Absorption spectrum of Sn I between 1580 and 2040 Å

16
Absorption spectrum of SnI between 1580 and 2040 A C. M. Brown* and S. G. Tilfordt E. 0. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C. 20375 Marshall L. Ginterl Institute for Molecular Physics, University of Maryland, College Park, Maryland 20742 (Received 23 November 1976) The high-resolution absorption spectrum of Sni is reported in the region between 1580 and 2040 A. Transitions have been observed from the 5p 2 3 P and 'D terms to levels with J < 3 associated with 5p us, 5p nd, 5pn g, and 5 s5p configurations. Energy levels have been determined with n * values as high as 76. A total of 1068 lines and 639 odd-parity energy levels are reported, a major part of which are new. An analysis of these data, based on Lu-Fano graphical methods and multichannel quantum-defect parameterization, is presented. Ionization limits of 59232.69 i 0.10 cm-' and 63484.18 - 0.10 cm-' have been determined for levels converging on the 5p 2 P,, 2 and 5p 2 P3/ 2 levels of Snii, respectively. INTRODUCTION The electronic spectrum and structure of Sni have been investigated extensively. Early investigations sum- marized by Moorel were superseded in 1964 by data in the unpublished theses of Brill2 and Wilson. 3 Brill re- investigated the Sni emission spectrum in the -2060- 13 600 A region and incorporated all existing data, in- cluding emission data made available to him by Hum- phreys (in the infrared) and Shenstone (in the vacuum uv), to produce an improved Sni line list covering the -1603-24 712 A region. Wilson reinvestigated the Sni absorption spectrum in the 1215-2382 A region, and listed over 400 lines of which 194 were classified. Brill also provided a revised listing of 62 even-parity and 138 odd-parity energy levels for Sni, while Wilson re- ported 50 odd-parity levels not included in Brill's list. The present investigation emphasizes the absorption spectrum of tin in the 1580-2040 A region. The spec- trum reported here is more complete and more highly resolved than Wilson's spectrum and has improved purity (only about 85% of Wilson's lines have been con- firmed as Sni) and wavelength accuracy. Finally, the use of Lu-Fano 4 graphical methods in the present work leads to an essentially total assignment of the observed Sni spectrum. The absorption spectrum of Sni under discussion here consists of transitions between levels associated with the ground configuration and levels associated with ex- cited electron configurations (a) 5S 2 5pnx (with x being s, d, or g) that have the ground term 5s 2 5p 2 of Snii as their core, or (b) 5s5p 3 . Extensive interactions among the levels of configurations (a) and (b) make any pure configuration or pure angular momentum coupling scheme labels artificial. In Sni, as in C i,s Si i, 6,7 and Ge i, 8 only the general dipole selection rules (even -odd, AJ = O. ± 1, J =0 + J = 0) are observed to apply to transitions between four levels (designated 3 P 2 , 1 , 0 and 1D 2 levels in LS notation) of 5s25p 2 and the many levels associated with the excited configurations. There are 19 odd-parity channels with J'3 associ- ated with configurations (a) above. Consideration of the u-coupling terms produced by adding an ns, nd, or ng electron to 2 P / 2 or 2 Po/ 2 indicates that four J=3, four J= 2, three J= 1, and one J= 0 channel belong to the 2 P°/ 2 (upper) ion core, and two J=3, two J=2, two 607 J. Opt. Soc. Am., Vol. 67, No. 5. May 1977 J= 1, and one J = 0 channel belong to the 2 P1/ 2 (lower) ion core. Fifteen of these channels result from ns or nd configurations, whereas two J=3 and one J=2 chan- nel belonging to 2 P '/ 2 and one J= 3 channel belonging to 2 P / 2 are from ng configurations. In addition, sever- al levels of the interloper configuration 5s5p 3 exist in the same energy region as the levels from the configura- tions just discussed. The AJ selection rule limits the dipole transitions between the ground term, 5p 23 P, and the 19 channels associated with configurations (a) listed above to 35 spectral series. The Sni ground term is regular with 3 P 1 - 3 Po and 3 P 2 - 3 Po separations 2 of 1691. 806 and 3427. 673 cm- 1 , respectively, whereas the Snii 5p 2 P3/ 2 - 2 P 1 2 spacing 2 is 4251. 494 cm-'. Hence, several of these 35 spectral series from the three 5P 23 p levels of Sni converge to each of six apparent convergence limits between 1791.95 and 1575.19 A. Finally, the AJ selec- tion rule limits the allowed transitions between the 5p 2 1D2 level (which is 2 8612. 955 cm-' above 5p 2 3PO) and the channels from configurations (a) to 17 spectral series, which can converge to either of two apparent series limits at 1975. 51 and 1822.45 A. The multichannel, two-limit approach to the problem of interpreting the many interactions among the energy levels converging on the two ground-state levels of Snii is the same as that discussed 8 in detail for the analogous channels in Ge I. Briefly, the interactions between channels (level series plus their continua) are periodic because level series belonging to channels converging on different ion core limits periodically cross. The restriction that interacting levels have the same parity and J value permits the consideration of the resulting channel mixings for each J value as an individual problem. The possible energy levels corre- spond to the points of intersection of functions ni =G(n*) and nH =f(n2*). The first function can be repre- sented 8 -1 0 by Hi =G(n2*)=n2*(l -n * Ay / 2, while nH =f (n*) is the solution of 2 (1) (2) In Eq. (1) the quantities nl and n 2 * are the effective quantum numbers for each level based on the two pos- sible ionization energies, El.. (for 5Pi 2 P 1 / 2 ) and E 2 ., (for Copyright C 1977 by the Optical Society of America 607

Transcript of Absorption spectrum of Sn I between 1580 and 2040 Å

Page 1: Absorption spectrum of Sn I between 1580 and 2040 Å

Absorption spectrum of SnI between 1580 and 2040 AC. M. Brown* and S. G. Tilfordt

E. 0. Hulburt Center for Space Research, Naval Research Laboratory, Washington, D.C. 20375

Marshall L. GinterlInstitute for Molecular Physics, University of Maryland, College Park, Maryland 20742

(Received 23 November 1976)

The high-resolution absorption spectrum of Sni is reported in the region between 1580 and 2040 A.Transitions have been observed from the 5p 23P and 'D terms to levels with J < 3 associated with 5p us, 5p nd,5pn g, and 5 s5p configurations. Energy levels have been determined with n * values as high as 76. A total of1068 lines and 639 odd-parity energy levels are reported, a major part of which are new. An analysis of thesedata, based on Lu-Fano graphical methods and multichannel quantum-defect parameterization, is presented.Ionization limits of 59232.69 i 0.10 cm-' and 63484.18 - 0.10 cm-' have been determined for levelsconverging on the 5p 2P,, 2 and 5p 2P3/2 levels of Snii, respectively.

INTRODUCTION

The electronic spectrum and structure of Sni have beeninvestigated extensively. Early investigations sum-marized by Moorel were superseded in 1964 by data inthe unpublished theses of Brill2 and Wilson. 3 Brill re-investigated the Sni emission spectrum in the -2060-13 600 A region and incorporated all existing data, in-cluding emission data made available to him by Hum-phreys (in the infrared) and Shenstone (in the vacuumuv), to produce an improved Sni line list covering the-1603-24 712 A region. Wilson reinvestigated the Sniabsorption spectrum in the 1215-2382 A region, andlisted over 400 lines of which 194 were classified. Brillalso provided a revised listing of 62 even-parity and138 odd-parity energy levels for Sni, while Wilson re-ported 50 odd-parity levels not included in Brill's list.

