Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering … · 2019. 12....

23
Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors T.F. Bergh 1,2 I. Hafizovic 2 S. Holm 1 1 Department of Informatics, University of Oslo 2 Squarehead Technology ICASSP 2017

Transcript of Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering … · 2019. 12....

  • Acoustic imaging of sparse sources withOrthogonal Matching Pursuit and clustering of

    basis vectors

    T.F. Bergh1,2 I. Hafizovic2 S. Holm11Department of Informatics, University of Oslo

    2Squarehead Technology

    ICASSP 2017

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Presentation outline

    1. Brief description of deconvolution (DAMAS)2. Proposed deconvolution algorithm3. Simluations & experimental results

    ICASSP 2017 - Bergh, Hafizovic, Holm Title 2 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Single-frequency acoustic image

    -4 -3 -2 -1 0 1 2 3 4

    x [meter]

    -3

    -2

    -1

    0

    1

    2

    3

    y [m

    eter

    ]

    ICASSP 2017 - Bergh, Hafizovic, Holm Introduction 3 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Deconvolved source map

    -4 -3 -2 -1 0 1 2 3 4

    x [meter]

    -3

    -2

    -1

    0

    1

    2

    3

    y [m

    eter

    ]

    ICASSP 2017 - Bergh, Hafizovic, Holm Introduction 4 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Sound field model

    m l

    x1(ω)...

    xm(ω)...

    xM (ω)

    =

    | | || | || | |

    G1(ω) · · · Gl (ω) · · · GL(ω)| | || | || | |

    s1(ω)...

    sl (ω)...

    sL(ω)

    +

    η1...ηl...ηL

    x(ω) = G(ω)s(ω) + η (1)

    M: Number of array elements, L: Number of model sources

    ICASSP 2017 - Bergh, Hafizovic, Holm Introduction 5 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Acoustic imaging model

    n

    Yn =1

    M2wHn Rx wn =

    1

    M2wHn E

    {xxH

    }wn =

    1

    M2

    L∑i=1

    L∑j=1

    [wHn E

    {(Gi si + ηi )(Gj sj + ηj )

    ∗}

    wn]

    (2)

    0 ≤ n ≤ N, N: Number of image points

    ICASSP 2017 - Bergh, Hafizovic, Holm Introduction 6 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Deconvolution Approach for theMapping of Acoustic Sources(DAMAS)Uncorrelated sources and i.i.d. Gaussian noise:

    Yn =1

    M2

    L∑l=1

    [∣∣∣wHn Gl ∣∣∣2 E {|sl |2}]+ 1M2 E {|η|2} (3)Y = AQ

    (+σ21N

    )(4)

    Point spread function (PSF): A[n,l] =1

    M2

    ∣∣∣wHn Gl ∣∣∣2 ∈ R+ (5)Source map: Ql = E

    {|sl |2

    }∈ R+ (6)

    Reference: Brooks, Thomas F., and William M. Humphreys. “A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS)

    Determined from Phased Microphone Arrays.” Journal of Sound and Vibration 294, no. 4 (2006): 856–879.

    ICASSP 2017 - Bergh, Hafizovic, Holm Introduction 7 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    A as a frame (redundant basis) / dictionary

    Y =∑

    l AlQlAl : Column l of A, basis vector (or dictionary atom)Ql : Expansion coefficient

    Assumptions

    1. Ns, number of sources is known2. Number of sources is small, i.e. Q is sparse:

    Ns = |Γ| = |supp (Q)|

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Orthogonal Matching PursuitDAMAS (OMP-DAMAS) [1]

    for s = 1 to Ns doΓ← Γ ∪ arg maxk

    ∣∣∣(AHρ)k ∣∣∣Q ← arg minq ||Y − AΓq||2 =

    (AHΓ AΓ

    )−1AHΓ Y

    ρ← Y − AΓQ =[1− AΓ

    (AHΓ AΓ

    )−1AHΓ

    ]Y

    if stopping criterion fulfilled thenexit loop

    end ifend for

    Problems with direct application of OMP

    I Due to noise and basis mismatch: Y /∈ colsp{A}I Greedy pursuit is inherently suboptimal

    [1] Padois, Thomas, and Alain Berry. “Orthogonal Matching Pursuit Applied to the Deconvolution Approach for the Mapping of Acoustic Sources Inverse Problem.”

