ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th...

51
Print Submitted on August 23, 10:54 AM for energy12 Proof ABSTRACT FINAL ID: SM2A.3 CONTROL ID: 1464611 TITLE: Free form Optics Applications in Photovoltaic Concentration Abstract (35 Word Limit): Freeform surfaces are the key of the state-of-the-art nonimaging optics to solve the challenges in concentration photovoltaics. Different families (FK, XR, FRXI) will be presented, based on the SMS 3D design method and Köhler homogenization. AUTHORS/INSTITUTIONS: J.C. Minano, , Universidad Politecnica de Madrid, Madrid, SPAIN; KEYWORDS: General: 000.0000, General: 000.0000. ScholarOne Abstracts® (patent #7,257,767 and #7,263,655). © ScholarOne , Inc., 2012. All Rights Reserved. ScholarOne Abstracts and ScholarOne are registered trademarks of ScholarOne, Inc. Follow ScholarOne on Twitter Terms and Conditions of Use Product version number 4.0.0 (Build 66) Build date Oct 16, 2012 11:54:50. Server tss1be0013

Transcript of ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th...

Page 1: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

Print

Submitted

on August 23, 10:54 AM

for energy12

Proof

ABSTRACT FINAL ID: SM2A.3

CONTROL ID: 1464611

TITLE: Free form Optics Applications in Photovoltaic Concentration

Abstract (35 Word Limit): Freeform surfaces are the key of the state-of-the-art nonimaging optics to solvethe challenges in concentration photovoltaics. Different families (FK, XR, FRXI) will be presented, based on theSMS 3D design method and Köhler homogenization.

AUTHORS/INSTITUTIONS: J.C. Minano, , Universidad Politecnica de Madrid, Madrid, SPAIN;

KEYWORDS: General: 000.0000, General: 000.0000.

ScholarOne Abstracts® (patent #7,257,767 and #7,263,655). © ScholarOne, Inc., 2012. All Rights Reserved.

ScholarOne Abstracts and ScholarOne are registered trademarks of ScholarOne, Inc.

Follow ScholarOne on Twitter

Terms and Conditions of Use

Product version number 4.0.0 (Build 66)

Build date Oct 16, 2012 11:54:50. Server tss1be0013

Page 2: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven

1/13

Juan C. Miñano, Pablo Benítez, Pablo Zamora, João Mendes-Lopes, Marina Buljan, Asunción Santamaría

Universidad Politécnica de Madrid (UPM), Spain

LPI , Altadena, California, USA

Freeform Optics Applications in Photovoltaic Concentration

Page 3: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 2/46

Index

1. Introduction

2. Free-forms in asymmetric systems

3. Freeform Köhler array concentrators

The VENTANA optical train

Daido Steel’s DFK

4. Conclusions

Page 4: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 3/46

PV technologies

Triple-junction III-V cells (C >>1)

III-V cells are very expensive (~$50,000/m2-$150,000/m2)!!!!!

Silicon cells (C = 1)

43.5%

Page 5: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 4/46

HCPV optical specs

1. Geometrical concentration: 500-1,500

2. Low cost of optics (<$100/m2)

3. High optical efficiency (~80-90%), spectrally balanced

4. Good irradiance uniformity, spectrally balanced

5. High acceptance angle (preferred > ±1deg)

Page 6: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 5/46

θ (degs)

100

75

50

25

0.5 1 1.5

T(θ) (%)

α

90%

α

Geometrical and chromatic aberrations

Angle at which transmission drops to 90% of maximum

Ideal lens

Real lens

Acceptance angle definition

Page 7: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 6/46

Tolerance budget has to be shared among:

1. Sun’s angular extension ±0.27° 2. Optical components manufacturing

(shape and roughness) 3. Module assembling 4. Array assembling,

series connection mismatch 5. Tracker structure stiffness 6. Tracking accuracy

Tolerance budget The acceptance angle is a common basis to measure the tolerance of a design

Page 8: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 7/46

Some Fresnel-based CPV systems

Page 9: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 8/46

Concentration Acceptance Product

• CAP =

• CAP ≈ constant for a given architecture

• CAP is an important merit function

sinC α×

Page 10: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 9/46

Classic homogenization scheme

Prism homogenizer

CAP~0.45 CAP~0.18

Refractive Truncated Pyramid (RTP)

Page 11: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 10/46

Classical mirror based designs

Cell

Parabolic mirror Cassegrian aplanat

CAP~0.49 CAP~0.42

Page 12: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 11/46

Cassegrian aplanat Parabolic mirror

Some mirror-based CPV systems

Page 13: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 12/46

Why freeforms in CPV?

