ac

48
ALTERNATING CURRENTS 1. Alternating Current and Alternating EMF An alternating current is one whose magnitude changes continuously with time between zero and a maximum value and whose direction reverses periodically. The simplest type of alternating current is one which varies with time simple harmonically. It is represented by 0 i i sin t …(i) or 0 i i cos t, …(ii) where i is the instantaneous value of the current at time t and i 0 is the maximum (or peak) value of the current and is called 'current amplitude'. ф is called the 'angular frequency' of alternating current (a.c.) and is given by 2 2f T where T is the 'time period' and f is the frequency of a.c. Eq. (i) and (ii) represent alternating current i as a sine function of time t and as a cosine function of time t respectively. Both representations lead to the same result.

description

xxxxxxxxxxxxxxxxxxxxxxxxx

Transcript of ac

  • ALTERNATING CURRENTS

    1. Alternating Current and Alternating EMF

    An alternating current is one whose magnitude changes continuously

    with time between zero and a maximum value and whose direction

    reverses periodically.

    The simplest type of alternating current is one which varies with time

    simple harmonically. It is represented by

    0i i sin t (i)

    or 0i i cos t, (ii)

    where i is the instantaneous value of the current at time t and i0 is the

    maximum (or peak) value of the current and is called 'current amplitude'.

    is called the 'angular frequency' of alternating current (a.c.) and is

    given by

    2

    2 fT

    where T is the 'time period' and f is the frequency of a.c.

    Eq. (i) and (ii) represent alternating current i as a sine function of time t

    and as a cosine function of time t respectively. Both representations lead

    to the same result.

  • Fig. 1 (a) and (b) are graphical representations of i as sine function of t

    and as cosine function of t respectively. The complete set of variations of

    the current in one time-period T is called a 'cycle.'

    The emf (or voltage) which produces alternating current in some circuit

    is called 'alternating emf' (or voltage). Thus, the emf (or voltage) whose

    magnitude changes continuously with time between zero and a

    maximum value and whose direction reverses periodically is known as

    alternating emf (or voltage).

    The instantaneous value of alternating emf may be represented by

    E = E0 sin t ...(iii)

    or E = E0 cos t (iv)

    The graphical representations of E as sine and cosine functions of t are of

    the same form as those of i (Fig. la and b).

    2. Amplitude, Periodic Time and Frequency of Alternating Current

    Amplitude :

    The alternating current varies in magnitude and reverses in direction

    periodically. The maximum value of the current in either direction is

    called the 'peak value' or the 'amplitude' of the current. It is represented

    by i0.

    Periodic Time :

    The time taken by the alternating current to complete one cycle of

    variations is called the 'periodic-time' of the current. If, in eq. (i) or (ii), t

  • be increased by

    2, the value of i remains unchanged. Hence the

    periodic-time T of the alternating current is given by

    T =

    2.

    Frequency :

    The number of cycles completed by an alternating current in one second

    is called the 'frequency' of the current. If the periodic-time of the

    alternating current be T, then its frequency is

    f = 1

    T

    But T =

    2.

    f .2

    The unit of frequency is 'cycles/second' (c/s) or hertz (Hz). The frequency

    of the domestic alternating current is 50 cycles/second or 50 Hz.

    3. Mean (or Average) Value and Root-Mean-Square Value of Alternating

    Current

    Mean (or Average) Value of Alternating Current :

    An alternating current flows during one half-cycle in one direction and

    during the other half-cycle in the opposite direction. Hence, for one

    complete cycle the mean value of alternating current is zero. This is

  • why there is no deflection in a moving-coil galvanometer when an

    alternating current passes through it.

    However, the mean value of alternating current over half a cycle is a

    finite quantity and, in fact, it is this quantity which is defined as the

    'mean value' of alternating current. It is given by

    imean =

    T

    2

    0

    1i dt,

    T

    2

    where i is instantaneous value of the current. Now

    i = i0 sin t,

    where i0 is the peak value of the current and

    T =

    2.

    mean 0

    2i i

    = 0.637 i0.

    Thus, the mean (or average) value of a.c. for a half-cycle (t = 0 to t = T

    2)

    is 0.637 times, or 63.7%, of the peak value.

    Similarly, the mean value of a.c. for the other half-cycle (t = T

    2 to t = T)

    will be 0.637 i0. Obviously, it is zero for the full cycle.

  • Root-mean-square Value of Alternating Current:

    The root-mean- square (rms) value of an alternating current is defined

    as the square-root of the average of i2 during a complete cycle, where i

    is the instantaneous value of the alternating current.

    Now, the average value of i2 over a complete cycle is given by

    T

    2 2

    0

    1i i dt.

    T

    Putting i = i0 sin t

    and T =

    2,

    we get

    2

    2 0ii .2

    Hence the root-mean-square value of the alternating current is given by

    2rmsi i

    = 0 0i

    0.707 i .2

    Thus, the root-mean-square value of an alternating current is 0.707

    times, or 70.7%, of the peak value.