The present investigation emphasizes the absorptionspectrum of tin in the 1580-2040 A region. The spec-trum reported here is more complete and more highlyresolved than Wilson's spectrum and has improvedpurity (only about 85% of Wilson's lines have been con-firmed as Sni) and wavelength accuracy. Finally, theuse of Lu-Fano4 graphical methods in the present workleads to an essentially total assignment of the observedSni spectrum.

The absorption spectrum of Sni under discussion hereconsists of transitions between levels associated withthe ground configuration and levels associated with ex-cited electron configurations (a) 5S2 5pnx (with x beings, d, or g) that have the ground term 5s2 5p2 P° of Sniias their core, or (b) 5s5p3 . Extensive interactionsamong the levels of configurations (a) and (b) make anypure configuration or pure angular momentum couplingscheme labels artificial. In Sni, as in C i,s Si i, 6,7 andGe i, 8 only the general dipole selection rules (even-odd, AJ = O. ± 1, J = 0 + J = 0) are observed to applyto transitions between four levels (designated 3 P2, 1, 0

and 1D2 levels in LS notation) of 5s25p2 and the manylevels associated with the excited configurations.

There are 19 odd-parity channels with J'3 associ-ated with configurations (a) above. Consideration of theu-coupling terms produced by adding an ns, nd, or ngelectron to 2 P /2 or 2Po/2 indicates that four J=3, fourJ= 2, three J= 1, and one J= 0 channel belong to the2P°/2 (upper) ion core, and two J=3, two J=2, two

607 J. Opt. Soc. Am., Vol. 67, No. 5. May 1977

J= 1, and one J = 0 channel belong to the 2 P1/2 (lower)ion core. Fifteen of these channels result from ns ornd configurations, whereas two J=3 and one J=2 chan-nel belonging to 2 P '/ 2 and one J= 3 channel belongingto 2 P /2 are from ng configurations. In addition, sever-al levels of the interloper configuration 5s5p3 exist inthe same energy region as the levels from the configura-tions just discussed.

The AJ selection rule limits the dipole transitionsbetween the ground term, 5p 2 3P, and the 19 channelsassociated with configurations (a) listed above to 35spectral series. The Sni ground term is regular with3 P1 - 3 Po and 3 P2 - 3

Po separations2 of 1691. 806 and3427. 673 cm-1 , respectively, whereas the Snii 5p2 P3/ 2 -2P 1 2 spacing2 is 4251. 494 cm-'. Hence, several ofthese 35 spectral series from the three 5P2 3 p levels ofSni converge to each of six apparent convergence limitsbetween 1791.95 and 1575.19 A. Finally, the AJ selec-tion rule limits the allowed transitions between the5p 2 1D2 level (which is2 8612. 955 cm-' above 5p 2 3PO) andthe channels from configurations (a) to 17 spectralseries, which can converge to either of two apparentseries limits at 1975. 51 and 1822.45 A.

The multichannel, two-limit approach to the problemof interpreting the many interactions among the energylevels converging on the two ground-state levels ofSnii is the same as that discussed8 in detail for theanalogous channels in Ge I. Briefly, the interactionsbetween channels (level series plus their continua) areperiodic because level series belonging to channelsconverging on different ion core limits periodicallycross. The restriction that interacting levels have thesame parity and J value permits the consideration ofthe resulting channel mixings for each J value as anindividual problem. The possible energy levels corre-spond to the points of intersection of functions ni=G(n*) and nH =f(n2*). The first function can be repre-sented8 -10 by

Hi =G(n2*)=n2*(l -n * Ay / 2,

while nH =f (n*) is the solution of

2

(1)

(2)

In Eq. (1) the quantities nl and n2* are the effectivequantum numbers for each level based on the two pos-sible ionization energies, El.. (for 5Pi2P 1/2 ) and E2 ., (for

Copyright C 1977 by the Optical Society of America 607

Page 2: Absorption spectrum of Sn I between 1580 and 2040 Å

5p 2P '/ 2 ), with A = (E2.c,- E1.) R -1 = 0.0387426 using Rs.=109 736. 809 cm-'. In Eq. (2) the Ui,''s are matrixelements for the transformation between the close-coupled and loose-coupled representations, 1 the g,u's areeigenquantum defects" for the close-coupled eigenstates,and n is n* or n* depending upon which state of the ionthe ith loose-coupled state is built.

In the Lu-Fano4 graphical approach to a two-limitcase, each energy level corresponds to a point in aneffective quantum number space, a two-dimensionalspace where nl and n* are the ordinate and abscissa,respectively. Empirical procedures for treating many-channel, two-limit problems involve mapping the points(nl, n4*) for all observed levels of the same J and parityonto a unit square [i. e., a mapping onto (01 )modl VS

(n*)modl]. To employ such procedures it is essentialto first identify enough energy levels by conventionalmethods to sketch the shape of f in the unit square.These approximate functions can be used with Eq. (1) toestimate the energies of unidentified levels. As addi-tional levels are identified, the empirical f functionsare refined and the entire process iterated until no newenergy levels can be found. The reader is referred toRef. 8 for a detailed discussion of these procedures.

The transition probability between a ground level anda Rydberg level depends on dipole integrals between thetwo levels. Because the major portion of the ground-state wave function extends only a few angstroms fromthe nucleus, it is the close-coupled part of the Rydbergelectron's wave function which makes the largest con-tribution to the transition probability. If the otth close-coupled eigenstate has a dipole integral Da with a givenground level, the oscillator strength between a groundlevel and some Rydberg level is given9" 0 by

f = N(Z (Ma Da)), (3)

where Nis a normalization factor and the M,'s are mix-ing coefficients" which specify the specific linear com-bination of close-coupled states making up the Rydberglevel. The mixing coefficients M, can be computedfrom the expansions"0

M. = Ci( Z ) -1/ (4)

where the Cia's, which are functions of n, and n?', arethe cofactors of the ith row and ath column of the deter-minant in Eq. (2).

Breakdowns in the two-limit, multichannel behavioroutlined in the preceding paragraphs are expected when-ever there are appreciable interactions with levels out-side the channels under consideration. Typically suchdeviations occur for levels with low n values and in thevicinity of interloper levels.

EXPERIMENTAL PROCEDURES

The experimental apparatus used in this work hasbeen described in detail, 12 and the procedures used toobtain spectra of Sni are analogous to those used to ob-tain highly dispersed absorption spectra6' 8 of Si i andGe i. Briefly, tin'3 was heated to temperatures in the

range 1050-1650 'C in an evacuable King furnace sys-tem with a 122 cm long hot zone. Absorption spectrawere obtained from a single pass through the furnaceusing a microwave-excited xenon lamp'2 to providebackground continua. Spectra were photographed onKodak SWR plates in the third order of a 6. 6 m spec-trograph with a reciprocal dispersion of 0. 41 A/mm.Most experiments were performed with flowing argonin the furnace at pressures in the 0. 1-0.2 Torr range,although argon pressures as high as 20 Torr were em-ployed in a few cases.

The emission lines of iron used as reference stan-dards and the procedures for data measurement and re-duction are the same as those described previously. 12

In addition, iron and germanium were added to severalsamples of tin and a number of exposures taken whichcontained spectral lines for all three elements. Thewell-determined absorption lines of germanium8 andiron'4 were used as additional internal standards in thedetermination of the absolute wavelengths of the Snispectrum. The uncertainties in the wavelengths ofsharp, unblended lines appear to be ± 0.0015 A or bet-ter (corresponding to ± 0. 06 cm 1l at 1650 A), althoughthe uncertainties associated with weak, diffuse, orblended features are much larger.

