Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery...

download Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery Equivalent Circuit Model_2014

of 10

Transcript of Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery...

  • 8/12/2019 Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery Equivalent Circui

    1/10

    Computers and Chemical Engineering 64 (2014) 114123

    Contents lists available at ScienceDirect

    Computers and Chemical Engineering

    journal homepage: www.elsevier .com/ locate /compchemeng

    Adaptive gain sliding mode observer for state ofcharge estimation

    based on combined battery equivalent circuit model

    Xiaopeng Chen, Weixiang Shen, Zhenwei Cao, Ajay Kapoor

    Faculty of Science, Engineering and Technology, SwinburneUniversity of Technology, Hawthorn, Victoria 3122,Australia

    a r t i c l e i n f o

    Article history:

    Received 3 February 2013

    Received in revised form 8 February 2014Accepted 16 February 2014

    Available online 22 February 2014

    Keywords:

    Adaptive gain sliding mode observer

    Battery management system

    Combined battery equivalent circuit model

    Electric vehicle

    Lithium-polymer battery

    State of charge

    a b s t r a c t

    An adaptive gain sliding mode observer (AGSMO) for battery state ofcharge (SOC) estimation based on a

    combined battery equivalent circuit model (CBECM) is presented. The error convergence of the AGSMO

    for the SOC estimation is proved by Lyapunov stability theory. Comparing with conventional sliding

    mode observers for the SOC estimation, the AGSMO can minimise chattering levels and improve the

    accuracy by adaptively adjusting switching gains to compensate modelling errors. To design the AGSMO

    for the SOC estimation, the state equations ofthe CBECM are derived to capture dynamics ofa battery. A

    lithium-polymer battery (LiPB) is used to conduct experiments for extracting parameters ofthe CBECM

    and verifying the effectiveness ofthe proposed AGSMO for the SOC estimation.

    2014 Elsevier Ltd. All rights reserved.

    1. Introduction

    In recent decades, the progressive increase of petrol costs and

    air pollution of the exhaust fumes from petrol-driven vehicles has

    stimulated a surge of research and innovation in electric vehi-

    cle (EV) technologies. Lithium-ion or lithium-polymer batteries

    (LiPBs) have been adopted as primary power sources in EVs due

    to their merits in high power and energy densities, high operating

    voltages, extremely low self-discharge rate and long cycle life in

    the comparison with other types of batteries such as lead-acid or

    nickel-metal hydride batteries. For the application of the batter-

    ies in EVs, the state of charge (SOC) is one of the key parameters

    which corresponds to the amount of residual available capacity, its

    accurate indication is crucial for optimising battery energy utilisa-

    tion, informing drivers the reliable EV travelling range, preventing

    batteries from over-charging or over-discharging and extend-

    ing battery life cycles. Unfortunately, the SOC cannot be directly

    measured by a sensor as it involves in complex electrochemical

    processes of a battery. An advanced algorithm is required to esti-

    mate the SOC with the aids of measurable parameters of a battery

    such as terminal voltage and current.

    A variety of the SOC estimation techniques has been reviewed

    by Piller, Perrin, and Jossen (2001) and each method has its own

    Corresponding author. Tel.: +61 3 9214 5886; fax: +61 3 9214 8264.

    E-mail addresses:[email protected](X. Chen), [email protected](W. Shen).

    advantagesin certain aspects.The ampere-hour (Ah)countingis the

    most applicable approach for the SOC indication in many commer-cial battery management systems (BMSs). It simply integrates the

    battery charge and discharge currents over time and accumulates

    errors caused by the embedded noises in current measurements.

    Furthermore, this non-model and open-loop based method has

    difficulty in determining the initial SOC value. An improved ver-

    sion of the Ah counting has exhibited better SOC estimation results

    by on-line evaluating charge and discharge efficiencies with the

    recalibration of the cell capacity (Ng, Moo, Chen, & Hsieh, 2009).

    Battery impedance measurement technique is also used for the

    SOC estimation through injecting small ac signals with a wide

    range of frequencies into a battery to detect the variationof battery

    internal impedances (Rodrigues, Munichandraiah, & Shukla, 2000).

    However, the measured impedances cannot completely model the

    dynamics of batteries in the case of large discharge current in EVs.

    Furthermore, the application of impedance spectroscopy has to be

    carried out in temperature-controlled environment that requires

    bulky and costly auxiliary equipment since the temperature signif-

    icantly affects impedance curves.

    Another category of the SOC estimation methods is based on

    black-box established on machine learning strategies, which

    includes artificial neural networks (ANNs) (Shen, 2007; Shen, Chan,

    Lo,& Chau, 2002), fuzzyneural networks (Li, Wang, Su, & Lee,2007),

    adaptive fuzzy neural networks (Chau, Wu, Chan, & Shen, 2003)

    and support vector machine (Hansen & Wang, 2005). These data-

    oriented approaches can accurately estimate the SOC without its

    http://dx.doi.org/10.1016/j.compchemeng.2014.02.015

    0098-1354/ 2014 Elsevier Ltd. All rights reserved.

    http://localhost/var/www/apps/conversion/tmp/scratch_8/dx.doi.org/10.1016/j.compchemeng.2014.02.015http://www.sciencedirect.com/science/journal/00981354http://www.elsevier.com/locate/compchemengmailto:[email protected]:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_8/dx.doi.org/10.1016/j.compchemeng.2014.02.015http://localhost/var/www/apps/conversion/tmp/scratch_8/dx.doi.org/10.1016/j.compchemeng.2014.02.015mailto:[email protected]:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2014.02.015&domain=pdfhttp://www.elsevier.com/locate/compchemenghttp://www.sciencedirect.com/science/journal/00981354http://localhost/var/www/apps/conversion/tmp/scratch_8/dx.doi.org/10.1016/j.compchemeng.2014.02.015
  • 8/12/2019 Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery Equivalent Circui