    In a similar way, the root-mean-square value of an alternating emf

    represented by E = E0 sin t is given by

  • 0rmsE

    E2

    = 0.707 E0.

    The ammeter measuring alternating current gives directly the rms value

    of the current. Similarly, the voltmeter measuring alternating voltage

    gives the rms value of the voltage. If an ammeter connected in an

    alternating-current circuit reads 5 A, it means that the rms value of the

    current is 5 A. In our houses, the alternating current is supplied at 220 V.

    It actually means that the rms value of the alternating voltage is 220 V,

    The peak voltage of the current is

    V0 = 2 rms value of the voltage

    = 2 220

    = 311 V.

    Hence the voltage in domestic supply varies from + 311 V to 311 V in

    each cycle. It is due to this reason that 220 V a.c. is more dangerous than

    220 V d.c.

    The root-mean-square value of alternating current has special

    significance. If an alternating current given by i = i0 sin t passes through

    a resistance R, the instantaneous rate of production of heat is

    P = i2 R.

  • Since the magnitude of the current i is changing, the rate of production

    of heat P will also be changing. The average' rate of production of heat

    over one complete cycle of current is

    2P i R,

    where 2i is the mean of the square of the current (i2) over one complete

    cycle, i.e. 2i = (irms)2. Thus

    2

    rmsP i R.

    If we pass a direct current of strength irms in a resistance R, then also the

    rate of production of heat will be (irms)2 R. Thus, the root-mean-square

    value of an alternating current is equal to that direct-current which

    would produce heat in a given resistance at the same rate as the

    alternating current. Hence, the root-mean-square value of an

    alternating-current (irms) is also called the 'effective value' or 'virtual

    value' of the current.

    ivirtual = irms

    = 0i

    .2

    Similarly, the root-mean-square value of an alternating emf is equal to

    that direct emf which would produce heat in a given resistance at the

    same rate as the alternating emf. Hence, the root-mean-square value of

  • an alternating emf (Erms) is also called the 'effective value' or 'virtual

    value' of the emf.

    Evirtual = Erms

    = 0E

    .2

    4. Measurement of Alternating Current and Voltage

    If we pass an alternating current through an ordinary ammeter, then

    there will be no deflection in its needle. The reason is that the direction

    of alternating current changes very rapidly. Therefore, the direction of

    the magnetic field produced due to the current in the ammeter-coil and

    hence the direction of the deflection of the needle will also change with

    equal rapidity. But, because of its inertia, the needle cannot change its

    direction with that rapidity. So, it remains stationary in its mean position.

    Similarly, on passing an alternating current through a voltameter, the

    polarity of the plates of the voltameter will change very rapidly and, as a

    result, there will be no electrolysis.

    Clearly, to measure alternating current, some property of the current

    which is independent of the direction of the current, will have to be

    used. An example is the 'heating effect' of current. We know that when

    an electric current is passing through a resistance wire, the wire is

    heated and its length is increased, whatever be the direction of current.

    Hence it can be used to measure the alternating current. Ammeters and

    voltmeters used to measure alternating currents and alternating

  • voltages are based on this principle. These are called 'hot-wire ammeter'

    and 'hot-wire voltmeter'.

    Hot-wire Ammeter :

    It consists of a resistance-wire AB (Fig. 2) of high coefficient of linear

    expansion and high specific resistance which is stretched between two

    screws. This wire is made of platinum-iridium alloy which is not easily

    oxidised. A silk-thread tied to the middle point C of the wire AB is wound

    round a cylinder D and then connected to a spring M. The cylinder D can

    rotate about its axis. At its centre is attached a pointer which moves over

    a scale graduated in ampere. A and B are connected to two binding-

    screws P1 and P2 fitted at the base of the instrument. A thick wire called

    the 'shunt' is connected between P1 and P2 in parallel with AB.

    Working :

    When alternating current is passed through the wire AB, the length of

    the wire increases and it becomes loose. As a result, the spring M pulls

    the silk thread downward and the cylinder D rotates in the clockwise

    direction and the pointer moves towards right on the scale. Whatever be

    the direction of current in the wire, the pointer will always move

    towards right. (That is why no positive and negative signs are marked on

    the scale). The deflection of the pointer is proportional to the increase in

    the length of the wire and this increase in length is proportional to the

    heat produced. According to Joule's law, the heat produced in the wire is

  • proportional to the square of the strength of the current in the wire.

    Thus, the deflection 6 of the pointer is proportional to the square of the

    current (i2) through the wire, i.e.,

    2i .

    But the scale is so graduated that it reads directly in ampere. This is why,

    the marks on the scale are not equidistant, and the distance between

    them goes on increasing.

    Hot-Wire Voltmeter:

    The construction of the hot-wire voltmeter is just like the hot-wire

    ammeter except that instead of shunt, a high-resistance wire is

    connected in series with AB.

