ACriticalLookattheIonizationofProtoplanetaryDisks ... · 1)Introduction...

1
1) Introduction Ionization is key in driving pathways towards gas phase chemical complexity and disk dynamics such as accretion driven by the magnetorotational instability (MRI; Balbus & Hawley 1991). Dominant sources of ionization (and stopping distances) in protoplanetary disks are: UV (~10 3 g cm 2 ), X rays (0.05 g cm 2 at 1 keV) and CRs (96 g cm 2 ; Umebayashi et al 1981) . Thus CRs are most able to ionize the densest gas in disks. However, as evidenced by the presence of our own Heliosphere, the degree to which CRs are present in the circumstellar environment is unclear. We have examined the effects of the absence of CRs due to wind modulation and magnetic modulation on socalled MRI deadzones (Cleeves, Adams & Bergin 2013; Paper I) as well as on the chemical nature of disks (Paper II, in preparation). 2) Disk Model Disk model computed with Torus (Harries 2000). Gas temperatures from Xray heating and dust collisional cooling (Glassgold & Najita 2001). Monte Carlo UV & Xray R.T. (Bethell & Bergin 2011 a,b). Disk chemical calculations of Fogel et al. 2011. Updated to include a small, 70 reaction deuterium network to make additional predictions for N2D + , H2D + , and HD2 + . 3) Cosmic Ray Exclusionary Mechanisms Physical mechanisms by which CRs can be reduced are: (1) Modulation by stellar winds, i.e., a “TTauriosphere,” (2) Magnetic mirroring by large scale stellar or environmental, e.g., “hourglass,” magnetic field structure (Li & Shu 1996, Padovani et al. 2011), see Fig. 1 We have investigated incident CR spectra under solarlike and “elevated” wind conditions, using spot coverage as a proxy for magnetic activity and thus wind modulation efficiency. ISM cosmic ray rates from Moskalenko et al. 2002 (grey line) and Webber et al. 1998 (orange line), see Fig 2. Magnetic effects reduce the net flux by ~2x, while winds can reduce by more than 15 orders of magnitude. Subsequent CR transport into the disk with the “Continuous Slowing Down Approximation” (Padovani et al. 2009). RESULTS 4) Molecular Ion Abundances Molecular ions such as HCO + , DCO + , and N2H + have been previously detected towards protoplanetary disks (e.g.,van Dishoeck et al. 2003, Qi et al. 2008, Öberg et al. 2010,2011). Ion abundances trace the ionizing flux as well as environmental factors such as freeze out of parent molecules such as CO. We have computed disk chemical models holding other properties fixed and varying only CR ionization. Other sources of ionization are UV, Xrays and (in progress) ionization by radionuclide (RN) decay. The largest change in abundance occurs between an ISM CR rate (ζ CR 10 17 s 1 ) and a solar modulated rate (ζ CR ~ (0.11) x 10 18 s 1 ). Molecules such as HCO + have partial contribution from Xrays, need optically thin isotopologues to determine midplane ionization. Deuterated molecular ions more sensitive to cold gas, but less abundant and thus more difficult to observe. 5) How to Search For aTTauriosphere: Observational Constraints from ALMA These scenarios can be differentiated by observing rotational transitions of molecular ions that trace the dense midplane gas. Because of the high Xray luminosity of T Tauri stars, it is important to observe optically thin tracers that peer through the ionized gas on the disk surface. We have calculated the emergent (nonLTE for deuterium free species) line intensity for ALMA observable transitions with our abundance models using Lime (Brinch & Hogerheijde 2010), and simulated ALMA observations using CASA for the most compact full ALMA configuration, 66 antennas, and sensitivites from 10 h on sky, Fig. 4. The most sensitive tracers of the midplane ionization are N2H+ (32), (43) and N2D+ (32). H2D+ is detectable for only the ISM (M02) ionization case. Usefulness of HCO+ and isotopologues are hindered by significant contribution from Xrays and CO freeze out. 6) Dead Zones In regions where the ion abundance drops below a critical value (e.g., PerezBecker & Chiang 2011), the disk cannot sustain MRI turbulence, i.e. be active. Paper I shows that under the influence of elevated CR (“TTauri like”) wind modulation, the disk would be largely dead to MRI, i.e. accretion cannot proceed in the midplane, Fig. 5. However, a minimal amount of either radionuclide ionization or hard ~7 keV Xray ionization (L XR > 10 31 erg/s), which can penetrate to the midplane, can potentially provide a baseline to sustain MRI turbulence and thus power accretion. 