    2/10

    X. Chen et al. / Computers and Chemical Engineering 64 (2014) 114123 115

    Nomenclatures

    Cn nominal capacity of LiPB (Ah)

    Cp polarisation capacitance (F)

    eVt, eZ, eVoc, eVp estimation errors

    f1, f2, f3 system uncertainty termsRi ohmic resistance ()

    Rp polarisation resistance ()

    Z state of chargeZ estimated state of chargeVoc open circuit voltage (V)

    Voc(Z) open circuit voltage asa function ofstateof charge

    Vp polarisation voltage (V)

    Vp estimated polarisation voltage (V)

    Vt estimated battery terminal voltage (V)Vt battery terminal voltage (V)

    coulomb efficiencyi uncertainty bounds

    1, 2, 3 adaptive switching gains1,

    2,

    3 adaptive switching gains updating laws

    1, 2, 3 adaptation speed adjusting values

    accurate initial state, but they require a large amount of data to

    train ANNs, which leads to the large computation burden in the

    BMS. Moreover, the SOC estimation results would be unpredictable

    in the presence of the conditions where the current profiles in EVs

    are different from those represented by the training data.

    The Kalman filter (KF), as an optimal recursive estimator which

    is able to estimate the states of a linear dynamic system (Ristic,

    Arulampalam,& Gordon, 2004), hasbeen developedto estimate the

    SOC based on linear state space battery models (Barbarisi, Vasca, &

    Glielmo, 2006). For nonlinear battery models, the enhanced ver-

    sions of KF have been intensively investigated to achieve better

    results for on-line SOC estimation, such as extended KF (EKF) (Dai,

    Wei, Sun, Wang, & Gu, 2012; Hu, Youn, & Chung, 2012; Hu, Li, &Peng, 2012), adaptive extended KF (AEKF) (Han, Kim, & Sunwoo,

    2009), sigma-point KF (SKF) (Plett, 2006a,b) and unscented KF

    (UKF) (He, Williard, Chen, & Pecht, 2013; Zhang & Xia, 2011). The

    EKF utilises the first-order Taylor series expansion to linearise

    the nonlinear function. This local linearisation can give rise to

    large estimation errors when the degrees of nonlinearityin battery

    models are significant and the covariance of process and measure-

    ment noises is assumed to be constant. Adaptively updating the

    covariance of process and measurement noises, the AEKF has been

    developed to improve the online SOC estimation accuracy. Instead

    of local linearisation, the SKF and the UKF use an unscented trans-

    formation to approximate the probability density function of the

    nonlinear systems with a set of sample points or so-called sigma

    points. Essentially, all above-mentioned KF-based approaches arebased on the assumption that the covariance of measurement and

    process noises described by a Gaussian probability density func-

    tion has to be known a priori. Moreover, their complex matrix

    operations may result in numeric instabilities.

    The H observer based approach has also been proposed to

    estimate the SOC without the requirement of the exact statistical

    properties of the battery model (Zhang, Liu, Fang, & Wang, 2012).

    This approach minimises the errors between the outputs of the

    battery and its model so that the SOC estimation error is less than

    a given attenuation level. However, in order to tackle modelling

    errors and external disturbances, the feedback gain ofHobserver

    must be obtained by solving a linear matrix inequality, which may

    not provide the optimal solution for ensuring tracking error con-

    vergence.

    More recently, sliding mode observer (SMO) based SOC esti-

    mation methods were adopted to overcome battery model

    uncertainties, external disturbances and measurement noises with

    sufficient large switching gains (Kim, 2006; Chen, Shen, Cao, &

    Kapoor, 2012). This method relies on the exhaustive understanding

    of battery dynamics for the appropriate selection of the switching

    gains, which lead to the trade-off between the magnitude of chat-

    tering in the SOC estimation and the convergence speed to reach

    the sliding mode surface and trigger the sliding motion.

    In this paper, an adaptive gain slide mode observer (AGSMO)

    based on a combined battery equivalent circuit model (CBECM)

    has been proposed for the SOC estimation. The main advantage

    of the AGSMO is that the robust behaviour of the SOC estima-

    tion is guaranteed in the presence of the modelling errors, which

    are considered as the bounded uncertainties. This is achieved by

    dynamically adjusting the switching gain of the SMO in response

    to the tracking error while ensuring the reachability of the slid-

    ing mode surface and triggering the sliding mode. Once the sliding

    mode is activated, theswitching gain is self-tuned to an adequate

    level to counteract the modelling errors and reduce the chattering

    levels, thereby improving the SOC estimation accuracy.

    This rest of this paper is organised as follows. In Section 2, a

    CBECM is presented to model the battery dynamic behaviour. In

    Section 3, the AGSMO design methodology for estimating the SOC

    is explained. Section 4 elaborates the procedures to extract battery

    modelparameters. Section 5 validates the proposed AGSMO forthe

    SOC estimation by experimental results and Section 6 concludes.

    2. Battery modelling

    A suitable battery model is essential to the development of

    the model-based BMS in real EVs, which requires less computa-

    tion power and fast response to ever-changing road conditions.

    Many types of models are developed to capture lithium-ion bat-

    tey dynamics for various purposes (Ramadesigan et al., 2012). In

    general, they can be categorised into two main groups, which

    are electrochemical and equivalent circuit models (He, Xiong, &Fan, 2011; Hussein & Batarseh, 2011; Hu, Youn et al., 2012; Hu,

    Li et al., 2012). The electrochemical models describe the physical

    phenomena which occur inside batteries such as the material and

    charge transfer processes, ionic conduction, solid phase diffusion.

    They utilise partial differential equations with a large number of

    unknown parameters andthus a large amountof memoryrequired,

    which leads to long computation time and slow response. They are

    usually used for battery design and simulation and hardly suitable

    for the BMS design in real EVs (Smith, Rahn, & Wang, 2010).

    On the other hand, the equivalent circuit models simply consist

    of resistors, capacitors and voltage sources to form a circuit net-

    work, which leads to short computation time and quick response.