    Here, the deflection 0 of the pointer is proportional to the square of the

    potential difference (V2) across the ends of the wire, i.e.,

    2V

    But the scale is so graduated that it reads directly in volt. This is why the

    scale is not marked at equal distances. In the beginning the marks are

    closer but gradually the distance between them increases.

    5. Phasors and Phasor Diagrams

    In an alternating-current circuit, although the frequency of alternating

    current and alternating emf is same but it is not necessary that the

  • alternating current and alternating emf be in the same phase. Usually,

    when the current in the circuit is maximum, the emf is not maximum.

    The phase difference between the two depends upon the type of the

    circuit. In certain circuits, the current reaches its maximum value after

    the emf becomes maximum. Then the current is said to 'lag' behind the

    emf. In certain other circuits, the current reaches its maximum value

    before the emf has become maximum. In such cases the current is said

    to 'lead' the emf.

    The study of a.c. circuits is much simplified if we treat alternating current

    and alternating emf as vectors with the angle between the vectors equal

    to the phase difference between the current and the emf. The current

    and emf vectors are more appropriately called 'phasors'. A diagram

    representing alternating current and alternating voltage (of same

    frequency) as vectors (phasors) with the phase angle between them is

    called a 'phasor diagram'.

    6. Different Types of A.C. Circuits

    In an alternating-current circuit the phase difference between the

    current and the emf depends upon the type of the circuit. We shall first

    study simple circuits containing only one element (resistor, inductor or

    capacitor) and then circuits containing combinations of these basic

    circuit elements.

    (i) Circuit containing Resistance only:

    Let an alternating emf given by

  • E = E0 sin t, (i)

    be applied across a pure (non-inductive) resistance R Let i be the

    instantaneous current in the circuit. By Ohm's law, the applied emf at

    any instant, E, must be equal to iR, the p.d. across the resistance at that

    instant. That is

    E = iR

    or E0 sin t = iR

    or i = 0E

    sin t.R

    But 0 0E

    i ,R

    the peak value of the current in the circuit.

    0i i sin t. (ii)

    A comparison of eq. (ii) with eq. (i) shows that in a pure resistor the

    current is always in phase with the applied emf. This phase relationship

    graphically.

    (ii) Circuit containing Inductance only :

    Let an alternating emf given by

    E = E0 sin t,

  • be applied across a pure (zero resistance) coil of inductance L . As the

    current i in the coil varies continuously, an opposing (back) emf is

    induced in the coil whose magnitude is di

    L ,dt

    where di

    dt is the rate of change of current. The net instantaneous emf is

    thus E0 sin Ldi

    .dt

    But this should be zero because there is no

    resistance in the circuit. Thus

    0

    diE sin t L 0

    dt

    or 0di

    L E sin tdt

    or 0E

    di sin t dt.L

    Integrating both sides,

    we have

    0Edi sin t dt

    L

    or

    0E cos ti

    L

  • =

    0E cos tL

    or i =

    0E sin t .L 2

    The maximum value of sin

    t

    2 is 1. Therefore,

    0E

    L is the

    maximum current is the circuit. Thus

    i =

    0i sin t ,

    2

    where

    00

    Ei

    Lis the peak value of current. A comparison of this

    equation with the emf equation E = E0 sin t shows that in a pure

    inductor the current lags behind the emf by a phase angle of

    2 or 90

    (or the emf leads the current by a phase angle of

    2 or 90). This means

    that when the emf is maximum, the current is zero and vice-versa. Fig. 7

    (a) shows this phase relationship graphically. Fig. 7 (b) is the

    corresponding phasor diagram.

    Inductive Reactance :

    The peak value of current in the coil is

  • 00

    Ei .

    L

    Applying Ohm's law, we find that the product L has the dimensions of

    resistance. It represents the 'effective opposition' of the coil to the flow

    of alternating current. It is known as the 'reactance of the coil' or

    'inductive reactance' and is denoted by XL. Thus

    XL = L = 2 fL,

    Where f is the frequency of the alternating current. Thus, the inductive

    reactance increases with increasing frequency of the current. This is

    easy to understand.

    The inductive reactance XL (= 2 f L) is zero for d.c. for which f = 0.

    (iii) Circuit containing Capacitance only: Let an alternating emf given by

    E = E0 sin t be applied across the plates of a perfect capacitor of

    capacitance C. As the emf is alternating, the charge on the capacitor

    plates varies continuously and correspondingly current flows in the

    connecting leads. Let q be the charge on the capacitor plates and i the

    current in the circuit at any instant. Since there is no resistance in the

    circuit, the instantaneous p.d. q

    C across the capacitor plates must be

    equal to the (alternating) applied e.m.f. This is

    0q

    E sin t.C

    The instantaneous current i in the circuit is, therefore, given by

  • dq

    idt

    = 0d

    E sin tdt

    = 0E cos t

    =

    0E sin t1 2

    C

    The maximum value of sin

    t is 1.

    2 Therefore,

    0E

    1

    C

    is the

    maximum current in the circuit.Thus

    0i i sin t .