    The Journal of the Acoustical Society of America 138, no. 6 (December 1, 2015): 3678–85. doi:10.1121/1.4937609.

    ICASSP 2017 - Bergh, Hafizovic, Holm Introduction 9 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Proposed reconstruction algorithm:Clustered Orthogonal MatchingPursuit - DAMAS (COMP-DAMAS)

    Two stages:

    1. Exhaustive greedy pursuit.2. Spatial clustering of basis vectors such that Nc ≥ Ns, and

    least-squares fitting of each cluster to a single-sourcemodel.

    ICASSP 2017 - Bergh, Hafizovic, Holm Algorithm 10 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    COMP-DAMAS Stage 1

    Exhaustive greedy pursuitfor s = 1 to L do

    Γ← Γ ∪ arg maxk∣∣∣(A†ρ)k ∣∣∣

    Q ← (AHΓ AΓ)−1AHΓ Y

    ρ← Y − AΓQif(∣∣∣∣∣∣ρ(s−1)∣∣∣∣∣∣

    2−∣∣∣∣∣∣ρ(s)∣∣∣∣∣∣

    2

    )/∣∣∣∣∣∣ρ(s−1)∣∣∣∣∣∣

    2≤ δ

    thenExit loop

    end ifend for

    Index selection ruleMaximal least-squares coefficient(Enhanced-OMP [1]):

    A†ρ ≈ arg minq||ρ− Aq||2

    A† =(

    AH A + λσmax(A)1L)−1

    AH

    λ: Regularization parameter

    Terminationρ is dominated by noise

    [1] Osamy, Walid, Ahmed Salim, and Ahmed Aziz. “Sparse Signals Reconstruction via Adaptive Iterative Greedy Algorithm.”

    International Journal of Computer Applications 90, no. 17 (March 26, 2014): 5–11. doi:10.5120/15810-4715.

    ICASSP 2017 - Bergh, Hafizovic, Holm Algorithm 11 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Stage 2: Clustering & mergingDue to exhaustive pursuit, real sources may

    be represented by several basis vectors and

    expansion coefficients

    3.0 1.5

    -0.7

    Bottom-up spatial clusteringDistance function:

    di,j = 1−1

    2

    ∣∣∣wH (~xi )Gj ∣∣∣2∣∣∣wH (~xj )Gj ∣∣∣2 +

    ∣∣∣wH (~xj )Gi ∣∣∣2∣∣wH (~xi )Gi ∣∣2

    = 1−1

    2

    (A[i,j]A[j,j]

    +A[j,i]A[i,i]

    ), 0 ≤ di,j ≤ 1

    (7)

    Continue while:

    mini 6=j

    di,j < γ = 0.85 AND Nc ≥ Ns

    ICASSP 2017 - Bergh, Hafizovic, Holm Algorithm 12 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Stage 2: Clustering & mergingFitting cluster to single source model with

    index k̂ and power q̂

    3.9

    Fitting cluster to a singlesource model

    (k̂, q̂

    = arg min(k,q)

    ||Ak q − AΓQΓ||2 , (8)

    k ∈ Z, q ∈ R+

    k̂ = arg mink

    ∣∣∣∣∣∣∣∣∣∣∣∣Ak

    ∑j∈Γ

    Qj

    − AΓQΓ∣∣∣∣∣∣∣∣∣∣∣∣2

    (9)

    q̂ = (AHk̂ Ak̂ )−1AHk̂ AΓQΓ (10)

    ICASSP 2017 - Bergh, Hafizovic, Holm Algorithm 13 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Simulations & Experiments

    Benchmark methods

    1. Orthogonal Matching Pursuit DAMAS (OMP-DAMAS)2. CLEAN based on Source Coherence (CLEAN-SC)3. Robust DAMAS with Sparse Constraint (SC-RDAMAS)4. Generalized Inverse Beamforming (GIB)

    References:

    1. Padois, Thomas, and Alain Berry. “Orthogonal Matching Pursuit Applied to the Deconvolution Approach for the Mapping of Acoustic Sources Inverse Problem.”The Journal of the Acoustical Society of America 138, no. 6 (December 1, 2015): 3678–85. doi:10.1121/1.4937609.