    Furthermore, they are the circuit in nature which is easily inte-

    grated into the BMS and power control in real EVs. Various batteryequivalent circuit models have been proposed to reflect dynamic

    characteristics of the battery as a result of the trade-off between

    modelling accuracy and complexity (Lee, Kim, Lee, & Cho, 2008; Cho

    et al., 2012; Chen, Gabriel, & Mora, 2006; Abu-Sharkh & Doerffel,

    2004).

    In this paper, the combined battery equivalent circuit model

    (CBECM) is used to represent the dynamical behaviors of LiPB,

    as shown in Fig. 1. A capacitor, Cn represents the nominal capac-

    ity of the battery on the left in the model. The current source, I

    denotes the discharge or charge current of the LiPB and the corre-

    sponding battery terminal voltage is expressed by Vt. The voltage

    across the Cn as the open circuit voltage (OCV), Voc varies in the

    range of the SOC,Z from 0% to 100% and it represents the SOC of

    the battery quantitatively. A resistor, Ri and a parallel-connected

  • 8/12/2019 Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery Equivalent Circui

    3/10

    116 X. Chen et al. / Computers and Chemical Engineering 64 (2014) 114123

    Fig. 1. Schematic of combined battery equivalent circuit model.

    network of the polarisation resistance, Rpand polarisation capaci-

    tance, Cpon the right are used to characterise the ohmic resistance

    and simulate the transient responses or the battery relaxation

    effect, respectively. The relaxation effect is defined as the slow

    convergence of the battery terminal voltage to the OCV at its equi-

    librium state after hours of relaxation at the end of charging or

    discharging process. It is causedby the diffusioneffect anda double-

    layerchargingor dischargingeffect in thebattery(Chenetal.,2006).

    The voltage-controlled voltage source, Voc(Z) is used to bridge the

    nonlinear relationship between the SOC and the OCV as shown

    in Fig. 2, which can be derived by fitting the experimental data

    obtained from the pulse current discharge (PCD) and pulse current

    charge (PCC) tests (for details see Section 4). The self-discharge

    resistance is ignored in this model as a LiPB has extremely low

    self-discharge rate.

    The SOC describes the ratio of the remaining capacity to the

    present maximum available capacity of a battery, and it can be

    expressed as:

    Z(t) =Z(0)

    t

    0

    I()Cn

    d (1)

    whereZ(0) is the initial SOC of the battery, I() is the instantaneouscurrent and it is assumed to be positive for discharge current and

    negative for charge current. The denotes the coulomb efficiencyand it can be normally taken one for discharging and less than or

    close to one for charging LiPB in the wide range of the current and

    the temperature.

    Fig. 2. Experimental OCVSOC curves of LiPB.

    According to Fig. 1, Vtcan be written as follows

    Vt= Voc(Z) Vp IRi (2)

    The time derivatives of polarisation voltage and the SOC yield

    Vp =VpRpCp

    +I

    Cp(3)

    Z= I

    Cn

    (4)

    where Vp is the polarisation voltages across theCp.

    Despite the nonlinearity of the OCVSOC curves as shown in

    Fig. 2, there exists a piecewise linear relationship between the OCV

    and the SOC in a certain range of the SOC indicated by the dots in

    the curves. Therefore, the OCV is expressed as a function of the SOC

    by using piecewise linearisation method

    Voc(Z) = Z+ d (5)

    where the values of and d are the constants in a certain range ofSOC. In this paper, there are one pair of and d in every 10% SOCand totally ten pairs for 0% to 100%. Thus, the time derivative ofVocin each 10% SOC segment is

    Voc(Z) = Z (6)

    Subsitituting Eq. (4) into Eq. (6) gives

    Voc(Z) =

    I

    Cn

    (7)

    Therate of changeof thecurrent during charging or discharging,

    Icanbe negligible dueto thethe fast sampling interval as explained

    as follows (Chen et al., 2012; Chiang, Sean, & Ke,2011). For instance,

    5 A h LiPB has been conducted discharge at the current of 1Cn(5A), the variation of SOC in 1s sampling period with respect to

    timeas given in Eq. (4) is dZ/dt=5/(53600) =0.00028, namely

    dZ/dt0. It shows that the current within 1s has an insignificant

    impactof theSOC,thusthe current isassumedto beconstantin each

    sampling period (e.g., one second in this paper), namely dI/dt0.

    Therefore, the time derivative ofVtin Eq. (2) with the substitutionsof Eqs. (3)(7) gives

    Vt=

    I

    Cn

    +

    VpRpCp

    I

    Cp(8)

    Solving I in Eq. (2) and substituting it into Eq. (4) as well as

    rearranging Eqs. (3)(5) result in the state-space equations of the

    CBECM as

    Vt = a1Vt+ a1Voc(Z) b1I

    Z = a2Vt a2Voc(Z) + a2Vp

    Vp = a1Vp + b2I

    (9)

    where a1 =1/(RpCp), a2 =1/(RiCn), b1 =/Cn +Ri/(RpCp)+ 1 /Cp andb

    2= 1/C

    p.

    There are two main causes for modelling errors by using the

    CBECM to represent battery behaviours. Firstly, the circuit parame-

    ters of theCBECM equationsare taken as theconstantvalues, butin

    fact they are varying with the battery SOC. Secondly, the OCVSOC

    curve is piecewise linearised. These modelling errors represented

    by the uncertainty terms,fare added to Eq. (9) as

    Vt = a1Vt+ a1Voc(Z) b1I+f1

    Z = a2Vt a2Voc(Z) + a2Vp +f2

    Vp = a1Vp + b2I+f3

    (10)

    where f1, f2and f3satisfy the following bounded conditions:

    fi < i where i=1, 2 and 3. Since the proposed SOC estimationapproach is applied to EV applications, EV driving schedules are

  • 8/12/2019 Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery Equivalent Circui

    4/10

    X. Chen et al. / Computers and Chemical Engineering 64 (2014) 114123 117

    Fig. 3. SMO based SOC estimation with conservative switching gains.

    studied to determine average discharge rates of current profiles for

    battery testing, where the average EV driving speed is equivalently

    converted to average current rates of 1/3Cn1Cn. In this paper, the

    average current rate of discharge current profiles up to 1.5Cn is

    adopted for the battery tests to ensure that the proposed dischargecurrent profiles have included the maximum possible currents for

    discharging or charging. As a result, both charge and discharge cur-

    rent rates as the inputs to the model and the battery in EVs are

    bounded andso arethe terminal voltages as the outputs. Therefore,

    the uncertainty bound, i can be determined by using the largestmodelling errorsbetweenthe LiPB andthe CBECM underthe largest

    average discharge rate of 1.5Cn.