7) Radionuclide (RN) Ionization Without CRs, decay of shortlived RNs (now extinct) becomes the dominant contributor to the otherwise shielded midplane. The problem has been investigated by Umebayashi et al 1981, 2009, 2013, Finocchi & Gail 1997. In Cleeves, Bergin, Adams & Visser in prep, we are investigating the vertical ionization rate (Fig. 6) including the significant effects of energy/process dependent particle loss, previously untreated. A Critical Look at the Ionization of Protoplanetary Disks: Chemistry in the Presence of an Analogue Heliosphere L. Ilsedore Cleeves, Edwin A. Bergin, Fred C. Adams; University of Michigan Abstract Cosmic rays as ionizing agents have important astrochemical and physical consequences in the dense ISM. However, as evidenced by the existence of our own solar Heliosphere, the degree to which CRs are present in the circumstellar environment is unknown. This issue is especially important for low mass premain sequence stars with molecular disks, i.e. TTauri systems. In these disks the physical and chemical properties, such as ionization fraction, are key in setting the conditions for future planet formation. Within our own Solar System the solar wind shields the inner 100 AU from galactic cosmic rays with energies below a 300 MeV.TTauri stars with relatively high mass loss rates and magnetic activity can likewise power a ”TTauriosphere” that could substantially reduce the galactic CR flux incident on their protoplanetary disks. We find thatTTauri wind modulation of CRs can be so effective that ionization resulting from shortlived radionuclide decay could dominate the outer disk midplane ionization at typical ISM abundances, if the decay products do not freely escape. We examine implications for both the extent of MRI ”deadzones” as well as for ion chemistry in disks resulting from low CR fluxes. We also provide predictions on how to use observable molecular ions to infer the presence of extrasolar Heliospheres aroundTTauri stars. Model Parameters: •R out = 400 AU •M disk = 0.04 M sol •L = 1 L sol •M = 1 M sol •T = 4300 K •L XR = 10 29.5 erg s -1 REFERENCES: Balbus & Hawley 1991, ApJ, 376, 214. Bethell & Bergin 2011a, ApJ, 740, 7. Bethell & Bergin 2011b, ApJ, 739, 78. Brinch & Hogerheijde 2010, A&A, 523, 25. Cleeves, Adams & Bergin 2013, ApJ 772, 5. Fogel et al 2011, ApJ, 726, 29. Finocchi & Gail, A&A, 327, 825. Harries 2000, MNRAS, 315, 722. Li & Shu 1996, Apj, 472, 211. Moskalenko et al. 2009, ApJ, 565, 280. Öberg et al. 2010, ApJ, 720, 480. Öberg et al. 2011, ApJ 734, 98. Öberg et al. 2011, ApJ, 743, 152. Padovani et al. 2009, A&A, 501, 619. Padovani et al. 2011, A&A, 530, A109. Perez-Becker & Chiang 2011, 735, 8. Qi et al. 2008, ApJ, 681, 1396. Umebayashi et al 1981, PASJ, 33, 617. Umebayashi et al 2009 ApJ, 690, 69. Umebayashi et al 2013, ApJ, 764, 104. van Dishoeck et al. 2003, ApSS, 285, 691. Webber et al. 1998, ApJ, 506, 329. “Dragged” B Field T-Tauriosphere C.R. Mirroring P ISM CR Wind Pressure R (AU) log(ρ gas ) g cm 3 log(∫F XR dν) phot/cm 2 /s log(Temp.) K log(∫F UV dν) phot/cm 2 /s Z (AU) H 13 CO + N 2 H + HC 18 O + N 2 D + 0.15 0.10 0.05 0.00 100 200 300 -19.0 -17.5 -16.0 -14.5 -13.0 100 200 300 50 100 150 200 1.1 1.3 1.6 1.8 2.0 1.0 2.8 4.5 6.2 8.0 50 100 150 200 6.0 7.5 9.0 10.5 12.0 I) Wind Exclusion: a “T-Tauriosphere” II) Magnetic Modulation: Mirroring Fig. 1: Basic model framework for wind and magnetic field exclusion. 10 19 10 20 10 21 10 22 10 23 10 24 10 25 10 26 10 27 N(H 2 ) cm -2 10 -24 10 -23 10 -22 10 -21 10 -20 10 -19 10 -18 10 -17 10 -16 10 -15 10 -14 10 -13 ζ H 2 s -1 LIS - M02 LIS - W98 Solar Min Solar Max T.T. Min T.T. Max Fig. 2: CR ionization rate vs. column density for different degrees of wind modulation. T.T. Max Solar Min M02 (ISM) -200 -100 0 100 200 10 -11.6 10 -10.5 10 -9.4 10 -8.2 -200 -100 0 100 200 10 -14.5 10 -13.1 10 -11.7 10 -10.3 -200 -100 0 100 200 10 -19.4 10 -16.0 10 -12.6 10 -9.3 -200 -100 0 100 200 10 -15.5 10 -13.8 10 -12.0 10 -10.3 0 100 200 300 -200 -100 0 100 200 0 100 200 300 0 100200300 10 -16.5 10 -14.4 10 -12.4 10 -10.3 Abundance Relative to H 2 D 2 H + H 2 D + N 2 D + N 2 H + HCO + Fig. 4: Radial brightness profile of a selection of emission line models. All species shown at J = 3-2. Top portion of each panel includes: ISM, Solar and T-Tauri CR rates while the bottom portion is a zoom-in of only the modulated TT and Solar CR levels. Fig. 3: Chemical modeling results. Low CR to high CR flux from right to left. Abundances are given by n(X)/n(H 2 ). Fig. 6: RN ionization rates, ζ RN in s -1 H 2 -1 versus height from the midplane at the indicated radii. Top panels are 26 Al-derived; bottom panels also include 60 Fe 36 Cl decay. Left panels assume gas & dust are well mixed while the right include dust settling. Fig. 5: Dead zones under the influence of a reduced CR flux. Hatched regions: active according to the Magnetic Reynolds #, Re and Ambipolar Diffusion Criteria Am; orange line: active region defined by Re-only. Left to right, MRI dead regions as found under: 1) ISM, 2) T.T. Max and 3) T.T. Max plus uniform ζ RN = 7.3x10 -19 s -1 radionuclide ionization. M02 (ISM) T.T. Max T.T. Max + RN χ(e) Increasing CRs 0 100 200 300 0 50 100 150 Z (AU) 0 10 20 30 0 2 4 0 100 200 300 R (AU) 0 10 20 30 0 2 4 0 100 200 300 -10.7 -9.2 -7.7 -6.2 χ(e - ) 0 10 20 30 0 2 4