RESULTS

Once a list of observed Sni lines had been prepared(see Table I), the initial phase of the analysis pro-ceeded conventionally. The energy differences betweenthe 5S25p2 3po, 3P1 , 3P2, and 1D2 levels and the AJ se-lection rules were used to determine the J values andenergies of as many levels as possible. Spectra as-sociated with levels above the 5p2 P'1/2 limit exhibitautoionization effects analogous to those discussed forGe i (see Fig. 3, Ref. 8 and corresponding descriptions),and converge regularly on the 5p2 P, 1 2 limit. A value ofE2.. = 63 484.18 ± 0.10 cm-' was obtained using two 3Po-J= 1 series which were well developed. This value,along with the known 2 5p 2 p0 splitting of Sn ii, givesEl..= 59 232. 69 ± 0. 10 cm-'. These ionization energieswere consistent with results observed from other chan-nels observed above the 5p2 P0

1/2 limit and with themultichannel treatment of the levels observed belowthe first limit. The conventionally identified levels ob-served below the 5p2 P'1 /2 limit were sorted by J andused to construct preliminary plots of ("ln)modl VS(nt)modl. Although incomplete, sufficient data wereavailable to sketch the empirical f curves for each valueof J. The iterative procedure described above was thenapplied to complete the analysis.

Table II lists all of the odd-parity energy levels ofSni which have been characterized experimentally, to-gether with the J, nl, and n2* values (columns 2 through4, respectively) for each level. A numerical value incolumns 5 through 8 indicates that a transition from5p2 3po,2 or 1D2 to the level in question has been ob-served in the present work, with additional commentsappearing in subsequent columns. The n* and J valuesin Table II serve to uniquely identify the upper levelsof the transitions in the line assignments appearing inTable I.

608 J. Opt. Soc. Anm, Vol. 67, No. 5, May 1977 Brown et aL 608

Page 3: Absorption spectrum of Sn I between 1580 and 2040 Å

TABLE I. Observed absorption lines of Sn i.

I a WAVELENGTH WAVOOWBE CLASSIFICATIO~b

30

35

3

10

0

3

15

15

0s

0

0

3

75

4

S

12

4

4

0

4

4

0

4

4

4t

80

0

3

0

0

3

0

0

3

0

3

0

0

3

0

3

0

0

3

3

3

3

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

0

(A)-

204 1. 573

2041. 312

2031.108

2029. 259

2027. 612

2027. 479

2022. 447

2021. 481

2020. 695

2016.401

2008. 721

2006. 291

2002.57

1999.078

1996. 028

1994. 975

1993.711

1993. 4 18

1991. 868

1991. 763

1990. 081

1989.90

1988. 616

1987. 340

1986.30

1986. 228

1986.08

1985. 259

1984. 4121984. 171

1983.76

1983. 668

1983.52

1983.16

1983. 012

1982.87

1982.66

1982. 4131

1982.177

1981. 915

1981.78

1981.72

1981. 456

1981.28

1981. 043

1980.94

1980.90

1980. 668

1980. 336

1980. 033

1979. 758

1979. 510

1979.279

1979.069

1978. 879

1978. 702

1978.536

1978.386

1978. 2481978. 116

1977.996

1977. 886

1977.777

1977.6'79

1977. 589

1977. 501

1977. 17

1977. 342

1977. 270

1977. 202

1977. 137

1977. 079

1977. 020

1976.965

1a WAVELENGTH1CHA I

48981. 84

48988.10

49234.16

49279. 07

4931 9.10o

49322.334944S.OS

49468.68

49487.93

49593.30

49782.92

49843.21

4993S.8

50023.06

S0099.50

50125.94

50157.73

50165.09

50204. 13

50206.78

50249.22

50253.7

50286.22

50318.52

50344. 8

50346.68

50350. 4

50371.26

50392.77

50398.88

SO409.2

50411.66

50415S.4L

50424.5

50428.34

50432.0

S0437.3

50443.12

50449.59

50456.25

50459.6

50461. 2

50467. 94

30472.3

50478.45

S0481.0

50482.2

50488.02

50496. 48

SOSO1. 22

50511.23

50517.56

50523. 46

50528.80

50533.65

50538.19

50542.42

50546.26

50549.7850553. 14t

50556.22

50559.02

50561.82

50564. 31

50566.62

50568.88

50571. 03

50572.93

50574.78

50576.52

50578.18

50579.66

50581. 17

50582.59

CLPASS IFICST100

3p, -I

3P2 - 2

-P 2

-P~2

'02 -I

21P2 - 1

'02 - 2

'0)2 -2

'02 2

'02 3

'02 3

'02 - 2

102 -

'02 -3

'02 -2I

'02 -3

'02 1

'02 3

0D2 -

1 -3 3

'02 -3

'02 -3

0D2 -1

'02 - 3

'2 - I

'02 -1

'02 -3

'02 -1

'02 - 3

'02 1

'102 I

'102 I

I, 3

'D2 3

'02 -3

'02 -3

'02 -3

'02 - 3

'02 - 3

'02 - 3

'02 -3

'D2 - 3

'02 - 3

'02 -3

'02 - 3

-D 3

'D2 -3

-D 3

'02 -3

'02 -3

'02 3

'02 -3

'02 -

2.7508

3. 1487

4.4122

3.1909

2.9661

4.4471

4.41970

2.9841

4.5149

3.2385

3. 0228

4. 6718

4.7152

4. 7576

4.7956

2. 8662

41.8251

3. 3308

3.3374

4. 8504

4. 8726

4. 8750

41.8922

4. 9096

41.9239

4. 9248

4. 9269

14. 9382

4.9501

3.3709

4. 9592

4. 9606

4. 9626

4. 9676

4. 9699

4.9718

4. 97149

4. 9782

4. 9817

4. 9856

4. 9872

41.9884

4.9922

4. 9946

4. 9981

4. 9995

5. 0003

5.0036

5.00841

5. 0128

5. 0169

5.0205

5. 0239

5. 0270

5.0299

5. 0325

5. 0349

5. 0372

5. 03925.0412

5.0430

5.0446

5. 0462

S. 0477

5. 0491

5. 05014

5. 0516

5.0528

5. 0538

5. 0549

5.0558

5.0567

5.0576

5. 0584

WAVELENGTH WAVETHJAAER CLASSIFICATIO~b(RI (C-~') 3 .J n 2

1840.67 54328.0 '02 - 2 14.2100

0

0

0

0

100

15

60

100

75

6

25

12

75

5

soc

30

100

500

40o

80

90

20

15

Il00'

300

1 2

10a

350

400

S

200

100b0c

1 5

250

150

220

70

1000400

50

100

7 0

200

500oc

150

b0c

30

S

125

Sc

110

350

300

450

250

f

300

1 0

1 5

50

40

30

(RI

1976. 9151976. 862

1976. 819

1976.774

1976. 730

1976. 653

197 1. 450

1969.121

1960. 206

1952.126

1952.059

1949.863

1948. 210

1945. 430

1942. 700

1936. 274

1933.149

1929.0

1927. 948

1926. 746

1925.297

1913.484

1911. 552

1909. 210

1907.416

1904. 038

1900.0

1897. 288

1895. 811

1893. 413

1891. 421

1888.131

1886.03

1886.03

1882. 585

1881.36

1878. 586

1878.1

1874. 333

1873. 312

1872. 273

187 1. 268

1870. 3814

1868.73

1865.923

1865. 516

1863. 354

1862.992

1862. 916

1861. 418

1860. 325

1860.0

1859. 772

1858.0

1856. 804

1853. 675

1854. 253

1853.41

1853.191

1851. 969

1848. 930

184. 769

18148.36

188. 236

184. 208

1847. 967

1847. 242

1846. 286

1845. 855

18144.4L7

1844. 356

1843.55

1841 * 01841. 306

609 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977 Bone l 0Brown et aL 609

WAVENUJAER(cm-,)