    3. Design of adaptive gain sliding mode observer for SOC

    estimation

    Conventional SMOs with the constant switching gains for the

    SOC estimation have demonstrated the robustness to compen-

    sate modelling errors and uncertainties with the properly selectedswitchinggains (Kim, 2006; Chen et al., 2012). However, the under-

    estimated or overestimated switching gain has given rise to the

    poor tracking performance or undesired chattering phenomena in

    the SOC estimation. The SMO with a lower switching gain has no

    unwanted chattering in the SOC estimation as shown in Fig. 3, but

    its tracking performance under the randomly selected initial SOC

    is very poor with the mean square errors (MSEs) in SOC estimation

    higherthan10%. On the other hand, the SMO with a large switching

    gain has a considerable chattering aroundthe true SOC as shown in

    Fig. 4 and its tracking performance is robust with most of the MSEs

    Fig. 4. SMO based SOC estimation with large switching gains.

    bounded within 5%, but the higher magnitude of chattering ripples

    blurs the SOC estimation and affects the stability of observer.

    In order to accurately estimate the SOC, an AGSMO based on an

    equivalent control concept is proposed as follows

    Vt = a1Vt+ a1Voc(Soc) b1I+ 1sgn(eVt)

    Z = a2Vt a2Voc( Z) + a2Vp + 2sgn(eVoc)

    Vp = a1Vp + b2I+ 3sgn(eVp)

    (11)

    where Vt, Zand Vpare the estimatedVt, Zand Vp, respectively, the

    1, 2and 3 are the adaptive switching gains which are adaptedaccording to the following updating laws:

    1 = 1 |eVt| ,

    2 = 2 |eVoc|and

    3 = 3

    eVp (12)where the terms 1, 2 and 3 are positive constants that should

    be chosen suitably small so that they can ensure the adaptation

    speed of the switching gains for state errrors convergence while

    preventing the corresponding i from becoming too large andguaranteeing suitable bounded magnitude of the switching gains.

    Accordingly, the battery terminal voltage and state estimation

    errors are defined as

    eVt = Vt Vt

    eVoc = Voc(Z) Voc( Z) = (ZZ) = eZ

    eVp = Vp Vp

    (13)

    Thus, by substracting Eq. (11) from Eq. (10), the error dynamics

    of battery terminal voltage and other states are expressed as

    eVt = a1eVt+ a1eVoc+f1 1sgn(eVt)

    eZ = a2eVt a2eZ+ a2eVp +f2 2sgn(eZ)

    eVp = a1eVp +f3 3sgn(eVp)

    (14)

    where sgn() is the signum function

    sgn(eVt) =

    +1, eVt> 0

    1, eVt< 0

    Itcanbe seenfrom Eq. (14) that if the switching gain 1is prop-erly adjusted so that a sliding mode motion can be induced on the

    terminal voltage errorstate in Eq. (14). The asymptotic convergence

    of the terminal voltage error can be proved by Lyapunov stability

    theory via choosing the candidate of Lyapunov function as follows

    V1 =1

    2(e2Vt+

    11

    21) (15)

    where 1 = 1 1and since the SOC operation range of the LiPB

    is varying from 0 to 1, as can been seen in Fig. 2, the SOC esti-

    mation error is bounded as |ez| < 1 and the Voc is also bounded as

    |eVoc| =Voc(Z) Voc( Z) = (ZZ) < || |eZ|< || , and the time

    derivative of the candidate of Lyapunov function V1results in

    V1 = eVteVt+ 11 1

    1 = eVt[a1eVt+ a1eVoc+f1 1sgn(eVt)]

    +11 (1 1)

    1 = [a1e

    2Vt+ a1eVteVoc+ eVtf1

    1 |eVt|]

    + (1 1) |eVt| = a1e2Vt+ a1eVteVoc+ eVtf1

    1 |eVt|< a1 |eVt| |eVoc| + |eVt|f1

    1 |eVt| = |eVt| (a1 |eVoc| +f11) (16)

    There exists an unknown finite non-negative switching gain

    1such that 1> a1 |eVoc| + 1, leading to V1< 0, which satisfies

  • 8/12/2019 Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery Equivalent Circui

    5/10

    118 X. Chen et al. / Computers and Chemical Engineering 64 (2014) 114123

    Fig. 5. Testing platform of LiPB.

    the second method of Lyapunov stability theory. Thus, the termi-

    nal voltage error as the sliding variable in Eq. (14) asymptotically

    converges to zero as time tends to infinity. In other words, the

    sliding surface is reached during the sliding motion as the slid-

    ing variable is equal to zero, where the sliding surface is defined as

    S= {eVt= 0}. Once the sliding surface is reached, the sliding modewould be induced to ensure eVt(t) = eVt(t) = 0 and the influence

    of the bounded uncertainty term f1 is compensated. Accordingto the equivalent control concept (Edwards & Spurgeon, 1994), the

    unmeasurable SOC error can be derived by solving Eq. (14) in terms

    of1sgn(eVt) after inserting zeros foreVtand eVt

    eZ=

    1a1

    sgn(eVt)

    eq

    (17)