Transcript of ACriticalLookattheIonizationofProtoplanetaryDisks ... · 1)Introduction...

1)  IntroductionIonization  is  key  in  driving  pathways  towards  gas  phase  chemical  complexity  and  disk  dynamics  such  as  accretion  driven  by  the  magnetorotational  instability    (MRI;  Balbus  &  Hawley  1991).  

Dominant  sources  of  ionization  (and  stopping  distances)  in  protoplanetary  disks  are:    UV  (~10-­‐3  g  cm-­‐2),  X-­‐rays  (0.05  g  cm-­‐2  at  1  keV)  and  CRs  (96  g  cm-­‐2;  Umebayashi  et  al  1981)  .  Thus  CRs  are  most  able  to  ionize  the  densest  gas  in  disks.    However,  as  evidenced  by  the  presence  of  our  own  Heliosphere,  the  degree  to  which  CRs  are  present  in  the  circumstellar  environment  is  unclear.

We  have  examined  the  effects  of  the  absence  of  CRs  due  to  wind  modulation  and  magnetic  modulation  on  so-­‐called  MRI  dead-­‐zones  (Cleeves,  Adams  &  Bergin  2013;  Paper  I)  as  well  as  on  the  chemical  nature  of  disks  (Paper  II,  in  preparation).

2)  Disk  Model๏ Disk  model  computed  with  Torus    

(Harries  2000).  Gas  temperatures  from  X-­‐ray  heating  and  dust  collisional  cooling  (Glassgold  &  Najita  2001).