50583.8650585.23

50586. 31

50587.47

50588.60

50590.5S7

50724.09

50784i.09

51015.03

51226.19

51227. 95

51285.65

51329.17

51402.52

51474.74

51645.58

51729. 08

51839

51868.61

51900.98

51940. 05

52260.70

52313.50

52377.68

52426.96

52519.95

52632

52706.81

52747.87

52814q.68

52870.31

52962.42

53021.3

53021.3

53118.46

53153.0

53231.52

53244l

53352.31

53381.38

534l1. 01

534I39.70

53464.95

53512.3

53592.77

536041.46

53666.67

53677.10

53679.30

53722.50

53754.04

53762

53770.02

53820

53855.99

539416.90

53930.07

53954.6

53960.97

53996.57

54085.35

54090.04

54101.9

54i1 05. 64

54106.45

54113.53

54134.77

54162.8054175.45

54216.1

54219.4q8

54243.2

54306. 554309.27

3 J.

'02 - 3'02 - 3

'02 - 3

'02 - 3

'02 - 3

'02 - 3

3,- 2

~'f2 - 2

'P1 -I

'P2 - 33,- 0

3P2 - 2

'P1 3

3P2 I

'3P2 I

'3P2 - 2

3p, -I

3P, - 2

3P2 - 1

'P2 - 3

'P2 - 2

3P2 - 2

P,- 2

'02 - 3-3p5

3P2 - 3

3P2 - 1

3P2 - 33P2 -1I3p' -I

3P, - 2

'P2 - 2

'02 - 3

3P2 -'02 - 2

3P2 - 23,- 1

'P2 - 3

3 - 03P, - 1

-O 3

-P, 2

3P2 I

'P2 -2

'P2 I

3P2 -2

3P2 - 3

'02 - 1

'02 - 3

'0)2 -2

'P2 -2

IF' 0

'02 3

'P2 -3

3P2- 3

'02 I

-P, 2

'P2 I'P,- 2

'1P2 -

'132 -3

'02 -2

'02 I

'02 -3

n l 2

5. 0592

5. 0600

5.0606

5. 0613

5. 0620

S. 0631

3.1I487

3. 4402

3.1909

3. 5252

3. 2229

3.5372

3. 2385

3. 5610

3.02283.6120

3. 6301

6.018

3. 6609

3. 3308

3. 3374

3.7518

3. 7646

3. 7803

3. 7925

3. 4402

7.001

3.1909

3. 8749

3. 8927

3. 9077

3. 9330

3. 2385

3.5372

3. 9770

7.992

4. 0098

8.212

4. 0458

3. 6120

4. 0636

3. 6246

3.6301

8.986

3.3308

3.6609

4.1441

4.11475

4. 1482

4. 1623

4. 1727

9. 944

9. 9826

10.217

41.2069

4. 2381

3.7360

10.942

10. 9799

3.7518

4.2869

4. 2886

11. 942

4. 2942

11. 9786

3. 7803

4. 3048

3. 7925

4. 3197

12. 941

12. 9766

13.219

13. 939413.9753

25

300

25

300

2C

20

4020

20

20

15

40

12

120180

2010

12

100

20

120

18

7

603S

62

20

10

00d

0

0

0

25

0

0

0

0

0

20

90

1840.003 54347.75

1838.92 54379.6

1838.850 54381.82

1838.32 54397.4

1837.575 54419.55

1837.254 54429.06

1836.92 54438.9

1836.849 54441.06

1836.641 514447.23

1836.39 54454.6

1835.856 54470.51

1835.192 54490.21

1834.82 54501.2

1834.606 54507.62

1833.806 54531.41

1833.50 54540.6

1832.634 54566.27

1832.37 54574.2

1831.636 54596.00

1831.39 54603.3

1830.777 54621.61

1830.58 54627.5

1830.489 54630.22

1830.033 54643.81

1829.86 54649. 0

1829.385 54663.18

1829.255 54667.06

1829.049 54673.22

1828.89 54678.0

1828.817 54680.15

1828.38 514693.3

1828.316 54695.13

1828.210 54698.31

1827.974 54705.38

1827.874 54708.38

1827.631 541715.64

1827.52 54718.9

1827.476 54720.27

1827.123 54730.86

1826.805 54740.39

1826. 541 54748.31

1826.261 54756.68

1826.026 54763.74

1825.812 54770.15

1825.616 54776.04t

1825.437 54781.40

1825.275 54786.26

1825.125 54790.76

1824.985 54794.96

1824.854 54798.91

1824.736 54802.44

1824.626 54805.76

1824.524 54808.81

18214. 427 5481 1.72

1824.338 54814.41

1824.255 541816.91

1824.179 54819.19

1824.106 54821.38

1824.037 54823.45

1823.972 54825. 401823.913 54827.19

1823.86 54828.8

1823.80 54830.5

1823.720 54i832.97

1823.66 54834.9

1823.62 54836.1

1823.57 54837.4

1823.54 54838.5

1823.50 54839.5

1823.47 54840.6

1823.009 54854.35

1822.838 54859.51

1822. 667 54864.66

'P2 -2

'02 - I

'0)2 -3

'02 -2

'P2 -3

3P2 -2

3P2 - 3

'02 -2

'02 -3

'02 -2

3 - 1

'02 - 3

02- 2'032 - 3

'02 - 2

'02 - 3

'02 - 2

'02 - 3

'02 - 2

'P2 - 2

'02 - 3

'02 -3

'P2 -3

-0 3

'02 -3

'02 3

3P2 -3

'02 -3

'02 - 3

'02 - 3

'02, - 3

'02 - 3

'02 - 3

'02 - 3

'02 - 3

102 - 3

102 - 3

'02 - 3

'02 - 3

'02 - 3

'02 - 3

'02 - 3

'02 - 3

'0, - 3

'D2 - 3

'02 -3

'02 -3

'02 3

'D2 -3

'02 - 3

'0)2 - 3

'02 - 3

'fP2 - 2

'02 -3

'02 -3

'02 -3

'02 -3

J02 -3

-P 2

3P2 -2

'P2 -3

4. 3844

14. 939

14. 975

15.22

4. 4122

4. 4159

15. 9739

15. 974

4. 4231

16. 234 .4323

16.972

17.22

4. 4471

17. 972

18.22

18.972

19.22

19. 970

20.24

20. 969

21. 22

4. 4970

21. 969

22.22

22.969

3. 9244

4. 51I49

23. 833

23. 96724. 836

24. 966

3. 9330

4. 5285

25. 963

4. 5328

26. 846

26.965

27. 966

28. 963

4. 5468

30.96

31.96

32.95

33.96

34.95

35.94

36.94

37.94

38.95

39.94

40o.95

141.*93

42.95

43.95

44q.94

45s.94

46. 94

47. 93

ti8.95'49.95

50.92

51.99

4. 5835

55.0

55.9

57.0

57.9

58.9

59.9

3. 9770

4. 5952

14. 5974

Page 4: Absorption spectrum of Sn I between 1580 and 2040 Å

TABLE I. (Continued).