    Similarly, the SOC error in Eq. (14) asymptotically converges to

    zero as time tends to infinity. After eZ= 0 and eZ= 0, the influence

    of the bounded uncertainty term f2 is compensated. Finally, theVperror equation can be derived from Eq. (14) as follows

    eVp =

    2a2

    sgn

    1a1

    sgn(eVt)

    eq

    eq

    (18)

    Eqs. (17) and (18) are substituted into Eq. (14), a set of the

    AGSMO equations based on the equivalent control concept is

    obtainedVt= a1Vt+ a1Voc( Z) b1I+ 1sgn(eVt)

    Z= a2Vt a2Voc( Z)+ a2Vp + 2sgn

    1a1

    sgn(eVt)

    eq

    Vp=a1Vp + b2I+ 3sgn

    2a2

    sgn

    1a1

    sgn(eVt)

    eq

    eq

    (19)

    From Eq. (19), it is worth mentioning that the proposed AGSMO

    has no requirement for the detailed knowledge of modelling errorsas long as they are bounded whereas the KF based approaches

    require the covariance values of the process and measurement

    noises. These covariance values are determined either by the

    time-consuming trial-and-error method or by the recursive iden-

    tification method. Since a priori knowledge of the noise statistical

    properties is normally unknown, the former may cause the large

    SOC estimation errorwith slowconvergence if inappropriatevalues

    of the noise covariance were used and the latter increases compu-

    tational complexity.

    4. Battery model parameters determination

    The component values of the CBECM in Fig. 1 are obtained

    from the transient-response method via an experiment of the PCD

    profile at room temperature. A LiPB is used in the test and it has

    a nominal capacity of 5.0Ah and a nominal voltage of 3.8V. The

    dimension of the cell is 135mm50mm9mm and the weight

    of the cell is 130 g. A battery testing platform as illustrated in Fig. 5

    is constructed to perform the experiments, and it consists of pro-

    grammable power supply (Sorensen DLM50-60), electronic load(Prodigit 3320) and switches safety box. The testing platform can

    control charging/discharging battery, sample experimental data

    and store the data into the PC via a graphic user interface program

    designed by using the LABVIEW software.

    The nonlinear relationship between battery OCV and SOC has

    been identified by performing PCD and PCC tests on the LiPB. For

    discharge test, the PCD is comprised of a sequence of pulse current

    with 6-min discharge and 1-h rest to allow the battery to return

    to its equilibrium state before running the next cycle as shown in

    Fig. 6. The discharge current of 5.0 A is used, which corresponds to

    1Cnrate. For the fully charged LiPB (Z= 100%), each pulse discharge

    approximates10% of nominal capacity equivalent to 10%of theSOC

    reduction, andthe procedureof the pulse discharge andrecovery is

    repeated until the battery is fully discharged to the cut-off voltage

    of 2.7 V (Z=0%). For charge test, the PCC is similar tothe PCD test, a

    fully discharged LiPB has been charged from 0% to 10% SOC at the

    Fig. 6. Pulse current discharge and correspondingterminal voltage.

  • 8/12/2019 Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery Equivalent Circui

    6/10

    X. Chen et al. / Computers and Chemical Engineering 64 (2014) 114123 119

    Table 1

    Parameters of CBECM and fitting errorsextracted from thePCD profile.

    No. of set p (s) Ri(m) Rp (m) Cp (kF) MSEs

    1 48.52 102.3 5.5 8.822 1.2321%

    2 83.94 102.7 7.4 11.343 1.4641%

    3 319.2 103.1 8.5 37.553 5.8081%

    4 157.5 103.2 5.0 31.50 3.0625%

    5 45.09 103.2 4.1 10.998 0.8281%

    6 71.08 103.3 5.1 13.937 1.1664%

    7 107.9 103.6 4.6 23.457 1.6384%8 121.8 103.7 4.1 29.71 2.1316%

    9 252.3 103.5 6.5 38.554 6.4009%

    10 436.3 105.8 20.4 21.387 0.4624%

    recommended 0.5Cnrate, followed by 1-h rest, and this process is

    repeated until the battery reaches 100% SOC. Fig. 2 shows the mea-

    sured OCVat differentSOCs during dischargeand charge processes.

    It canbe observed that theOCV of charging process is alwayshigher

    thanthat of the dischargingprocess,which accounts for a hysteresis

    phenomenon between two OCV-SOC curves during the discharge

    and charge, respectively. In fact, the hysteresis effect is correlated

    with the relaxation effect due to lithium ion diffusion inside the

    LiPB and the level of hysteresis is decreasing with the longer rest

    period. Forthe consideration of hysteresis effect, theOCV as a func-tion of SOC is defined as the average OCV values between charging

    and discharging curves as shown in the blue dashed line in Fig. 2.

    The circuit model parameters are extracted based on the PCD as

    shown in Fig. 6. The corresponding terminal voltage response after

    each 10% SOC discharge is also illustrated in Fig. 6. It can be seen

    that totally ten sets of transient response in terminal voltage have

    been generated to determine circuit parameters corresponding to

    each discharge pulse and thus the ten sets of circuit parameters

    are identified. Table 1 summarises those parameters and the cor-

    responding fitting errors represented by MSEs. Since the ninth set

    of circuit parameters causes the largest model error, it is used to

    determine the parameters in Eq. (9).

    The transient response of theterminalvoltage at theninth pulse

    current dischargeindicated by a redcircle in Fig.6 is used to extract

    the circuit parameters, where the circled section is magnified in

    Fig.7. It canbe seen that when thebatterystops discharging theter-

    minal voltage has a steep rise as the voltage drop across the ohmic

    Fig. 7. Transientresponseof LiPB and circuit model at thecircled PCD.

    resistance Ri disappears immediately, so the ohmic resistance can

    be calculated by

    Ri =VtI

    (20)

    whereVtis thechangeof thevoltage acrossRiat theinstant whenthe discharge current Idisappears.