    2

    where

    00

    Ei

    1

    C

    is the peak value of current. A comparison of this

    equation with the emf equation E = E0 sin t shows that in a perfect

    capacitor the current leads the emf by a phase angle of

    2 or 90 (or

    the emf lags behind the current by a phase angle of

    2 or 90). This

    means that when the emf is zero, the current is maximum and vice-

  • versa. shows this phase relationship graphically. The corresponding

    phasor diagram.

    Capacitive Reactance:

    The peak value of current in the capacitor circuit is

    00

    Ei .

    1

    C

    Applying Ohm's law, we find that the quantity

    1

    C has the dimensions

    of resistance. It represents the 'effective opposition' of the capacitor to

    the flow of alternating current. It is known as the 'reactance of the

    capacitor' or 'capacitve reactance' and is denoted by XC. Thus

    C

    1 1X ,

    C 2 f C

    where f is the frequency of the alternating current. Thus, the capacitive

    reactance decreases with increasing frequency of current.

    When C is in farad and f in hertz (cycles/sec), then XC

    1

    2 f C is in

    ohm.

  • The capacitive reactance

    C

    1X

    2 f C in infinite for d.c. for which f =

    0.

    The reciprocal of reactance (inductive or capacitive) is called

    'susceptance' of the a.c. circuit. It is measured in 'mho' or 'ohm1 (1) or

    'siemen' (S).

    (iv) Circuit containing Inductance and Resistance in Series (LR Series

    Circuit):

    Let an alternating emf E = E0 sin t be applied to a circuit containing an

    inductance L and a non-inductive resistance R in series. The same current

    will flow both in L and R.

    Let i be the current in the circuit at any instant and VL and VR the p.d.'s

    across L and R respectively at that instant. Then

    VL = iXL

    and VR = iR,

    where XL is the inductive reactance. Now, VR is in phase with the current

    i, while VL leads i by 90. Thus VR and VL are mutually at right angles.

    (Their sum is not equal to the impressed emf E.)

    The vector OA represents VR (which is in phase with i), while OB

    represents VL (which leads i by 90). The vector OD represents the

    resultant of VR and VL, which is the applied emf E. Thus

    2 2 2R LE V V

  • or 2 2 2 2LE i R X

    or 2 2L

    Ei .

    R X

    Applying Ohm's law, we see that 2 2LR X is the effective resistance of

    the circuit. It is called the 'impedance' of the circuit and is represented

    by Z. Thus, in LR circuit,

    we have

    Z = 2 2LR X

    But XL = L.

    22Z R L .

    The quantity Z, measured in ohm, is called impedance because it

    impedes the flow of alternating current in the circuit.

    The reciprocal of impedance is called 'admittance' of the a.c. circuit. It is

    measured in 'mho' or 'ohm1'

    (1) or 'siemen' (S).

    (v) Circuit containing Capacitance and Resistance in series (CR Series

    Circuit):

    In this case (Fig. 11 a), the instantaneous p.d.'s across C and K are given

    by

  • VC = i XC

    and VR = i R,

    where XC is the capacitive reactance and i is the instantaneous current.

    Now VR is in phase with i, while VC lags behind i by 90. The phasor

    diagram is drawn, in which the vector OA represents VR (in phase with i)

    and the vector OB represents VC (lagging behind i by 90). The vector OD

    represents the resultant of VR and VC which is the applied emf E. Thus

    2 2 2R CE V V

    or 2 2 2 2CE i R X

    or i = 2 2C

    E.

    R X

    Appling Ohm's law 2 2CR X is the effective resistance of the circuit

    and is called the 'impedance' Z of the circuit. Thus, in CR circuit,

    We have

    2 2CZ R X .

    But XC =

    1.

    C

    2

    2 1Z R .C

  • The phasor diagram (Fig. 11 b) shows that in CR circuit the aplied emf E

    lags behind the current i (or the current leads the emf E) by a phase

    angle , given by

    C C

    R

    1V X Ctan .V R R

    (vi) Circuit containing Inductance and Capacitance (LC Circuit):

    In this case, the potential difference VL across L will lead the current i in

    phase by 90, while the potential difference VC across C will lag behind

    the current i in phase by 90. Thus the phase difference between VL and

    VC will be 180, i.e. they will be in opposite phase to each other. Hence,

    the resultant potential difference in LC circuit is

    E = VL ~ VC

    and the impedance of the circuit is

    Z = XL ~ XC.

    If, in the circuit, XL, = XC, then the impedance Z = 0. In this situation the

    amplitude of current in the circuit would be infinite. It will be the

    condition of 'electrical resonance'. Thus, in the condition of electrical

    resonance, we have

    XL = XC

    or

    1L

    C

  • or

    12 f L

    2 f C

    or

    2

    2

    1f

    4 LC

    or

    1 1f .

    2 LC

    This is called the 'resonant frequency' of the circuit.

    (vii) Circuit containing Inductance, Capacitance and Resistance in Series (L

    CR Series Circuit):

    Let an alternating emf E = E0 sin t be applied to a circuit containing an

    inductance L, a capacitance C and a resistance R all joined in series (Fig.