18 W4AVELENITK WAVD&WEM CLASSIFICATIOPt11 (c.(3) 9 J Y

25

30

25

300

25

30

35

15

30

1200

50

25

35

25

800

255

40

55

4

3

15

20

0u45

60

4

3

4

22

I 009

4

3

2

18

80

40

250

1 oof1000

50

2

90

45

3

15

80

S

45

4

80

S

40

3

4

75

40

1 0

70

40

3

20

60

40

35

25

4030

40

1821. 615

1820.S590

1819. 409

1819. 261

1817. 822

181 7. 458

1817. 239

1816. 808

1816. 112

1815S. 766

1815. 272

1 815. 018

1814. 198

1814. 080

1814.031

1813. 016

1812. 6851812. 244

1811. 321

1811. 148

1810.914

1810. 144

1 809. 908

1809. 549

1809. 055

1808. 918

1 808. 81 4

1808. 409

1807. 777

1807. 626

1807. 315

1806.912

1806. 369

1805. 847

1805. 745

1805. 473

1805. 312

1805. 220

1804.972

1804. 659

1804. 634

1804. 560

1804. 245

1 803. 931

1803. 786

1803. 279

1803.1I55

1802. 911

1802. 725

1802. 657

1802. 564

1802. 095

1801. 760

1801. 678

1801. 569

1801. I51

1801. 087

1800. 820

1800.763

1800.635

1800. 611

1800. 221

1800. 011

1799.966

1799. 825

1799. 474

1799. 322

1799. 269

1799.140

1798. 825

1798. 736

1798. 6511798. 538

1798. 249

54896.34

54927.25

54962.90

54967.37

5501 0. 88

55021.90

55028.52

55041.59

55062.69

55073.18

55088. 18

55095.88

55120.77

55124.36

551 25. 86

55156.72

55166.7955180.21

55208.32

55213.60

55220.74

55244.23

55251.42

55262.39

55277.48

55281.68

55284.85

55297. 21

55316.57

55321. 16

55330.69

55343.05

55359.68

55375.69

55378.82

55387. 14

55392.08

55394. 91

55402.53

554 12. 14

55412.89

55415. 16

55424.86

55434.50

55438.94

55454.53

55458.3455465.86

55471.56

55473.66

55476.54

55490.98

55501.27

55503.83

55507. 16

55508.82

55522.03

55530.27

55532.03

55535.96

55536.71

555148.7255555.21

55556.60

55560.96

55571.78

55576.50

55578.14

55582. 11

55591.85s

555941.59

SS597. 0355600.70

55609.65

P2- 3

'2- 2

~1P, - I3p, - 3

P2- I

P2- 23P2 - -3

I - 13,- I

3,- 2

P2- I

32- 2

3F2- 3

P2- 23p~o - 1

P2- I

32- I

3P'2 - 2

P2- 3

32- 2

32- 3

3P'2 - 2

3P2 - I

32- 2

32- -3

3P'2 -2

3P'2 -3

32- I

P2- 2P2- 3

3P2 -2

l'P2 - 3

32- 23P2 - 1

3P2 - -3

-' 2

-P 2

P2- -3

P2- 3

32- 2

32- 2

3,- 2

'P2 -

3 - 3

~'P2 I

'P2 -2

3P2 -3

-P 2P2 2

-F' 1

-F1 3

3P2 I

3P 2

3P'2 2

-P 3

3 - 2

3P2 I

-P 3-P 2-p 1

4.6115

4.6254

4.6416

4i.0098

4.6636

4.6687

14.6718

4.6778

4. 6877

3.6120

4. 0458

4.7034

4. 712

4.7169

4. 7176

3. 6301

4. 73734. 7438

4. 7576

4. 7602

4. 7637

4. 7753

4. 7789

4. 7843

4. 7940

4. 7956

4. 801 8

4.8116

4.8139

4. 8188

4. 8251

4. 8336

4. 84 19

4. 84354. 8478

4. 8504

4. 8519

4. 1441

4. 1472

4.1475S

4. 1482

4. 8675

4. 8726

4. 8750

4. 8832

4. 16234. 8892

4. 8922

4.8934

4. 8949

4. 9026

4. 9081

4. 9096

4. 9113

4. 9123

4. 9194

4. 9239

4. 9248

4. 9269

4. 9274

4. 9340

4. 9375

4. 9382

4. 9407

4. 9466

4. 9492

4. 9501

4. 9523

4.2069

4. 9592

4.96064.9626

4. 9676

la1 WAVEElNGTH WAVE~NLoIME CuASIFICAnIDNb(A) (C.-) 9 J . n '