    During the time interval (t0 t t1), the terminal voltage

    increases exponentially as it slowly converges to the OCV, namely

    Voc(t1). This battery terminal voltage is driven by thedynamic char-

    acteristics of the battery and can be found by setting discharge

    current to zero in Eqs. (2) and (3), then solving the differential

    equations gives

    Vt(t) = Voc(t1) Vp exp

    t

    p

    (21)

    where p is the time constant for the polarisation voltage duringtransient response, Voc(t1) is the OCV after a full relaxation and Vpis the voltage of the polarisation capacitor and its value equals to

    Voc(t0).

    In order to identify model parameters, a curve fitting technique

    as a nonlinear least square algorithm is applied to search for the

    best fitting values which lead to the least fitting errors betweenthe measured voltages and the voltages fitted by the exponential

    function, f(t) =V1 V2exp(t). The coefficients V1, V2 and aftercurving fitting can be used to determine the CBECM parameters

    such as Voc(t1) =V1, Vp =Voc(t0) =V2and p = 1/.By using the time intervalt= (t1 t0) andrearranging Eq. (21),

    the following equations are derived to calcualte the circuit param-

    eters

    Rp =Vp

    (1 exp(t/p)I (22)

    Cp =pRp

    (23)

    From Eq. (21), it can be seen that as time t increases or tends

    to infinity the terminal voltage would be equal to the open cir-cuit voltage and the battery relaxation effect disappears. With

    the parameters calculated by Eqs. (21)(23), the voltage transient

    response represented by the fitting function is replotted in Fig. 7

    in the red dash line and it can approximately match the measured

    voltage.

    To verifythe accuracy of the extractedparameters, the PCDpro-

    fileis applied tothe CBECMwith theparameterscalculatedfromthe

    ninth pulse current discharge again. Fig. 8 shows the terminal vol-

    tages of the battery and the CBECM as well as their corresponding

    modelling errors represented by MSEs within 0.4%.

    5. Verification of AGSMO for SOC estimation

    The configuration of the AGSMO for the SOC estimation is illus-trated in Fig. 9, where the properly defined current profiles are

    simultaneously applied to the LiPB module, the Ah counting mod-

    ule and the AGSMO module. The LiPB terminal voltage is sampled

    and fed into the AGSMO to generate the voltage tracking error,

    which can be used to update the corresponding swiching gains of

    the AGSMO to compenstate the modelling errors. The outputof the

    AGSMO module is the estimated SOC, which is concurrently com-

    pared to thetrue SOCdirectlygenerated by theAh counting module

    to demostrate the accuracy of the SOC estimation.

    To validate the effectiveness and robustness of the AGSMO for

    the SOC estimation, three types of current profiles with different

    discharge rates have been conducted on the LiPB at room temper-

    ature. As the battery is fully charged, the initial SOC of the LiPB is

    set to 100% at the beginning of discharging process.

  • 8/12/2019 Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery Equivalent Circui

    7/10

    120 X. Chen et al. / Computers and Chemical Engineering 64 (2014) 114123

    Fig. 8. Terminal voltage of LiPB and CBECMand MSE in the PCD profile of1Cn.

    The testing data are obtained by using the constant current dis-

    charge (CCD) profile with discharge rates of 1/3Cn, 1Cn and 1.5Cn,

    namely 1.67A, 5A, and 7.5A. The positive contants are selected

    to satisfy the adaptation speed for the switching gains, they are

    1 =0.5, 2 =0.3 and 3 =0.1. The initial SOC is also set to the ran-dom value away from the true value. The proposed AGSMO is used

    to estimate theterminalvoltage andthe SOCfor differentdischarge

    rates, as an example, the results of the CCD with 1 C discharge rate

    are shown in Figs. 10 and 11, respectively. It can be seen that they

    can track the true bateryterminal voltage and the true SOC with no

    chattering ripples. The SOC tracking MSEs are all within the small

    range of 5% after a few seconds, which shows that the proposed

    SOC observer is capable of tracking the true SOC accurately in thepresence of the incorrect initial SOC. This is due to the fact that

    the switching gains are adjusted to the appropriate levels as the

    corresponding errors decrease.

    The testing data are obtained by using the variable current dis-

    charge(VCD) profilewith thesame average dischargeratesas those

    of theCCD profile. The proposed AGSMO is used to estimate theter-

    minal voltage andthe SOC forthe VCD profile in different discharge

    rates. As an illustration, the results of terminal voltage and the SOC

    of the VCD with the average discharge rate of 1Cn are shown in

    Figs. 12 and 13, respectively. It can be seen that the AGSMO has

    Fig. 10. Terminal voltage of LiPB and AGSMOand MSE in the CCD profile of 1Cn.

    peformed great robustness and capability to track the battery ter-

    minalvoltage andthetrue SOCregardless ofan incorrectinitialSOC.

    TheSOC estimation MSEs areboundedin therangeof 5% for1090%

    of SOC with minor chattering ripples. Again, this is due to the factthat the switching gains are adaptively adjusted to adequate levels

    against the tracking errors calculated by Eq. (12).

    Inorderto demonstratethe SOCestimationbasedon theAGSMO

    superior to the conventional SMO with the consideration of hys-

    teresis effect, the urban dynamometer driving schedule (UDDS)test

    with corresponding current profile in Fig. 14 has been conducted

    on the LiPB. The UDDS test is a typical dynamic driving cycle,which

    is usually used to evaluate the vehicle performance. As shown in

    Fig. 14, the UDDS cycle as speed versus time has been converted

    to current versus time with respect to the capacity of 5Ah LiPB

    Fig. 9. Configuration of proposed AGSMO system.