    2. Sijtsma, Pieter. “CLEAN Based on Spatial Source Coherence.” International Journal of Aeroacoustics 6, no. 4 (December 1, 2007): 357–74.doi:10.1260/147547207783359459.

    3. Chu, Ning, José Picheral, Ali Mohammad-djafari, and Nicolas Gac. “A Robust Super-Resolution Approach with Sparsity Constraint in Acoustic Imaging.” AppliedAcoustics 76 (February 2014): 197–208. doi:10.1016/j.apacoust.2013.08.007.

    4. Suzuki, Takao. “L1 Generalized Inverse Beam-Forming Algorithm Resolving Coherent/Incoherent, Distributed and Multipole Sources.” Journal of Sound andVibration 330, no. 24 (November 21, 2011): 5835–51. doi:10.1016/j.jsv.2011.05.021.

    ICASSP 2017 - Bergh, Hafizovic, Holm Simulations & Experiments 14 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Simulation setup

    I Single frequency delay-and-sum at 2kHz, sampled at16kHz

    I White noise sources, 100 snapshots of 128 samplesI 8m x 6m imaging area, 20x15=300 grid points, distance

    4.3m from arrayI 16x16-element array, 39cm x 39cm

    ICASSP 2017 - Bergh, Hafizovic, Holm Simulations & Experiments 15 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Simulation results, scenario 1

    DAS

    -4 -2 0 2 4

    -2

    0

    2

    COMP-DAMAS

    -4 -2 0 2 4

    -2

    0

    2

    OMP-DAMAS

    -4 -2 0 2 4

    -2

    0

    2

    CLEAN-SC

    -4 -2 0 2 4

    -2

    0

    2

    SC-RDAMAS

    -4 -2 0 2 4

    -2

    0

    2

    GIB

    -4 -2 0 2 4

    -2

    0

    2

    0

    0.2

    0.4

    0.6

    0.8

    1

    No noise

    DAS

    -4 -2 0 2 4

    -2

    0

    2

    COMP-DAMAS

    -4 -2 0 2 4

    -2

    0

    2

    OMP-DAMAS

    -4 -2 0 2 4

    -2

    0

    2

    CLEAN-SC

    -4 -2 0 2 4

    -2

    0

    2

    SC-RDAMAS

    -4 -2 0 2 4

    -2

    0

    2

    GIB

    -4 -2 0 2 4

    -2

    0

    2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Single-channel SNR = -9dB

    ICASSP 2017 - Bergh, Hafizovic, Holm Simulations & Experiments 16 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Simulation results, scenario 2

    DAS

    -4 -2 0 2 4

    -2

    0

    2

    COMP-DAMAS

    -4 -2 0 2 4

    -2

    0

    2

    OMP-DAMAS

    -4 -2 0 2 4

    -2

    0

    2

    CLEAN-SC

    -4 -2 0 2 4

    -2

    0

    2

    SC-RDAMAS

    -4 -2 0 2 4

    -2

    0

    2

    GIB

    -4 -2 0 2 4

    -2

    0

    2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    No noise

    DAS

    -4 -2 0 2 4

    -2

    0

    2

    COMP-DAMAS

    -4 -2 0 2 4

    -2

    0

    2

    OMP-DAMAS

    -4 -2 0 2 4

    -2

    0

    2

    CLEAN-SC

    -4 -2 0 2 4

    -2

    0

    2

    SC-RDAMAS

    -4 -2 0 2 4

    -2

    0

    2

    GIB

    -4 -2 0 2 4

    -2

    0

    2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    Single-channel SNR = -9dB

    ICASSP 2017 - Bergh, Hafizovic, Holm Simulations & Experiments 17 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Simulation results, scenario 3