35

35

410

25

35

35

7

35

30

35

25

0

8

30

20

0

15

30

20

0

20

25

25

15

125

30

20

15

30

15

Sf

30

15

30

10

25

10

25

10

20

10

20

8

18

7

15

S

13

4

12

3

1 1

2

10

2

9

80

7

Of

6

S

4

14

3

33

3

1798. 118

1798. 010

1797. 754

1797. 829

1797.6411

1797. 541

1797. 437

1797. 308

1797. 216

1797.124

1797. 058

1796. 913

1796. 752

1796.703

1796. 562

1796. 500

1796. 418

1796. 380

1796. 247

1796. 195

1796. 118

1796. 086

1796. 042

1795.96

1795. 917

1795. 888

1795. 846

1795. 820

1795.707

1795. 673

1795. 601

1795. 574

1795. 444

1795.378

1795.357

1795. 238

1795.172

1795.152

1795. 049

1794. 988

1794. 877

1794. 816

1794. 719

1794. 659

1794.573

1794.517

1794.4q39

1794. 384

1794. 314

1794. 261

1794. 198

1794. 149

1794. 092

1794. 044

1793.993

1793. 946

1793. 900

1793. 854

1793. 814

1793. 770

1793. 732

1793.692

1793.6561793.62

1793. 586

1793.54

1793. 519

1793. 456

1793.398

1793.3411

1793.289

1793. 2401793. 192

1793. 148

55613.70

55617.04

55624.96

55622.63

55628.47

55631.56

55634.78

55638.77

55641.60

55644.45

55646.50

55650.99

55655.99

55657.51

55661.88

55663.79

55666.33

55667.51

55671.63

55673.25

55675.63

55676.62

55677.99

55680.5

55681.86

55682.76

55684.05

55684.88

55688.37

55689.43

55691.67

55692.49

55696.54

55698.58

55699.24

55702.93

55704.95

55705.59

55708.78

55710.68

55714. 12

55716.02

55719.03

55720.90

55723.57

55725.30

55727.72

55729.43

55731.60

55733.25

55735.20

55736.74

55738.51

55740.00

55741.59

55743.04

55744.47

55745.88

55747.15

55748.51

55749.68

55750.94

55752.0455753.3

55754.23

55755.6

55756.32

55758.25

55760.07

55761.84

55763.46

55764.9955766.48

55767.85

3P2

'P2

3'P2

31'2

JP2

3P23P 2

:3p,

3P2

3P2

3P2

3P2

'P2

P21~

3P2

3P2

'p2

'P23P2

3P2

3P2

'3P23P23P2

3P2

3'P2

-3

-2

-2

-1

-3

-2

-1

-2

-3

-2

-1

-2

-2

-1

-2

-3

-2

-1

-2

-3

-2

-1

-2

-2

-3

-2

-2

-1

-1

-3

-2

-1

-3

-2

-1

-3

-2

-1

-3

-2

-3

-2

-3

-2

-3

-2

-3

-2

-3

-2

-3

-2

-3

-2

-3

-2

-3

-2

-3

-2

-3

-2

-3-2

-3

-2

-3

-3

-3

-3

-3

-3

-3

-3

jO WAVELtoGT WVMvoJtju CussIFICIejiub(A)1 (C.-') 9 J. n I

4. 9699

4. 9718

4. 9762

14. 9749

4. 9782

4. 9799

4. 9817

4. 9839

4. 9856

4. 9872

4. 9884

4. 9909

4. 9937

4. 9946

4.9971

4. 9981

4.9996

5. 0003

5.0026

5. 0036

5. 0049

5. 0055

5.0062

5. 0077

5. 0084

4. 2381

5.0097

5.0102

3. 7518

5.0128

5. 01 41

5. 0145

5. 0169

5. 0181

5.0 185

5. 0205

5. 0217

5. 0221

5.0239

5. 0250

5. 0270

5. 0281

5. 0299

5. 0310

5.0325

5.0335

5. 0349

5. 0359

5. 0372

5. 0381

5.0392

5. 0402

5.041il2

5.0421

5.0430

5. 0438

5. 0446

5. 0455

5.04q62

5.04q71

5. 0477

5. 04i85

5. 04915. 0499

5.0504

5.0512

5.0516

5. 0528

5. 0538

5. 0549

5. 0558

5. 0567

5.0576

5.05841

2

2

2

2

2

2

2

2

0

IOOO

300

200

100

25

0u

35

300

200

50

300

20

500

240

100

50

20

30

75

3u

85

150

40

40

85

40

90

40

80

65

90

80

4090

60

70

120

35

IOC

50

4u

35

45

25

50

9OOC

40

25

35

80

120

60

60

45

30

35100

20

1793.107

1793. 066

1793. 027

1792. 991

1792. 957

1792. 924

1792. 891

1792. 862

1792. 835

1792. 809

1792. 780

1792. 757

1792. 733

1792.1

1790.783

1789. 850

1788. 885

1788. 5441

1787.38

1785. 330

1783. 051

1780. 470

1779. 157

1778.144

1778. 019

1774. 114

1773. 360

1772. 771

177 1. 432

1770. 4197

1770. 407

1767. 758

1766. 928

1766. 376

1765.780

1764. 939

1764. 880

1764. 817

1763. 707

1762. 326

1761. 872

1761. 666

1761. 376

1760.607

1760. 297

1759. 580

1758. 809

1758.7

1758. 6511757. 388

1757.141

1756.973

1756. 106

1755. 723

1755.4

1754.777

1754.602

1754. 512

1754. 440

1753.975

1753. 847

1753.5

1752. 632

1752.382

1'752.339

17 51. 959

1751. 488

1751. 51

1751. 100

1750. 864

1750. 636

1750. 6091750.370

1749. 868

55769.13

55770.41

55771.62

55772.72

55773.80

55774.82

55775.841

55776.73

55777.57

55778.40i

55779.28

55780.01

55780.75

55800

55841. 48

55870.62

55900.755591 1.40O

55947.7

56012.05

56083.64

56164.96

56206.39

56238.42

56242.38

56366. 17

56390.12

56408.88

5645 1.49

56481.32

56484. 19

56568.84

56595.40

56613.07

56632.19

56659.18

56661.08

56663.11

56698.77

56743.20

56757.81

56764. 45

56773.78

56798.58

56808.61

56831.75

56856.66

56860

56861.7656902.63

56910.63

56916.07

56944.18

56956.59

56967

56987.30

56992.98

56995.92

56998.25

57013.37

57017.52

57028

57057.04

57065.19

57066.57

57078.97

57094.31

57095.52

57106.95

57114L. 66

57122.08

57122.9857130.78

57 147. 16

3'P2 - 3

P2- 3

32- 33P'2 - 3

'P2 - 3

-'P2 -3

-p 3

-P 3-P 3

-P 3

P2- 332- 3-

P,- 3

p,- 0

3P2 - 1

-P, 2

-P, 2

3P, I

3po -1

-P 23p9 -I

3,- 2

3,- 1

1P I - 03p3 - I

3,- 2

-P 2

3p, I

3P, I

-P 2

-P 2

3p, I3P, 2

-p 0

3p, I

-P~23P2 -

-p, 13P, -

3P 2

3P2 - 1

1,- I

I3- 03,- I

3p 2 -2

3P 2

-P 33

p, -I

-p 03p, I

-P 2

3P, 2

1 - 0

3P, -2

3,- 2

5. 0592

5. 0600

5. 0606

5.0613

5. 0620

5.0625

5.0631

5. 0637

5.0642

5. 0647

5. 0652

5.0656

5. 0660

5.079

4. 29142

4. 3048

4. 31 58

4.3197

5.1680

4. 3844

4. 4159

4. 4323

4. 4450

3. 8927

4. 4970,

3. 9330

4. 514q9

4.5328

4. 5455

41.5468

4. 5835

4i. 5952

4.6115

4. 0098

4. 6245

4. 6254

4. 6416

4.6619

4. 6687

4.6718

4. 6761

4. 6877

4. 6924

4i. 7034

4i. 7 152

5.861

4. 71764. 7373

4. 7412

4. 7438

4. 7576

4. 7637

5.960

4. 7789

4. 7832

4. 78436.0052

4. 7940

6.018

4.8139

4.8181

4. 81 88

4. 8251

4.1441A

4.8336

4.14 82

4. 8435

4. 8473

4. 8478

4.8519

4. 8604i

610 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977 Bone l 1Brown et aL 610

Page 5: Absorption spectrum of Sn I between 1580 and 2040 Å

TABLE I. (Continued).

1a WAVELEWG.i,(RA

35 1749. 395

20f 1749.189

4S 1749. 171

120 1749. 021

So0 1748.9930 1748. 547

40 1748.162709 1747.965

1 1747.96

120 1747. 873

30 1747.432

35 1747.120

60 1746.939

100 1746.887

30 1746. 482

30 1746.232

60 1746.063

90 1746.037

120 1745.699

30f 1745.669

5 1745.475

150 1745. 300

25 1744.967

30 1744.825

150 1744.654

25 1744.3S7

40 1744.274

120 1744.088

100 1743.815

100 1743.590

80 1743.421

10 1743.350

80 1743. 149

70 1743.051

8 1742.933

75 1742. 757

65 1742. 696

5 1742.561

70 1742.408

60 1742. 362

5 1742. 230

65 1742.095

55 1742.058

5 1741.933

60 1741.813

50 1741.781

5 1741.742

4 1741.664

S0 1741.S57

40 1741.531

4 1741.423

45 1741.326

35 1741.302

3 1741.203

40 1741.116

25 1741.094

3 1741.000

3S 1740.925

25 1740.904

2 1740.820

35 1740.749

20 1740.731

2 1740.652

20 1740.589

IS 1740.568

1 1740. 500

20 1740. 442

1 740.360

18 1740.307

1 1740.230

18 1740.182

0 1740.112

17 1740. 066

0 1740.004

lcui' I

57162.63

57169.34

S7169.94

S7174. 84

5717657190.35

57202.94

57209.38

57209.4

57212.38

57226.83

S7237.OS

57242.9757244. 69

57257.96

57266.15

S7271.69

57272.56

57283.65

57284.63

57291.00

57296.75

57307.66

57312.35

57317.96

57327.72

57330.44

57336.56

57345.53

57352.94

57358.49

57360.8157367.46

57370.66

57374. 54

57380.33

57382.37

57386.81

57391.83

57393.35

57397.71

57402.15

57403.37

57407.48

57411.45

57412.50

57413. 77

57416.3757419. 88

57420.75

57424.30

S7427.49

57428.28

57431.57

57434. 42

57435.14

57438.2557440.72

57441.4357444.20

57446. 54

S7447. 1357449.72

S74S1. 81

57452.5257454.75

57456.68

57459.3857461. 14

57463.66

57465.26

57467.58

57469.07

57471. 14

Ia WIVELENGTH WFIVEMMBER(Rl (CH, )