    12a). The same current will flow in all the three and the vector sum of

    the p.d.'s across them will be equal to the applied emf.

    Let i be the current in the circuit at any instant of time and VL, VC and VR

    the p.d.'s across L, C and R respectively at that instant. Then

    VL = i XL,

    VC = i XC

    and VK = i R,

    where XL and XC are the, inductive and capacitive reactances

    respectively.

    Now, VR is in phase with i but VL leads i by 90 while VC lags behind i by

    90. The phasor diagram is drawn. In this diagram, the vector OA

  • represents VR (which is in phase with i), the vector OB represents VL

    (which leads i by 90) and the vector OC represents VC (which lags behind

    i by 90). VL and VC are opposite to each other. If VL > VC (as shown in

    Fig.), then their resultant will be (VL VC) which is represented by the

    vector OD. Finally, the vector OF represents the resultant of VR and (VL

    VC), that is, the resultant of all the three, which is the applied emf E. Thus

    22 2

    R L CE V V V

    or

    22 2 2

    L CE i R X X

    or i =

    22

    L C

    E.

    R X X

    Applying Ohm's law, we see that 22

    L CR X X is the effective

    resistance of the circuit and is called the 'impedance' Z of the circuit.

    Thus, in LCR circuit,

    we have

    Z = 22

    L CR X X

    But XL = L

    and XC =

    1.

    C

  • 2

    2 1Z R L .C

    The phasor diagram (Fig. 12 b) shows that in LCR circuit the applied

    emf E leads the current i by a phase angle , given by

    L C

    R

    V Vtan

    V

    = L CX X

    R

    =

    1L

    C .R

    The following three cases arise :

    (i) When L >

    1,

    C then tan is positive i.e. is positive. In this

    case, the emf E leads the current i.

    (ii) When L <

    1,

    C then tan is negative i.e. is negative. In this

    case, the emf E lags behind the current i.

    (iii) When

    1L ,

    C then tan = 0 i.e. = 0. In this case, the emf

    E and the current i are in phase.

    Again, when L =

    1

    C,

  • we have

    2

    2 1Z R L R,C

    which is the minimum value Z can have. Thus, in this case, the

    impedance is minimum (and is purely resistive) and hence the

    current is maximum. This is the case of 'electrical resonance'.

    Hence at resonance

    1L

    C

    (or XL = XC)

    or 1

    .LC

    But = 2f, where f is the frequency of the applied emf.

    Therefore

    1f

    2 LC

    = f0 (say),

    where

    0

    1f

    2 LC is the natural frequency of the circuit when the

    resistance is zero (or small). Thus, the condition for resonance is that the

  • frequency of the applied emf should be equal to the natural frequency of

    the circuit when the resistance of the circuit is zero.

    Impedance Triangle :

    The impedance of an LCR a.c. circuit is given by

    22

    L CZ R X X

    and the phase relationship given by

    L CX X

    tan ,R

    in terms of the resistance and the reactances of the circuit elements may

    be expressed by means of a right-angled triangle, as shown in Fig. 13.

    This triangle is called as 'impedance triangle'.

    7. Series Resonant Circuit

    Series Resonant Circuit :

    Let us consider an alternating-current circuit having inductance L,

    capacitance C and resistance R connected in series. The impedance of

    the circuit is

    22

    L CZ R X X

    =

    2

    2 1R L .C

  • If the phase difference between the applied alternating voltage and the

    resulting current be , then

    L CX X

    tanR

    =

    1L

    C .R

    the inductive reactance XL and the capacitive reactance XC of the circuit

    be equal, then the voltage and the current will be in the same phase ( =

    0). In this condition, the impedance Z of the circuit will be minimum (= R)

    and the current i will be maximum. This is the condition of resonance.

    Thus, for resonance,

    we have

    L CX X

    1L

    C

    1

    LC

    f =

    2

    =

    1

    2 LC

  • is the frequency of the applied alternating emf. For resonance, it should

    be

    1.

    2 LC

    But

    1

    2 LC is the natural frequency of an LCR circuit (when R is

    small). So, in a series resonant circuit, the frequency of the applied

    voltage is equal to the natural frequency of the circuit.

    A graph between the frequency f of the applied voltage and the current i

    in the circuit is shown, in which

    1f

    2 LC is the natural frequency

    of the circuit. For f = f0, the current is maximum (imax). Both for f < f0, and

    f > f0, the current is less than its maximum value.

    The maximum value of the current, however, depends on the resistance

    R in the circuit. Two curves between f and i for circuit resistances R and

    2R. The maximum current for 2R is half of that for R. Also, the resonance

    is sharper for smaller resistance. The resonant frequency f0 remains,

    however, unaffected.

    The characteristic of the series resonant circuit is that the potential

    differences available across the inductance L and across the capacitor C

    may be much more than the applied voltage.