  • 8/12/2019 Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery Equivalent Circui

    8/10

    X. Chen et al. / Computers and Chemical Engineering 64 (2014) 114123 121

    Fig. 11. True and AGSMO estimated SOCand SOC MSE in the CCD profile of 1Cn.

    through the EV simulation. The negative current during the decel-

    eration and braking of the EVs represents regenerative energy to

    charge LiPB. The current profile of the UDDS is loaded to the LiPB

    until the battery reaches its cut-off voltage of 2.7 V and the results

    are shown in Fig. 15. The same current profile is also loaded to the

    proposed AGSMO is used to estimate the battery terminal voltage

    and the SOC.As shown in Figs. 15and16, theAGSMO isable totrack

    the battery terminal voltage and true SOC with incorrect initial

    Fig. 12. Terminal voltage of LiPB and AGSMO and MSE in the VCD profile of 1Cn.

    Fig. 13. True and AGSMOestimated SOC and SOCMSE in the VCD profile of1Cn.

    values. It can also achieve fast SOC convergence with minor chat-tering ripples. The AGSMO has compared with the conventional

    SMO with the constant switching gains for the SOC estimation

    (Kim, 2006; Chen et al., 2012), the MSEs of the SOC estimation

    for each type of current profile with different discharge rates

    are summarised in Table 2. It can be seen that the MSEs of the

    SOC estimation based on the AGSMO is always lower than those

    based on the conventional SMO approach. Therefore, the proposed

    AGSMO can provide more robustand accurate SOC estimation than

    Fig. 14. One UDDS cycle with correspondingcurrent profile.

    Table 2

    MSEs of SOC estimation based SMO and AGSMO in different current profiles.

    Current profile SMO SOC estimation

    MSEs (%)

    AGSMO SOC estimation

    MSEs (%)

    CCD 1.5Cn 8.364 3.676

    CCD 1Cn 7.523 2.583

    CCD 1/3Cn 6.362 2.204

    VCD 1.5Cn 9.364 3.432

    VCD 1Cn 8.438 2.318

    VCD 1/3Cn 7.238 2.069

    UDDS 8.152 2.573

  • 8/12/2019 Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery Equivalent Circui

    9/10

    122 X. Chen et al. / Computers and Chemical Engineering 64 (2014) 114123

    Fig. 15. Terminal voltage of LiPB and AGSMO and MSE in theUDDS profile.

    conventional SMO-based approach. Furthermore, the proposed

    AGSMO has compared with the EKF, which is one of popular KF

    based approaches. Fig. 17 illustrates the EKF based SOC estimation

    results in the UDDS current profile. It can be observed that the EKF

    based approach has large estimation errors with slow convergence

    in thecomparison with theproposedAGSMOapproachas shown in

    Fig. 16, which demonstrates that the proposed AGSMO can provide

    robust tracking capability against modelling errors and incorrect

    initial states.

    Fig. 16. True and AGSMO estimated SOC and SOC MSE in the UDDS profile.

    Fig. 17. True and EKFestimated SOC and SOC MSE in theUDDS profile.

    6. Conclusions

    The adaptive gain sliding mode observer (AGSMO) for the SOC

    estimation basedon the combined battery equivalentcircuit model

    (CBEDM) has been presented. The system state equations for the

    AGSMO are derived from the CBEDM using equivalent control

    concepts. The LiPB is utilised to conduct the experiments. The

    parameters of theCBEDMare extractedfromthe experimentaldata

    under a sequence of pulse current discharge. Theexperimental data

    of the LiPB in constant current and variable current discharges are

    used to verify the performance and effectiveness of the proposed

    observer forthe SOCestimation.It shows that theproposed AGSMO

    has outperformed conventional SMO forSOC estimation of the LiPB

    in terms of robust tracking capability with less chattering ripples

    and high estimation accuracy.

    Acknowledgment

    This research work is supportedby Commonwealthof Australia,

    through the Cooperative Research Centre for Advanced Automotive

    Technology (AutoCRC),under the project of Electric Vehicle Control

    Systems and Power Management (C2-801).

    References

    Abu-Sharkh, S., & Doerffel, D. (2004). Rapid test and nonlinear model characteri-sation of solid-state lithium-ion batteries. Journal of Power Sources, 130(12),266274.

    Barbarisi, O., Vasca, F., & Glielmo, L. (2006). State of charge Kalman filter estimatorfor automotive batteries. Control Engineering Practice, 14(3), 267275.

    C hau, K. T., Wu, K. C., Chan, C. C., & Shen, W. X. (2003). A new battery capacityindicatorfor nickel-metal hydridebattery poweredelectricvehicles using adap-tive neuro-fuzzy inference system. Energy Conversion andManagement, 44(13),20592071.

    Chen, M., Gabriel, A.,& Mora, R. (2006). Accurate electrical battery model capable ofpredicting runtimeand IV performance.IEEETransactionson EnergyConversion,21(2), 504511.

    Chen, X. P., Shen, W. X., Cao, Z. W., & Kapoor, A. (2012). Sliding mode observer forstateof charge estimationbasedon batteryequivalentcircuitin electricvehicles.Australian Journal of Electrical and Electronics Engineering, 9(3), 225234.

    Chiang, Y. H.,Sean, W. Y., & Ke, J. C.(2011). Online estimation of internal resistanceand open-circuit voltage of lithium-ion batteries in electric vehicles.Journal ofPower Sources, 196(8), 39213932.

    Cho, S. W., Jeong, H. S., Han, C. H., Jin, S. S., Lim, J. H., & Oh, J. K. (2012). State-of-charge estimation for lithium-ion batteries under various operating conditionsusing an equivalent circuit model. Computers and Chemical Engineering, 41(11),

    19.

    http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0035http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0030http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0025http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0020http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0015http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0010http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0005
  • 8/12/2019 Adaptive Gain Sliding Mode Observer for State of Charge Estimation Based on Combined Battery Equivalent Circui

    10/10

    X. Chen et al. / Computers and Chemical Engineering 64 (2014) 114123 123

    Dai, H. F ., We i, X. Z ., Su n, Z. C ., Wang, J . Y ., & Gu, W.J. (2012). Online cell SOC esti-mation of Li-ion battery packs using a dual time-scale Kalman filtering for EVapplications.Applied Energy, 95, 227237.