611 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977

CLASSlFlCRATrOb9 J' n2^

, - I 4.86853P, - 0 4.8721

IF, - 1 4.8724

, - 2 4.8750

- 2 6.1713, - 2 4.8832

, - 1 4.8899

+, - 1 4.8934

3p - 0 4.8933

P, - 2 4.8949

P, - 2 4.9026

, - 1 4.9081

, - I 4.9113

- 2 4.9123

, - 2 4.9194

, - 1 4.9239

, - 1 4.9269

P, - 2 4.9274

'o - 1 4.20693P, - 2 4.9340

3P - 1 4.9375

, - 2 4.9407

P, - 2 4.9466

P, - I 492470

, - I 4.9523

, - 2 4.9577

, - I 4.95923P, - I 4.9626

P, - 1 4.9676

, - 1 4.9718

3P, - 1 4.9749

, - 2 4.9762

3PI - I 4.9799

, - 1 4.9817

3 - 2 4.9839

P, - 1 4.9872

If' - I 4.9884

P - 2 4.9909

P, - 1 4.9937

.P, - I 4.9946

3, - 2 4.9971

1 - I 4.9995

3, - 1 5.0003

, - 2 S.0026

, - 1 5.0049

I3, - 1 5.0055

- 2 5.0062

, - 2 5.0077

, - 1 5.0097

3 - 1 5.0102

3P - 2 5.0122

- 1 5.0140

- 1 5.0145

- 2 S.0164

. - 1 5.01803PI - 1 5.0185

- 2 S.0203

. - 1 S.0217

3 - 1 5.0221

+. - 2 5.0237

3P, - 1 5.02503p - 1 5.0254

- 2 5.0269

'PI - I 5.02813P, - 1 5.0285

3P, - 2 5.0298

3P, - 1 5.03093P, - 2 5.0325

3P, - 1 5.0335

3p, - 2 5.0350

3p; - 1 5.0359

3P, - 2 5.03723p - 1 5.0381

3P, - 2 5.0393

I WRVELENGTH(R)