• Freeforms provide more freedom to improve performance and functionality

• Nonimaging freeforms are not more expensive than symmetric surfaces

• Symmetric optics cannot solve satisfactorily some asymmetric CPV problems

Page 14: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 13/46

Index

1. Introduction

2. Free-forms in asymmetric systems

3. Freeform Köhler array concentrators

The VENTANA optical train

Daido Steel’s DFK

4. Conclusions

Page 15: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 14/46

Solar cell

Homogenizing prism

Free-form primary

mirror (X) Free-form secondary lens (R)

Side view

• Light blocking is avoided • Wide space for heat-sink

The freeform XR concentrator

Page 16: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 15/46

The SMS3D design method

• SMS3D is an advanced optical design method

• SMS3D is capable to design two freeform surfaces without optimization

• SMS3D deals with extended sources and receivers

Benítez, P., Miñano, J. C., Blen, J., Mohedano, R., Chaves, J., Dross, O., Hernández, M., Falicoff, W, Opt. Eng. 43(7), 1489–1502, (2004)

Page 17: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 16/46

XR SMS 3D design

A. Cvetkovic et al. Proc. SPIE Vol. 7043-12, 2008

SMS ribs construction

Page 18: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 17/46

XR SMS 3D design

Page 19: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 18/46

XR SMS 3D design procedure

Final freeforms

Page 20: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 19/46

* The XR700 module developed by BOEING Co. and LPI

(A.Plesniak et all. 34th IEEE PV Specialist Conference, 2010)

The freeform XR concentrator

33.2%

Freeform mirror

Freeform lens

A. Cvetkovic, M. Hernández, P. Benítez, J. C. Miñano, J. Schwartz, A. Plesniak, R. Jones, D. Whelan, Proc. SPIE Vol. 7043-12, 2008

C = 1,000x α=±1.8º

Glass cover

CAP~1

Page 21: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 20/46

Page 22: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 21/46

Index

1. Introduction

2. Free-forms in asymmetric systems

3. Freeform Köhler array concentrators

The VENTANA optical train

Daido Steel’s DFK

4. Conclusions

Page 23: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 22/46

The simplest Köhler CPV design

L. W. James, Contractor Report SAND89–7029, (1989)

Images the Fresnel lens on the cell!

2.834511.87419

0.913859-0.0464674

-1.00679-1.967120

0.0000050.00001

0.0000150.00002

0.0000250.00003

0.000035

0.00004

-2.8

3451

-2.2

4593

-1.6

5734

-1.0

6875

-0.4

8016

30.

1084

240.

6970

111.

2856

1.87

419

2.46

277SILO (SIngle Lens secondary Optics)

Page 24: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 23/46

LPI’s Köhler array concentrators

S

S'

T

T’

O

I

I’

O’ Mi Mo

This can de done in 2D or 3D (free-form surfaces).

The optical process is done in parallel channels that homogenize and concentrate at the same time!

Page 25: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 24/46

The Fresnel-Köhler (FK) concentrator

P. Benítez, J.C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, M. Hernández, Optics Express, Vol. 18, Issue S1 (Energy Express), April 2010

Free-form lens

Page 26: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 25/46

0.0 0.2 0.4 0.6 0.8 1.0

0.59

0.450.36

0.30

0.28

0.18

3

5

7No SOE

Spherical dome

SILO

XTP

RTP

Fresnel Kohler (FK)

No SOE

Spherical dome

SILO

XTP

RTP

Fresnel Kohler (FK)

singCAP C α= ×

25

Comparison

Fresnel-RTP

0 5 10 2015 25-10 -5-15-25 -20

5

10

15

25

20

35

30

40

45

50

(mm)

55

Spherical Dome

FK concentrator

Fresnel-XTP

SILO

Fresnel (no SOE)Since (0.59/0.45)2=1.7, the FK 1,000x is equivalent to an 580x RTP!