๏ Monte  Carlo  UV  &  X-­‐ray  R.T.  (Bethell  &  Bergin  2011  a,b).

๏ Disk  chemical  calculations  of  Fogel  et  al.  2011.

✴ Updated  to  include  a  small,  70  reaction  deuterium  network  to  make  additional  predictions  for  N2D+,      H2D+,  and  HD2+.

3)    Cosmic  Ray  Exclusionary  Mechanisms๏ Physical  mechanisms  by  which  CRs  can  be  reduced  are:  

(1) Modulation  by  stellar  winds,  i.e.,  a  “T-­‐Tauriosphere,”  

(2)Magnetic  mirroring  by  large  scale  stellar  or  environmental,  e.g.,  “hourglass,”  magnetic  field  structure  (Li  &  Shu  1996,  Padovani  et  al.  2011),  see  Fig.  1

๏ We  have  investigated  incident  CR  spectra  under  solar-­‐like  and  “elevated”  wind  conditions,  

using  spot  coverage  as  a  proxy  for  magnetic  activity  and  thus  wind  

modulation  efficiency.    ISM  cosmic  ray  rates  from  

Moskalenko  et  al.  2002  (grey  line)  and  Webber  et  al.  1998  (orange  line),  see  Fig  2.

✴  Magnetic  effects  reduce  the  net  flux  by  ~2x,  while  winds  can  reduce  by  more  than  1-­‐5  orders  of  magnitude.

✴  Subsequent  CR  transport  into  the  disk  with  the  “Continuous  Slowing  Down  Approximation”  (Padovani  et  al.  2009).

RESULTS4)  Molecular  Ion  Abundances๏ Molecular  ions  such  as  HCO+,  DCO+,  and  N2H+  have  been  previously  

detected  towards  protoplanetary  disks  (e.g.,van  Dishoeck  et  al.  2003,  Qi  et  al.  2008,  Öberg  et  al.  2010,2011).

✴ Ion  abundances  trace  the  ionizing  flux  as  well  as  environmental  factors  such  as  freeze  out  of  parent  molecules  such  as  CO.

๏ We  have  computed  disk  chemical  models  holding  other  properties  fixed  and  varying  only    CR  ionization.  Other  sources  of  ionization  are  UV,  X-­‐rays  and  (in  progress)  ionization  by  radionuclide  (RN)  decay.

๏ The  largest  change  in  abundance  occurs  between  an  ISM  CR  rate  (ζCR  ≥  10-­‐17  s-­‐1)  and  a  solar  modulated  rate  (ζCR  ~  (0.1-­‐1)  x  10-­‐18  s-­‐1).    

✴ Molecules  such  as  HCO+  have  partial  contribution  from  X-­‐rays,  need  optically  thin  isotopologues  to  determine  midplane  ionization.  Deuterated  molecular  ions  more  sensitive  to  cold  gas,  but  less  abundant  and  thus  more  difficult  to  observe.

5)  How  to  Search  For  a  T-­‐Tauriosphere:  Observational  Constraints  from  ALMA๏ These  scenarios  can  be  differentiated  by  observing  rotational  transitions  

of  molecular  ions  that  trace  the  dense  midplane  gas.    

๏ Because  of  the  high  X-­‐ray  luminosity  of    T  Tauri  stars,  it  is  important  to  observe  optically  thin  tracers  that  peer  through  the  ionized  gas  on  the  disk  surface.

๏ We  have  calculated  the  emergent  (non-­‐LTE  for  deuterium  free  species)  line  intensity  for  ALMA  observable  transitions  with  our  abundance  models  using  Lime  (Brinch  &  Hogerheijde  2010),  and  simulated  ALMA  observations  using  CASA  for  the  most  compact  full  ALMA  configuration,  66  antennas,  and  sensitivites  from  10h  on  sky,  Fig.  4.

๏ The  most  sensitive  tracers  of  the  midplane  ionization  are  N2H+  (3-­‐2),  (4-­‐3)  and  N2D+  (3-­‐2).  H2D+  is  detectable  for  only  the  ISM  (M02)  ionization  case.    Usefulness  of  HCO+  and  isotopologues  are  hindered  by  significant  contribution  from  X-­‐rays  and  CO  freeze  out.

