 2x20a− 2ba+ a2 + y4

0 + 2x20y

20 − 2y2

0b+ 2ay20)·

(bx20 + ay2

0 − ba)2 ==∑4k=0 h

[a,b]k (x0, y0)dk

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 19: ADG08

ProblemOur approach

ExampleFuture work

Remarks to the theorem

The biggest real root of F [x0,y0][a,b] (d) is the square of the

maximum distance between (x0, y0) and the points in ε0.If x0 is a focus of ε0

F[√a−b,0]

[a,b] (d) = (a− b)2d2(d2 + 2(b− 2a)d+ b2)⇒ d = (

√a−√a− b)2, (

√a+√a− b)2

In the case of a circle a = b = R2 and if d = d20

F[√

a−b,0][a,b]

(d20) = R4(y20 + x20)2·

· (d20 + 2Rd0 +R2 − y20 − x20)(d20 − 2Rd0 +R2 − y20 − x2

0)

⇒ d0 =

∣∣∣∣R−√y20 + x20

∣∣∣∣

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 20: ADG08

ProblemOur approach

ExampleFuture work

The distance between two ellipses

Let ε1 be an ellipse disjoint with ε0, presented by theparametrization x = α(s), y = β(s), s ∈ [0, 2π). Then

d(ε0, ε1) = min{√

(x1 − x0)2 + (y1 − y0)2 : (xi, yi) ∈ εi, i = 1, 2}

is the square root of the smallest nonnegative real root ofthe family of univariate polynomials F

[α(s),β(s)][a,b] (d).

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 21: ADG08

ProblemOur approach

ExampleFuture work

The distance between two ellipses

In order to determine d(ε0, ε1) we are analyzing two posibilities:d is determined as the smallest positive real number s.t.there exist s ∈ [0, 2π) solving{

F[α(s),β(s)][a,b] =

∑4k=0 h

[a,b]k (α(s), β(s))dk = 0

F̄[α(s),β(s)][a,b] :=

∑4k=0

∂∂sh

[a,b]k (α(s), β(s))dk = 0

d is determined by analyzing the implicit curveF

[α(s),β(s)][a,b] = 0.

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 22: ADG08

ProblemOur approach

ExampleFuture work

First case

Since α(s) and β(s) are linear forms on cos(s) and sin(s) thisquestion is converted into an algebraic problem in the sameway we have proceeded in the case point-ellipse, by performingthe change of variable

cos s =12

(w +

1w

), sin s =

12i

(w − 1

w

)and then using resultants to eliminate w.We obtain a univariate polynomial of degree 60, Gε1ε0 , whosesmallest positive real root is the square of d(ε0, ε1).Gε1ε0 depends polynomially on the parameters of ε0 and ε1.

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 23: ADG08

ProblemOur approach

ExampleFuture work

Second case

d is determined by analyzing the implicit curve F [α(s),β(s)][a,b] = 0 in

the region d ≥ 0 and s ∈ [0, 2π). In order to aply the algorithmby L. GONZALEZ-VEGA, I. NÉCULA, Efficient topologydetermination of implicitly defined algebraic plane curves.Computer Aided Geometric Design, 19: 719-743, 2002, we usethe change of coordinates:

cos s =1− u2

1 + u2sin s =

2u1 + u2

and the real algebraic plane curve F [α(s),β(s)][a,b] = 0 is analyzed in

d ≥ 0, u ∈ R.

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 24: ADG08

ProblemOur approach

ExampleFuture work

Example

We consider ε0 and ε1. ε0 with center (0, 0) and semi-axes oflength 3 and 2. ε1 centered in (2,−3) and with semi-axes,parallel to the coordinate axes, of length 2 and 1.

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 25: ADG08

ProblemOur approach

ExampleFuture work

Example

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 26: ADG08

ProblemOur approach

ExampleFuture work

Example

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 27: ADG08

ProblemOur approach

ExampleFuture work

Example

In this case the minimum distance is given by computing thereal roots of the polynomial:

Gε1ε0

(d) = k1d4(d12−216d11+...)(d2−54d+1053)2(d2−52d+1700)2(k2d

12+k3d11+...)3

where ki are real numbers.

The non multiple factor of degree 12 is the one providingthe smallest and the biggest nonnegative real roots ofGε1ε0

(d). It is not still clear if this pattern appears in ageneral way.

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 28: ADG08

ProblemOur approach

ExampleFuture work

Future work

Continue studying the continuous motion case.Generalize to ellipsoids.Non-coplanar ellipses.Other conics.

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008

Page 29: ADG08

ProblemOur approach

ExampleFuture work

Thank you!

F. Etayo, L. Gonzalez-Vega, G. R. Quintana, W. Wang ADG 2008