    Edwards,C., & Spurgeon, S. (1994). On the development of discontinuous observers.International Journal of Control, 59(5), 12111229.

    Han, J. Y.,Kim,D. C.,& Sunwoo, M. H. (2009). State-of-charge estimationof lead-acidbatteries using an adaptive extended Kalman filter. Journal of Power Sources,188(2), 606612.

    Hansen, T., & Wang, C. J. (2005). Support vector based battery state of charge esti-mator.Journal of Power Sources, 141(2), 351358.

    He, W., Williard, N. , Che n, C. C ., & Pe cht , M. (2013). State of charge estimation

    for electric vehicle batteries using unscented kalman filtering. MicroelectronicsReliability, 53(6), 840847.

    He, H. W., Xiong, R., & Fan, J. X. (2011). Evaluation of lithium-ion battery equiva-lent circuit modelsfor state of chargeestimation by an experimental approach.Energies, 4(4), 582598.

    Hu, D.,Youn,B. D.,& Chung, J.(2012).A multiscaleframeworkwith extendedKalmanfilter for lithium-ion battery SOC and capacity estimation. Applied Energy, 92,694704.

    Hussein,H. A. H.,& Batarseh,I. (2011). An overviewof generic battery models. In InProceedings of IEEEpower andenergy society general meetingDetroit, MI, USA.

    Hu, X.S.,Li,S. B., & Peng, H.(2012).A comparative study of equivalent circuit modelsfor Li-ion batteries.Journal of Power Sources, 198(15), 359367.

    Kim, I. S. (2006). The novel state of charge estimation method for lithium batteryusing sliding mode observer.Journal of Power Sources, 163(1), 584590.

    Lee, S.J., Kim, J.H.,Lee,J., & Cho, B.H. (2008). State-of-chargeand capacity estimationoflithium-ion battery using a new open-circuit voltage versus state-of-charge.Journal of Power Source, 185(2), 13671373.

    Li, I . H., Wang, W. Y. , S u, S. F ., & Lee , Y. S. (2 007) . A merged fuzzy neural networkand its applications in battery state-of-charge estimation. IEEE Transactions onEnergyConversion,22(3), 697708.

    Ng, K. S. , Mo o, C . S. , Ch en , Y. P. , & Hs ieh , Y. C. ( 2009 ). Enhanced coulomb count-ing method for estimating state-of-charge and state-of-health of lithium-ionbatteries.Applied Energy, 86(9), 15061511.

    Plett, G. L. (2006a). Sigma-point Kalman filteringfor battery management systemsofLiPB-basedHEV battery packs: Part1: Introduction and stateestimation.JournalofPower Sources, 161(2), 3561368.

    Plett, G. L. (2006b). Sigma-point Kalman filtering for battery management systemsof LiPB-based HEV battery packs: Part 2: Simultaneous state and parameterestimation.Journal of Power Sources, 161(2), 13691384.

    Piller, S., Perrin, M., & Jossen, A. (2001). Methods for state-of-charge determinationand their applications.Journal of Power Sources, 96(1), 113120.

    Ramadesigan, V., Northrop, P. W. C.,De, S.,Santhanagopalan, S.,Braatz, R. D.,& Sub-ramanian, V. R. (2012). Modeling and simulation of lithium-ion batteries froma systems engineering perspective.Journal of the Electrochemical Society, 159(3),

    R31R45.Ristic, B., Arulampalam, S., & Gordon, N. (2004). Beyond the Kalman filter: Particle

    filters for tracking applications. Artech House: Boston.Rodrigues, S.,Munichandraiah, N.,& Shukla, A. K. (2000). A review of state-of-charge

    indication of batteries by means of a.c. impedance measurements. Journal ofPower Sources, 87(12), 1220.

    Shen, W. X. (2007). State of available capacity estimation for lead-acid batteriesin electric vehicles using neural network. Energy Conversion and Management,48(2), 433442.

    Shen, W. X., Chan, C. C. , Lo, E. W. C., & Chau, K. T. (2002). A new battery availablecapacity indicator for electric vehicles using neural network. EnergyConversionand Management, 43(6), 817826.

    Smith, K. A., Rahn, C. D., & Wang, C. Y. (2010). Model-based electrochemical esti-mation and constraintmanagement for pulse operationof lithium ion batteries.IEEE Transactions on Control Systems Technology, 18(3), 654663.

    Zhang, J. L., & Xia, C. Y. (2011). State-of-charge estimation of valve regulated leadacid battery based on multi-state unscented Kalman filter. International JournalofElectrical Power andEnergy Systems,33(3), 472476.

    Zhang, F., Liu, G. J., Fang, L. J., & Wang, H. G. (2012). Estimation of battery state of

    charge withH observer: Applied to a robot for inspecting power transmissionlines. IEEE Transactions on Industrial Electronics, 59(2), 10861095.

    http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0040http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0040http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0040http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0040http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0040http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0040http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0040http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0040http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0040http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0045http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0045http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0045http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0045http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0045http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0045http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0050http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0050http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0050http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0050http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0050http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0050http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0050http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0050http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0055http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0055http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0055http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0055http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0055http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0055http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0055http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0060http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0060http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0060http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0060http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0060http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0060http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0060http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0060http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0065http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0065http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0065http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0065http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0065http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0065http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0065http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0070http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0070http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0070http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0070http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0070http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0070http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0070http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0070http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0075http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0075http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0075http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0075http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0075http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0080http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0080http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0080http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0080http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0080http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0080http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0080http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0080http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0085http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0085http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0085http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0085http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0085http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0085http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0085http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0090http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0090http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0090http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0090http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0090http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0090http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0090http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0090http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0155http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0150http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0145http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0140http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0135http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0130http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0125http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0120http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0115http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0110http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0105http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0100http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-1354(14)00047-7/sbref0095http://refhub.elsevier.com/S0098-