    DAS

    -4 -2 0 2 4

    -2

    0

    2

    COMP-DAMAS

    -4 -2 0 2 4

    -2

    0

    2

    OMP-DAMAS

    -4 -2 0 2 4

    -2

    0

    2

    CLEAN-SC

    -4 -2 0 2 4

    -2

    0

    2

    SC-RDAMAS

    -4 -2 0 2 4

    -2

    0

    2

    GIB

    -4 -2 0 2 4

    -2

    0

    2

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    No noise

    DAS

    -4 -2 0 2 4

    -2

    0

    2

    COMP-DAMAS

    -4 -2 0 2 4

    -2

    0

    2

    OMP-DAMAS

    -4 -2 0 2 4

    -2

    0

    2

    CLEAN-SC

    -4 -2 0 2 4

    -2

    0

    2

    SC-RDAMAS

    -4 -2 0 2 4

    -2

    0

    2

    GIB

    -4 -2 0 2 4

    -2

    0

    2

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Single-channel SNR = -9dB

    ICASSP 2017 - Bergh, Hafizovic, Holm Simulations & Experiments 18 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    0 -6 -9 -120.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    Aver

    age

    posit

    ion

    erro

    r [m

    ]Scenario 1

    0 -6 -9 -12Single-channel SNR [dB]

    0

    5

    10

    15

    20

    25

    30

    35

    40

    Aver

    age

    rela

    tive

    powe

    r erro

    r [%

    ]

    0 -6 -9 -120.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35Scenario 2

    0 -6 -9 -12Single-channel SNR [dB]

    0

    5

    10

    15

    20

    25

    30

    35

    40

    0 -6 -9 -120.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35Scenario 3

    COMP-DAMASOMP-DAMASCLEAN-SCSC-RDAMASGIB

    0 -6 -9 -12Single-channel SNR [dB]

    0

    5

    10

    15

    20

    25

    30

    35

    40

    ICASSP 2017 - Bergh, Hafizovic, Holm Simulations & Experiments 19 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Experimental setupI Single frequency delay-and-sum at 2.4kHz, sampled at 44.1kHzI Two white noise sources, 10, 100 & 1000 snapshots of 128 samplesI 4m x 3m imaging area, 40x30=1200 grid points, distance 2.7m from arrayI 16x16-element array, 39cm x 39cm

    0.39cm

    0.39cm

    2.7m

    ICASSP 2017 - Bergh, Hafizovic, Holm Simulations & Experiments 20 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Experimental results

    DAS

    -2 0 2

    -1

    0

    1

    COMP-DAMAS

    -2 0 2

    -1

    0

    1

    OMP-DAMAS

    -2 0 2

    -1

    0

    1

    CLEAN-SC

    -2 0 2

    -1

    0

    1

    SC-RDAMAS

    -2 0 2

    -1

    0

    1

    GIB

    -2 0 2

    -1

    0

    1

    0

    0.5

    1

    1.5

    2

    2.5

    3

    10 -7

    30ms (10 snapshots)

    DAS

    -2 0 2

    -1

    0

    1

    COMP-DAMAS

    -2 0 2

    -1

    0

    1

    OMP-DAMAS

    -2 0 2

    -1

    0

    1

    CLEAN-SC

    -2 0 2

    -1

    0

    1

    SC-RDAMAS

    -2 0 2

    -1

    0

    1

    GIB

    -2 0 2

    -1

    0

    1

    0

    0.5

    1

    1.5

    2

    2.5

    10 -7

    3s (1000 snapshots)

    ICASSP 2017 - Bergh, Hafizovic, Holm Simulations & Experiments 21 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Experimental accuracy

    Average position error [m]

    K = 10 K = 100 K = 1000

    COMP-DAMAS 0.03 0.07 0.03

    OMP-DAMAS 0.13 0.15 0.15

    CLEAN-SC 0.10 0.04 0.04

    SC-RDAMAS 0.07 0.07 0.07

    GIB 0.28† 0.08† 0.18

    Average relative runtimes (300 grid points, deconvolutiononly)

    COMP-DAMAS OMP-DAMAS CLEAN-SC SC-RDAMAS GIB (Beamforming)

    2.5 1 160 800 1900 20

    ICASSP 2017 - Bergh, Hafizovic, Holm Simulations & Experiments 22 / 23

  • Acoustic imaging of sparse sources with Orthogonal Matching Pursuit and clustering of basis vectors

    Conclusion

    I Lower overall position & power error than benchmarkmethods

    I Low runtime and short required integration time => suitablefor realtime implementation

    Future work

    I Parameter-free regularizationI Simultaneous fitting of multiple sources in stage 2

    Thank you for listening.

    ICASSP 2017 - Bergh, Hafizovic, Holm Conclusion 23 / 23

    TitleIntroductionAlgorithmSimulations & ExperimentsConclusion