    8. Q-factor of an LCR Circuit : Sharpness of Resonance : Half-power

    Frequencies

  • Sharpness of Resonance :

    When an alternating emf E0 sin t is applied to an LCR circuit, electrical

    oscillations occur in the circuit with the frequency of the applied emf.

    The amplitude of these oscillations (current amplitude) in the circuit is

    given by

    i0 =

    0

    2

    2

    E,

    1R L

    C

    where

    2

    2 1R LC

    is the "impedance" Z of the circuit.

    The rapidity with which the current falls from its resonant value

    0E

    R

    with change in applied frequency is known as 'sharpness of resonance'.

    It is measured by the ratio of the resonant frequency 0 to the difference

    of two frequencies 1 and 2 at which the current falls to 1

    2 of the

    resonant value. That is,

    sharpness of resonance =

    0

    0 1

    .

    1 and 2 are known as 'half-power frequencies', because at these

    frequencies the power in the circuit reduces to half its maximum value.

  • The difference of half-power frequencies, 2 1, is known as "band-

    width". The smaller is the band-width, the sharper is the resonance.

    Expression for Band-Width:

    At resonant frequency 0, the impedance is R. Therefore, at 1 and 2

    it must be 2 R , that is,

    2

    2 1Z R LC

    = 2 R

    or

    2

    2 21R L 2Rc

    or

    2

    21L RC

    or

    1L R.

    C

    Thus, if 2 > 1,

    we can write

    1

    1

    1L R

    C (i)

    and

    2

    2

    1L R.

    C (ii)

    Adding (i) and (ii),

  • we get

    1 21 2

    1 2

    1L 0

    C

    or 1 21

    .LC

    Subtracting (i) from (ii),

    we get

    2 12 1

    1 2

    1L 2R

    C

    or

    2 1

    1 2

    1L 2R

    C

    or 2 1 L L 2R

    1 2

    1

    LC

    or 2 1R

    .L

    (iii)

    This is the expression for the "band-width".

    Expression for Half-power Frequencies:

    From, we have

  • 2 12 0 2

    = 0R

    2L

    and

    2 11 0 2

    0R

    .2L

    Quality (Q) Factor of LCR Circuit:

    The Q-factor of an LCR circuit is a dimensionless quantity which

    describes quantitatively the sharpness of resonance of the circuit. It is

    defined as

    Q = resonant frequency

    band-width

    =

    0

    2 1

    ,

    where 2 and 1 are the half-power frequencies.

    Substituting the value of 2 1 from eq. (iii),

    we get

    0L

    Q .R

  • Also, 01

    .LC

    1 L

    Q .R C

    9. Power in a.c. Circuit

    The rate of dissipation of energy in an electrical circuit is called the

    'power'. It is equal to the product of the voltage and the current. If the

    current be in ampere, the voltage in volt, then the power will be in

    'watt'. The power of an alternating-current circuit depends upon the

    phase difference between the voltage and the current.

    The instantaneous values of the voltage and the current in an a.c. circuit

    are given by

    0E E sin t

    and 0i i sin t

    where is the phase difference between the voltage and the current.

    Then, the instantaneous power in the circuit is

    Pins = E i

    = E0 sin t i0 sin (t )

    = 0 0E i sin t sin t cos cos t sin

    = 20 0E i sin t cos sin t cos t sin

  • =

    2

    0 0

    1E i sin t cos sin2 t sin .

    2

    For one complete cycle, 21

    sin t and sin 2 t 0.2

    Therefore, the average power P in the circuit is given by

    0 01

    P E i cos2

    = 0 0E i

    cos2 2

    or rms rmsP E i cos .

    cos is known as the 'power factor' of the circuit and its value depends

    upon the nature of the circuit.

    Wattless Current:

    If the circuit contains either inductance only or capacitance only

    (resistance is zero), then the phase difference between current and

    voltage is 90. The average power in such a circuit is

    P = Erms irms cos 90 = 0.

    [ cos 90 = 0]

    Thus, if the resistance in an a.c. circuit is zero, although current flows in

    the circuit, yet the average power remains zero, that is, there is no

    energy dissipation in the circuit. The current in such a circuit is called

  • 'wattless current'. In practice, however, a wattless current is not a reality

    because no circuit can be entirely resistanceless.

    It is for this reason that in a.c. circuits, either an inductor or a capacitor is

    used for controlling the current.

    Choke Coil

    In a direct-current circuit, the current is reduced by means of a rheostat.

    This results in a loss of electrical energy i2 R per second as heat. The

    current in an alternating-current circuit may, however, be reduced by

    means of a device which involves little loss of energy. This device is

    called 'choke-coil'.

    Construction :

    It is a high-inductance coil made of thick, insulated copper wire wound

    closely in a large number of turns over a soft-iron laminated core. Since

    the wire is of copper and is thick, its resistance (R) is almost zero, but due

    to the large number of turns and high permeability of the iron-core, its

    inductance (L) is quite high. The coil, therefore, offers a large reactance

    (L) and contributes to the impedance 2 2 2R L of the circuit.