6)  Dead  Zones  ๏ In  regions  where  the  ion  abundance  drops  below  a  critical  value    (e.g.,  

Perez-­‐Becker  &  Chiang  2011),  the  disk  cannot  sustain  MRI  turbulence,  i.e.  be  active.    Paper  I  shows  that  under  the  influence  of  elevated  CR  (“T-­‐Tauri  like”)  wind  modulation,  the  disk  would  be  largely  dead  to  MRI,  i.e.  accretion  cannot  proceed  in  the  midplane,  Fig.  5.

๏ However,    a  minimal  amount  of  either  radionuclide  ionization  or  hard  ~7  keV    X-­‐ray  ionization  (LXR  >  1031  erg/s),  which  can  penetrate  to  the  midplane,  can  potentially  provide  a  baseline  to  sustain  MRI  turbulence  and  thus  power  accretion.

7)  Radionuclide  (RN)  Ionization๏ Without  CRs,  decay  of  short-­‐lived  RNs  (now  extinct)  becomes  the  

dominant  contributor  to  the  otherwise  shielded  midplane.    The  problem  has  been  investigated  by  Umebayashi  et  al  1981,  2009,  2013,    Finocchi  &  Gail  1997.    In  Cleeves,  Bergin,  Adams  &  Visser  in  prep,  we  are  investigating  the  vertical  ionization  rate  (Fig.  6)  including  the  significant  effects  of  energy/process  dependent  particle  loss,  previously  untreated.    

A  Critical  Look  at  the  Ionization  of  Protoplanetary  Disks:    Chemistry  in  the  Presence  of  an  Analogue  Heliosphere

L. Ilsedore Cleeves, Edwin A. Bergin, Fred C. Adams; University of MichiganAbstract

Cosmic  rays  as  ionizing  agents  have  important  astrochemical  and  physical  consequences  in  the  dense  ISM.    However,  as  evidenced  by  the  existence  of  our  own  solar  Heliosphere,  the  degree  to  which  CRs  are  present  in  the  circumstellar  environment  is  unknown.  This  issue  is  especially  important  for  low  mass  pre-­‐main  sequence  stars  with  molecular  disks,  i.e.  T-­‐Tauri  systems.  In  these  disks  the  physical  and  chemical  properties,  such  as  ionization  fraction,  are  key  in  setting  the  conditions  for  future  planet  formation.  Within  our  own  Solar  System  the  solar  wind  shields  the  inner  ∼100  AU  from  galactic  cosmic  rays  with  energies  below  a  300  MeV.  T-­‐Tauri  stars  with  relatively  high  mass  loss  rates  and  magnetic  activity  can  likewise  power  a  ”T  Tauriosphere”  that  could  substantially  reduce  the  galactic  CR  flux  incident  on  their  protoplanetary  disks.  We  find  that  T-­‐Tauri  wind  modulation  of  CRs  can  be  so  effective  that  ionization  resulting  from  short-­‐lived  radionuclide  decay  could  dominate  the  outer  disk  midplane  ionization  at  typical  ISM  abundances,  if  the  decay  products  do  not  freely  escape.  We  examine  implications  for  both  the  extent  of  MRI  ”dead-­‐zones”  as  well  as  for  ion  chemistry  in  disks  resulting  from  low  CR  fluxes.  We  also  provide  predictions  on  how  to  use  observable  molecular  ions  to  infer  the  presence  of  extrasolar  Heliospheres  around  T-­‐Tauri  stars.  

Model Parameters:• Rout = 400 AU• Mdisk = 0.04 Msol• L✷ = 1 Lsol• M✷ = 1 Msol

• T✷ = 4300 K• LXR = 1029.5 erg s-1

REFERENCES:Balbus & Hawley 1991, ApJ, 376, 214.Bethell & Bergin 2011a, ApJ, 740, 7.Bethell & Bergin 2011b, ApJ, 739, 78.Brinch & Hogerheijde 2010, A&A, 523, 25.Cleeves, Adams & Bergin 2013, ApJ 772, 5.