APOE=625cm2 α = ±1º

Page 27: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 26/46

Freeform secondary lens Fresnel lens

The FK concentrator

Page 28: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 27/46

FK acceptance angle

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6

Isc (A

)

Tracker angle (º)

Measured = ±1.24o Simulated = ±1.25o

C = 625x

Page 29: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 28/46

FK irradiance uniformity

-5

5

0

100

200

300

400

500

600

-5

5

-5

5

0

100

200

300

400

500

600

-5

5

Measured Peak irradiance = 595 suns

Simulated Peak irradiance = 575 suns

Suns

Suns

Page 30: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 29/46

The VentanaTM Optical Train • A complete off-the-shelf optics solution by Evonik and LPI • Based on the best-in-class design: The FK concentrator

POE = primary optical element SOE = secondary optical element

6x6 Fresnel lens parquet

Page 31: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 30/46

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

Curr

ent

(A)

Voltage (V)

LPI-Evonik VentanaTM optical train

Pm

Efficiency = 32.8%* Fill Factor = 83.6% Pm = 6.97 W Isc = 2.80 A Voc = 2.95 V Irradiance = 847 W/m2

Entry Aperture = 256 m2

*No AR coatings; @Tcell=25ºC C3MJ Spectrolab cell bin 39%

C = 1,024x α > ±1º

Page 32: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 31/46

• Daido Steel present CPV system:

• UPM and Daido Steel are developing a new Köhler technology, DFK, within the NGCPV project

*Over illuminated cell area

CAP = Cg x sin α

• Cg* = 950 • α = ±0.92º

CAP = 0.49

• Higher concentration without compromising acceptance angle is desired.

• LPI, in collaboration with UPM, has developed high-performance Köhler freeform concentrators.

DFK

Page 33: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 32/46

Index

1. Introduction

2. Free-forms in asymmetric systems

3. Freeform Köhler array concentrators

The VENTANA optical train

Daido Steel’s DFK

4. Conclusions

Page 34: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 33/46

DFK optics • Cg = 1,234 • α > ±1.1º • Module efficiency > 35%

Daedo Steel module

& system technology

LPI Köhler optical

technology

CAP > 0.67

CAP = Cg x sin α

DFK

Page 35: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 34/46

POE (4 sectors Fresnel lens)

Flat FK (FK) Dome-shaped FK (DFK)

DFK

Page 36: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 35/46

17.3

13.8

5.5

5

Cg=1,234x f/ 0.81 SOE material: B270-equiv. glass POE material: PMMA

cell side

design area side

0.25mm wide frame around the cell for assembly tolerances

All dimensions in mm

DFK design parameters

Page 37: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 36/46

Irradiance uniformity

0

200

400

600

800

1000

1200

1400

suns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Effi

cie

ncy

Angle (deg)

Transmission curve

1.18 deg

90%

AM1.5D spectrum, finite sun, EQE’s of 3J cell, Fresnel and absorption losses included in simulation

CAP=0.72 > 0.67 (spec)

DFK simulation results

Page 38: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 37/46

AR coating on SOE

Optical efficiency

Acceptance angle

NO 85.6% ±1.18º

YES 87.5% ±1.18º

AR coating

50

55

60

65

70

75

80

85

90

95

100

300 500 700 900 1100 1300 1500 1700

Tran

smis

sion

(%)

Wavelength (nm)

α=0degα=10degα=20degα=30degα=40degα=50degα=60degα=70deg

DFK: AR coating on SOE

Page 39: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 38/46

ISSUE FLAT FK DOME-SHAPED FK

Acc. angle (α) 1 ±1.03 deg ±1.18 deg

CAP 0.63 0.72

Optical efficiency2 86.5% 87.5%

Irr. uniformity Excellent Very good

F-number 1.07 0.81

1 Cg = 1,234x for both concentrators 2 With AR coating, no rounding of facet corners

Performance comparison

Page 40: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 39/46

SILO

XTP

RTP

esnel Kohler (FK)

SILO

XTP

RTP

esnel Kohler (FK)

FK

r

r

0.63

DFK 0.72

SILO

XTP RTP

FK DFK

0.28

0.32

0.44

Performance comparison

Page 41: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 40/46

Practical problems with RTP secondaries

Köhler SOE Classical SOE

Lost ray

Every surface is optically active

Total Internal

Reflection (TIR)