    Thus, it reduces the alternating current appreciably. There is an

    arrangement to insert the core into the coil to any desired depth. More

    is the length of the core inside the coil; greater is the inductance (L) of

  • the coil and so greater the impedance. Hence this coil can be used to

    vary the current in the alternating-current circuit.

    The current in an alternating-current circuit can also be reduced by

    inserting a resistance R through a rheostat, but then an energy irms2 R will

    be lost as heat in each cycle of current, where irms is the current in the

    circuit. On the other hand, the loss of energy in a choke-coil is almost

    negligible.

    The average power dissipated in the choke coil (LR circuit) is given by

    rms rmsP E i cos , (i)

    where the power factor is given by

    2 2 2R

    cos .R L

    Since the resistance R of the choke-coil is nearly zero and its inductance L

    is very high, so

    cos 0 approx.

    Thus, according to eq. (i), the average power dissipated in choke-coil will

    be nearly zero.

    The resistance R of a choke coil is not exactly zero. That is why, in

    practice, some electrical energy is lost as heat. In addition to it, energy is

    also lost due to hysteresis-loss in the iron-core of the choke-coil. The loss

    of energy due to eddy currents is reduced by laminating the iron-core.

  • The choke-coil can be used only in a.c. circuits, not in d.c. circuits,

    because for direct-current ( = 0) the inductive reactance L of the coil

    is zero, only the resistance of the coil remains effective which too is

    almost zero.

    Transformers

    A transformer is a device, based on the principle of mutual induction,

    which is used for converting large alternating current at low voltage into

    small current at high voltage, and vice-versa. The transformers which

    convert low voltages into higher ones are called 'step-up' transformers,

    while those which convert high voltages into lower ones are called 'step-

    down' transformers. Transformers are used only in a.c. (not in d.c.).

    Construction :

    A simple transformer consists of two coils called the 'primary' and the

    'secondary', which are insulated from each other and wound on a

    common soft-iron laminated core, One of the two coils has a smaller

    number of turns of thick insulated copper wire while the other has a

    large number of turns of thin insulated copper wire. In a step-up

    transformer the coil of thick copper wire having smaller number of turns

    is the primary coil, and the coil of thin wire having larger number of turns

    is the secondary coil. In the step-down transformer, the order is

    reversed.

    Theory :

  • The given source of emf, say a.c. mains, is always connected to the

    primary coil. When alternating current flows through the primary coil,

    then in each cycle of current, the core is magnetised once in one

    direction and once in the opposite direction. Hence an alternating

    magnetic flux is produced in the core. Since the secondary coil is also

    wound on the same core, the magnetic flux passing through it changes

    continuously due to the repeated magnetisation and demagnetisation of

    the core. Therefore, by mutual induction, an alternating emf of the same

    frequency is induced in the secondary coil. The induced emf in the

    secondary coil depends upon the ratio of the number of turns in the two

    coils.

    Let Np, and Ns be the number of turns in the primary and the secondary

    coils respectively. Let us assume that there is no leakage of magnetic flux

    so that the same flux passes through each turn of the primary and the

    secondary. Let be the flux linked with each turn of either coil at any

    instant. Then, by Faraday's law of electromagnetic induction, the emf

    induced in the primary coil is given by

    p pe N ,t

    and the emf induced in the secondary coil is given by

    s se N .t

  • s s

    p P

    e N.

    e N

    If the resistance of the primary circuit be negligible and there be no loss

    of energy in it, then the induced emf ep in the primary coil will be nearly

    equal to the applied voltage Vp across its ends. Similarly, if the secondary

    circuit is open, then the voltage Vs across its ends will be equal to the

    emf es induced in it. Under these ideal conditions, we have

    s s s

    p p p

    V e Nr,

    V e N

    where r is called the 'transformation ratio'. In step-up transformer, r is

    more than 1; whereas in step-down transformer, r is less than 1. Thus

    voltage obtained across secondary

    voltage applied across primary

    = no. of turns in secondary

    .no. of turns in primary

    If ip and is be the currents in the primary and the secondary at any instant

    and the energy losses be zero, then

    power in the secondary

    = power in the primary

    i.e. s s p pV i V i

  • or p s s

    s p p

    i V Nr.

    i V N

    Thus, when the voltage is stepped-up, the current is correspondingly

    reduced in the same ratio, and vice-versa. Thus, the energy obtained

    from the secondary coil is equal to the energy given to the primary coil.

    Obviously, a transformer is not a generator of electricity.

    Energy Losses in a Transformer:

    In practice, the power output of a transformer is less than the power

    input because of unavoidable energy losses. These losses are :

    (i) Copper Losses :

    As the alternating current flows through the primary and the

    secondary, heat is developed inside the copper turns. This waste

    of energy is known as 'copper losses'.

    (ii) Eddy Current Losses :

    Eddy currents are set up in the iron core of the transformer and

    generate heat, with consequent loss of energy. To minimise

    these losses the iron core is laminated by making it of a number

    of thin sheets of iron insulated from each other, instead of

    making it from one solid piece of iron.