Fogel et al 2011, ApJ, 726, 29.Finocchi & Gail, A&A, 327, 825.Harries 2000, MNRAS, 315, 722.Li & Shu 1996, Apj, 472, 211.Moskalenko et al. 2009, ApJ, 565, 280.Öberg et al. 2010, ApJ, 720, 480.Öberg et al. 2011, ApJ 734, 98.

Öberg et al. 2011, ApJ, 743, 152.Padovani et al. 2009, A&A, 501, 619.Padovani et al. 2011, A&A, 530, A109.Perez-Becker & Chiang 2011, 735, 8.Qi et al. 2008, ApJ, 681, 1396.Umebayashi et al 1981, PASJ, 33, 617.Umebayashi et al 2009 ApJ, 690, 69.

Umebayashi et al 2013, ApJ, 764, 104.van Dishoeck et al. 2003, ApSS, 285, 691.Webber et al. 1998, ApJ, 506, 329.

“Dra

gged

” B

Fiel

d

T-Ta

urio

sphe

re

C.R

. Mirr

orin

g

P ISM

CR

Wind Pressure

R  (AU)

log(ρ g

as)

g  cm

-­‐3log(∫F

XRdν

)  ph

ot/cm

2 /s

log(Temp.)  K

log(∫FUV dν)

phot/cm2/s

Z  (A

U)

H13CO+

N2H+

HC18O+

N2D+0.15

0.10

0.05

0.00

100200300-19.0

-17.5

-16.0

-14.5

-13.0

100 200 300

50

100

150

200

1.1

1.3

1.6

1.8

2.0

1.0

2.8

4.5

6.2

8.050

100

150

2006.0

7.5

9.0

10.5

12.0

I) WindExclusion: a

“T-Tauriosphere”

II) Magnetic Modulation: Mirroring

Fig. 1: Basic model framework for wind and magnetic field exclusion.

1019 1020 1021 1022 1023 1024 1025 1026 1027

N(H2) cm!2

10!24

10!23

10!22

10!21

10!20

10!19

10!18

10!17

10!16

10!15

10!14

10!13

! H2s!

1

LIS - M02LIS - W98Solar Min

Solar MaxT.T. MinT.T. Max

Fig. 2: CR ionization rate vs. column density for different degrees of wind modulation.

T.T.  Max                          Solar  Min                        M02  (ISM)

-200-100

0100200

10!11.6

10!10.5

10!9.4

10!8.2

-200-100

0100200

10!14.5

10!13.1

10!11.7

10!10.3

-200-100

0100200

10!19.4

10!16.0

10!12.6

10!9.3

-200-100

0100200

10!15.5

10!13.8

10!12.0

10!10.3

0 100 200 300-200-100

0100200

0 100 200 300 0 10020030010!16.5

10!14.4

10!12.4

10!10.3Abu

ndan

ce  Relative  to  H

2

D2H

+

H

2D+

N2D

+

N

2H+

HC

O+

Fig. 4: Radial brightness profile of a selection of emission line models. All species shown at J = 3-2. Top portion of each panel

includes: ISM, Solar and T-Tauri CR rates while the bottom portion is a zoom-in of only the modulated TT and Solar CR levels.

Fig. 3: Chemical modeling results. Low CR to high CR flux from right to left. Abundances are given by n(X)/n(H2).

Fig. 6: RN ionization rates, ζRN in s -1 H2-1

versus height from the midplane at the indicated

radii. Top panels are 26Al-derived; bottom panels

also include 60Fe 36Cl decay. Left

panels assume gas & dust are well mixed while the

right include dust settling.

Fig. 5: Dead zones under the influence of a reduced CR flux. Hatched regions: active according to the Magnetic Reynolds #, Re and Ambipolar Diffusion Criteria Am; orange line: active region defined by Re-only. Left to right, MRI dead regions as found under: 1) ISM, 2) T.T. Max and 3) T.T.

Max plus uniform ζRN = 7.3x10-19 s-1 radionuclide ionization.

M02  (ISM)                                              T.T.  Max                                        T.T.  Max  +  RN        

χ(e-­‐)

Increasing  CRs

0 100 200 3000

50

100

150

Z(A

U)

0 10 20 30024

0 100 200 300R (AU)

0 10 20 30024

0 100 200 300-10.7

-9.2

-7.7

-6.2

!(e

!)

0 10 20 30024