Silicone optical coupler

sealant

Only these surfaces are

optically active

Fixing features

Page 42: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 41/46

POE mold has a 9-part molding die

3 different demolding movements

Only central part (red) needs positive draft angles

Daedo Steel advanced demolding technique

Page 43: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 42/46

Index

1. Introduction

2. Free-forms in asymmetric systems

3. Freeform Köhler array concentrators

The VENTANA optical train

Daido Steel’s DFK

4. Conclusions

Page 44: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 43/46

Conclusions

• Freeform optics is a proven technology for higher performance CPV designs

• Highly asymmetric CPV problems can optimally solved with freeforms, as the SMS3D XR design

• Köhler array concentrators, as the FK, solve practical issues and outperform classical designs

• Further advanced freeform concepts in progress

Page 45: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 44/46

LEGAL NOTICE

Devices shown in this presentation are protected by the following US and International Patents and Patents Pending:

Patents Issued

HIGH EFFICIENY NON-IMAGING US 6,639,733 October 28, 2003 COMPACT FOLDED-OPTICS ILLUMINATION LENS US 6,896,381 May 24, 2005 COMPACT FOLDED-OPTICS ILLUMINATION LENS US 7,152,985 December 26, 2006 COMPACT FOLDED-OPTICS ILLUMINATION LENS US 7,181,378 February 20, 2007 DEVICE FOR CONCENTRATING OR COLLIMATING RADIANT ENERGY US 7,160,522 January 9, 2007 DISPOSITIVO CON LENTE DISCONTINUA DE REFLEXIÓN TOTAL INTERNA Y DIÓPTRICO ESFÉRICO PARA CONCENTRACIÓN O COLIMACIÓN DE ENERGÍA RADIANTE Spain ES P9902661 December 2, 1999 OPTICAL MANIFOLD FOR LIGHT-EMITTING DIODES US 7,380,962 OPTICAL MANIFOLD FOR LIGHT-EMITTING DIODES US 7,286,296 THREE-DIMENSIONAL SIMULTANEOUS MULTIPLE-SURFACE METHOD AND FREE-FORM ILLUMINATION-OPTICS DESIGNED THEREFROM US 7,460,985 December 2, 2008

Partial List of Patents Pending

DEVICE FOR CONCENTRATING OR COLLIMATING RADIANT ENERGY - a continuation of US 7,160,522 FREE-FORM LENTICULAR OPTICAL ELEMENTS AND THEIR APPLICATION TO CONDENSERS AND HEADLAMPS PCT/US2006/029464 July 28, 2006 MULTI-JUNCTION SOLAR CELLS WITH A HOMOGENIZER SYSTEM AND COUPLED NON-IMAGING LIGHT CONCENTRATOR PCT/US07/63522 March 7, 2007 OPTICAL CONCENTRATOR, ESPECIALLY FOR SOLAR PHOTOVOLTAICS PCT/US08/03439 Mar 14, 2008

Page 46: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 45/46

• This work is under the NGCPV EU-Japan project, funded by EU Commission (ENERGY,2011,2,1-1 Grant agreement no. 283798) and Japanese NEDO.

• Devices shown in this presentation are protected under US patent 8,000,018 & International patent applications 0905286.3, 200980154626.5, 762MUMNP2011

Page 47: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 46/46

Thank you!

Page 48: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 47/46

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0 10 20 30 40 50

Opt

ical

Effic

ienc

y

Edge Radius (μm)

Only Rounded Outer Corners

Equally Rounded Inner and Outer Corners Outer

corners Inner corners

Outer corners

LENS

LENS

No rounded corners

ciency drop due to teeth rounded edges

83.4%

87.5%

30μm

87.0%

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.90

0.89

DFK round corners losses

Page 49: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 48/46

DFK with dimple DFK without dimple

Page 50: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 49/46

Top view Bottom view

Central dimple enhanced POE design

Page 51: ABSTRACT FINAL ID: CONTROL ID: TITLE: … · 2018-02-11 · SOLAR Optics for Solar Energy 11th-14th November 2012, Eindhoven 1/13 Juan C. Miñano, Pablo Benítez, Pablo Zamora, João

SOLAR Optics for Solar Energy, 11th-14th November 2012, Eindhoven 50/46

Index

1. Introduction

2. Free-forms in asymmetric systems

3. Freeform Köhler array concentrators

The VENTANA optical train

Daido Steel’s DFK

4. Conclusions