    (iii) Flux Losses :

  • The coupling of the primary and the secondary coils is never

    perfect. Therefore, the whole of the magnetic flux generated in

    the primary does not pass through the secondary.

    On account of these losses, we have

    s s p pV i V i .

    (iv) Hysteresis Losses :

    During each cycle of a.c. the core is taken through a complete

    cycle of "magnetisation. The energy expanded in this process is

    finally converted into heat and is therefore wasted. This loss is

    minimised by using the core of a magnetic alloy for which the

    area of the hysteresis loop is a minimum.

    Utility of Transformers in Long-distance Power Transmission :

    If electric power generated at the power station, say 22,000 watt, be

    transmitted over long distances at the same voltage as required by

    consumers, say 220 volt, a number of disadvantages will arise :

    (i) The current i flowing through the line wires will be very high (=

    22,000/220 = 100 amp). Hence a large amount of energy (i2 Rt)

    will be lost as heat during transmission, R being the resistance of

    the line wires.

  • (ii) The voltage drop along the line wire (iR) will be considerable.

    Hence the voltage at the receiving station will be considerably

    lower than the voltage at the generating station.

    (iii) The line wires, which are to carry the high current, will have to

    be made thick. Such wires will be expensive and require

    stronger poles to support them.

    If however, the power is transmitted at a high voltage, (say

    11,000 volt), all the above disadvantages almost disappear. The

    current flowing through the line wires will then be only

    22,000/11,000 = 2 amp. This will cause much less heating, much

    less voltage-drop along the line wire and will require much

    thinner line wires.

    Hence, the electric power generated at the power station is

    stepped-up to a very high voltage by means step-up transformer

    and transmitted to distant places. At the place where the supply

    is required, it is again stepped-down by a step-down

    transformer.

    Only alternating-current is suitable for this transmission because

    only alternating-voltage can be stepped-up or stepped-down by

    means of transformers.

    AC GENERATOR OR DYNAMO

    It is used to convert mechanical energy into electrical energy.

    Construction :

  • The main components of ac generator are :

    (i) Armature coil:

    If consist of large number of turns of insulated copper wire

    wound over iron core.

    (ii) Magnet :

    Strong permanent magnet (for small generator) or an

    electromagnet (for large generator) with cylindrical poles in

    shape.

    (iii) Slip rings :

    The two ends of the armature coil are connected to two brass

    rings R1 and R2. These rings rotate along with the armature coil.

    (iv) Brushes :

    Two carbon brushes (B1 and B2), are pressed against the slip

    rings. These brushes are connected to the load through which

    the output is obtained.

    Principle :

    It works on the principle of electromagnetic induction. According to it

    when a coil is rotated in magnetic field, an emf is induced in the coil. The

    coil may be rotated by water energy, steam energy or oil energy. Let at

    any instant magnetic flux through armature coil,

    NB = NBA cos

    = NBA cos t

  • The induced emf

    e =

    Bd

    dt

    = NBA sin t

    or e = e0 sin t,

    where e0 = NBA .

    and induced current

    i = e

    R

    = 0e

    sin tR

    = i0 sin t

    DC GENERATOR

    It produces direct current. It is possible by providing split rings or

    commutator in place of slip rings. DC generator consists of:

    (i) armature coil,

    (ii) magnet,

    (iii) split rings,

    (iv) brushes.

    For DC generator

  • output current

    0i i sin t

    DC MOTOR

    It is an electrical machine which converts electrical energy into

    mechanical energy.

    Principle:

    It is based on the fact that a current carrying coil placed in magnetic field

    experiences a torque. Because of this torque the coil starts rotating.

    Construction:

    It consists of

    (i) strong magnet,

    (ii) armature,

    (iii) split rings,

    (iv) brushes.

    By experiments,

    M12 = M12 = M.

    Thus

  • 21di

    e Mdt

    (1)

    and 12di

    edt

    (2)

    The SI unit of M is henry.

    The coefficient of mutual induction depends on the shape, size, the

    mutual arrangement of the coils, as well as the magnetic permeability of

    the medium surrounding the coils.

    Reciprocity theorem

    Calculations show (and experiments confirm) that in the absence of

    material medium between the coils, the coefficients M12 and M21 are

    equal:

    M12 = M21

    This property of mutual inductance is called the reciprocity theorem.

    Because of this reason, we do not have to distinguish between M12 and

    M21 and can simply speak of the mutual inductance of two circuits.

  • Example 43.

    Two circular loops 1 and 2 whose centres coincide lie in a plane (see fig.

    8.82). The radii of the loops are a1 and a2. Current i flows in loop 1. Find

    the magnetic flux 2 associated by loop 2, if a1

  • 0 < k < 1.

    For tight coupling k = 1,

    for loose coupling k < 1

    k can be defined as,

    k = Magnetic flux linked in secondary

    Magnetic flux linked in primary