16 1739.960

0 1739.901

1 S 1739. 860

Of 1739.81

IS 1739. 768

0 1739.71

14 1739.683

0 1739.64

13 1739.603

13 1739. 527

12 1739.457

12 1739.392

11 1739.330

1 11739.273

11 1739.218

10 1739. 167

10 1739.119

9 1739. 073

9 1739.030

9 1738.989

8 1738.950

8 1738.914

7 1738. 879

7 1738. 846

6 1738.814

6 1738.785

5 1738.755

5 1738.729

S 1738.704

5 1738.678

4 1738.6SS

4 1738. 632

4 1738.610

3 1738.591

2 1738.57

2 1738.55

I 1738.S3

1 1738.51

1 1738.50

1 1738.48

150 1737.244

120 1736.016

SOO5 1733.61

5 0 0 h 1729.57

140 1727. 169

2 0 h 1726.41

100 1726.063

IS0 1719.889

1 5 d 1719.03

90 1718.921

20C 1716.2

20C 1714.6

100 1714.560

3 0 0 h 1714.13

5S 1713.92

80 1713.651

3 0 h 1711.91

60 1710.876

80 1709.683

90 1708.714Iod 1707.04

70 1706. 647

80 1706.255

IOOC 1704.9

60 1704. 183od 1704.01

60 1703.866

2 0 0 h 1703.64

20C 1703.5

60 1702.161

10 h 1702.04

60 1701.885

70 1700.493

70 1700.251

WRVENUtMER(cHm I

57472.60

57474.52

57475.88

57477. 7

57478.92

57480.7

57481.75

57483. 3

57484. 39

57486.88

57489.20

57491. 35

57493. 40

57495.30

57497.10

57498.78

57500.39

57501. 90

57503.32

57504.67

57505.96

57507. 17

57508.32

57509.42

57510.4S

57511 .43

57512.40

57513.28

57514. 1 1

5751 4. 97

57515.7357516.48

57517.21

57517.85

57518.5

57519. 2

57519. 8

57520.4

57520.9

57521. 4

57562.45

57603.16

57683

57818

57898.22

57923. 8

57935.3358143.30

58172.2

58176.02

58268

5832158324.00

58338.558345. 8

58354.93

58414.3

58449.60

S8490.37

S8523.55

58580.9S8594.43

58607.87

58653

58679.13

58685.0

58690.06

58697.7

58703

58748.86

58753.0

58758.39

58806.48

58814. 84

CLRSSIFICSTIONbg J. n2

3p, - 1 5.0402

3p, - 2 5.0413

3P, - 1 5.0421

3P, - 2 5.04313p - 1 5.0438

3P, - 2 S.04493

PI - 1 5.0455

3P, - 2 5.04643p, - 1 5. 0471

,PI - I 5. 0485

3p - 1 S. 04993p - 1 5.0511

3P, - 1 5. 0523

3P, - 1 5. 05353p, - 1 5. 054S

3pI - 1 5. 0555

3PI - 1 5. 0565

3P, - 1 5.0574

3pI - 1 5. 05823p, - 1 5.0590

3PI - 1 5.0598

3pI - 1 5. 0605

*, - 5 S. 06113PI - 1 5.0618

3pI - 1 5.0624

3p - 1 5.0630

3PI - 1 5.0636

3p, - 1 5. 0641

'p - 1 5.0646

3p - 1 5.06513

P, - 1 5.0655

3p - 1 5.06603P1 - 1 5.0664

3P, - 1 .5.0668

3p - 1 5. 0671

3pI - 1 5.0676

3pI - 1 5.0679

3P, - 1 5.0683

3P, - 1 5.0686

3p, - 1 5.0689

'Po - 1 4.30483P, - 1 4.3197

3P, - 2 5.1680

3P2 - 3 7.0013P0 - 1 4.4323

3P, - 2 7.1723P0 - 1 4. 4471

3P, - 1 4. 5328

3pZ - 2 7.632

3Po - 1 4. 5468

3p, - 3 7.834

3p - 0 5.623

3P, - 1 4.6115

3P2 - 3 7.992

3Po - 1 4.6254

-P2 - 2 8.173

'Po - 1 4.6687

3Po - 1 4.68773P, - 1 4.7034

3P2 - 2 8.624

3Po - 1 4.7373

3Po - 1 4.7438

3?2 - 3 8.840

'3P, - 1 4.7789

3P2 - 1 8.945

3P- 4.7843

3P2- 3 8.986

3P- 1 5.960

3P- 1 4.8139

-P2 2 9.174

3p- 4.8188

3Po - 1 4.8435

P,- 1 4.8478

SC

60

60

,Si

60

60

100i

60

60

I0O

90h

40

50

30

50

15 h

30

50

40

50

60

60

50IC

so

50

40

40SC

35

35

3535

35

35

3025

25

2020C

25

20

25

20

20

is

20

7 0h

20

18

18

18

17

16

16

16

1s

15

4

4

13

12

12

11

10

10

10

9

8

9

8

9

8

Brown et al. 611

1699.5

1699.107

1698.894

1698.66

1697.944

1697.755

1697.48

1697.2

1696. 961

1696.789

1696.44

1696.20

1696. 125

1695.965

1695. 408

1695.253

1695.01

1694. 795

1694.637

1694.275

1694. 100

1693.843

1693.629

1693. 471

1693.3

1693.215

1693.123

1692.846

1692.786

1692.6

1692.518

1692.472

1692.223

1692. 1 84

1691.956

1691.923

1691.716

1691.686

1691.498

1691.472

1691.4

1691. 300

1691. 277

1691. 119

1691.098

1690. 954

1690.934

1690. 802

1690.72

1690.664

1690.535

1690.418

1690.308

1690. 207

1690.113

1690.026

1689.945

1689.869

1689.800

1689.733

1689.671

1689.612

1689.558

1689.506

1689.457

1689.412

1689.369

1689.328

1689.290

1689. 253

1689.218

1689.185

1689.154

1689.125

58840

58854. 45

58861. 81

58869.9

58894.75

58901.32

58911

58922

58928.88

58934.85

58946.8

58955.2

58957.92

58963.48

58982.86

58988.23

58996.8

59004.17

59009.68

59022.28

59028.39

59037.34

59044.82

59050.33

59056

59059.26

59062.46

59072.11

59074.22

59082

59083.57

59083. 18

59093.88

59095.22

59103.18

59104.3S

59111.57

59112.63

59119.21

59120.11

59121

59126.13

59126.93

59132.46

59133.17

59138.22

59138.90

59143.52

59146.3

59148.36

59152.85

59156.98

59160.81

59164.36

59167.64

59170.68

59173.52

59176.18

59178.62

S9180.94

59183.13

59185.18

59187.09

59188.90

59190.60

59192.19

59193.69

59195.1459196.48

59197.77

59198.97

59200.13

59201.24

59202.25

-

CLASSIFICRTJONb9 J' n2

2 - 1 9.503

'o - 1 4.8685

Po - I 4.8724

2 - 2 9.617

vP - 1 4.88993P - 1 4.8934

, - 2 6. 171

3 - 3 9.836

P - 1 4.9081eo - 1 4.9113

2 - 1 9.944

P - 3 9.9826vP - 1 4.9239

P - 1 4.92693F0 - 1 4.9375

vo - 1 4.9404

2 - 2 10.1751Po - 1 4.9492

'o - 1 4.9523Po - I 4.9592

P - 1 4.9626

vP - I 4.9676

vP - I 4.9718

'Po - 1 4.9749

3p - 1 10.48

Po - 1 4.9799

3o - I 4.9817

vo - I 4.9872

' - I 4.9884- 2 10.612

3p - 1 4.9937

3o - I 4.9946O - 1 4.9995

3pa - 1 5.0003

o - I 5. 0049

3. - I 5.00553p0 - 1 5.00973o - 1 5.0102

P - 1 5.0140

3 - I 5.0145

3 - 3 10.83

3o - 1 5.0180

3po - 1 5.0185

'o - 1 5.0217

'o - 1 5.0221

'o - 1 5.02503Po - I S. 02S4

3P - 1 5.0281

3 - 3 10.9799

3 - 1 5.03093 - 1 5.0335

P - 1 5.03593P0 - 1 5.0381

-o - 1 5.0402

o - 1 5.04213o - 1 5.04383p - 1 5.0455

v, - 1 5.04713P0 - 1 5.0485

'PO - I 5.0499

'o - I 5.0511

O - 1 5.05233o - 1 5.05353p0 - 1 5. 0545

3o - I 5.0555vo - I 5.0565

3O - I 5. 0574

3 - 1 5.0582

o - 1 5.0590

o - 1 5.0598

3 - 1 5.0605

P - 1 5.0611

o - 1 5.06183o - 1 5.0624

- -

Page 6: Absorption spectrum of Sn I between 1580 and 2040 Å

TABLE I. (Continued).

103 WAVELENGTH WAVENUA0EA CuASIFICArIOb(R) (.-I') 3 J. ri2

8

7

6

S

S

44

3

2

0

0

400

400'

lOc

45 h

18 0 c

40h

Soc

40h

18Sc

40h

35d

15d

30i

9od

j 0d

25C

15

25d

20

'Soc

120

14d

j0d14

70d

1689. 097

1689. 069

1689. 045

1689. 020

1658. 996

1688. 974

1688.953

1688. 932

1688. 914q

1688. 896

1688.87

1688.86

1688.84

1688.6

1687.6

1687.0

1686. 576

1683.8

1683.363

1682.74

1681.7

1681.2

1680. 821

1680.1

1679.0

1678. 776

1677.99

1677.7

1677.3

1677. 106

1676.46

1676.19

1675.90

1675.726

1675.19

1674.99

1674.71

1674. 570

1674. 12

1673.97

1673.71

1673. 593

1673.22

1673.09

1672.86

1672. 761

1672. 44

1672.32

1672.13

1672. 045

1671.77

1671.50

167 1. 4251671.18

1671. 10

1670.95

1670. 883

1670.67

1670.6

1670.47

1670. 4I11

1670.3

1670.23

1670. 046

1669.993

1669.83

1669.77

1669.67

1669. 622

1669.48

1669.4q2

lS69.3311669. 292

1669.22

59203.24

59204.21

59205.06

59205.93

59206.78

59207.54

59208.29

59209.01

59209.65

59210.29

59211. 1

59211.6

592 12.3

59222

59254

59276

59291.73

59390

S9404.90

59427

S9463

59482

59494. 73

59522

59558

59567.20

59595. 1

59605

59619

59626.52

59649.6

59659.0

59669.4q

59675. 64

59694. 7

59701.7

59711.7

59716.83

59732.7

59738.3

59747. 4

59751.67

59765. 1

59769.8

59777.9

59781.39

59792.9

59797

59803.8

59807.01

59816.9

59826.6

59829. 1959837.8

59M4. 9

59846.3

59848.58

59856.4q

59858

59863.3

59865.51

59868

59872.0

59878.61

59880.49

59886.3

59888.4q

59892.2

59893.78

59899.0

59900.9

5990q.2S59905.63

59908.3

3p, -

3po -

3p,3 -

3,,2 -3

3P23 -32

3P2 - 3

'PO3 - 3

3P~2 -233P, -31

I - 2

3P23 - 3

3jp3 -I2

3I'2 - 3

3P23 -23

3P23 -3

~I'3 -I3

3P2 -23

3P2 - 3

3P2 - 3

3P2 -I

3P2, -30

3P'2 - 3

I'P2 -I3

32-2

-P 3

3P 3'P 2

P3 WAVELrNom WRVDAMef CUvSSI~u'croeP(A) Eur,) 3 J.) n '

5. 0630

5. 0636

5. 064 1

5. 0646

5. 0651

5. 0655

5. 0660

5. 0664

5.0668

5.0671

5.0676

5.0679

5.0683

11.*46

6.57S

11.*85

11. 9786

12.83

12. 9766

S. 20 1

13. 601

13.82

13. 9753

6.953

14.84

14. 975

15.42

15.60

15.84

15. 97416.41I

7. 172

16.84q

16. 972

17.41

17. 590

17.84q

17. 972

18B.4 1

18.59

18.84

18.97219.40D

19.58

19.64q

19. 970

20.40

20.58

20.84

20. 969

21.40

21. 855

21. 96922.4q0

22.57

22.85

22.969

23. L 1

7.532

23. 833

23. 967

7.556

24.39

24. 836

24. 966

25.40O

25. 573

25.85

25. 963

26.40O

26. 574

26.84626. 9657.632

9

13

4d

8

12

Ld

3d

3 f

10

3d

10

3d

9

Of.

8

2d

a

2d

7

id

7

6id

6

6

S

S

S

0

5

0

4

0

4

0

4

0

4

3

3

3

2

2

2

0

40'd

40i

20d

40'

60d

40'

1669.16

1669.03

1668.9S97

1668.88

1668.84

1668.77

1668. 733

1668. 63

1668.5S2

1668. 494

1668.40

1668.30

1668. 277

1668.19

1668.10

1668. 082

1668.00

1667.93

1667. 905

1667.83

1667.76

1667. 741

1667.68

1667. 593

1667. S3

1667.456

1667.40

1667. 330

1667.28

1667. 2141

1667.17

1667. 106

1667.06

1667. 008

1666.96

1666. 915

1666.88

1666. 831

1666.791666. 749

1666. 72

1666. 676

1666.64

1666. 607

1666.58

1666. S40

1666. S2

1666. 480.

1666. 46

1666. 423

1666. 368

1666. 316

1666.27

1666.22

1666. 18

1666. 14

1666. 10

1666.04

1666.01

1665.12

1662.53

1659.12

1658.9

1657.91

1655.8

1655.06

1653.22

165 1.02

1650.81650.00

1649.35

1647.92

1646.5S8

1645. 088

59910.2

59914.9

59916. 24

59920.4

59922.0

59924.5

59925.72

59929.5

59933.3

59934.29

59937.6

59941.3

59942.09

59945. 2

59948.5

59949. 08

59952.0

59954.7

59955.441

59958.0

59960.5

59961.36

59963.7

59966.68

59969.0

59971.61

59973. 7

59976.15

59978. 1

59980.30

59982.0

5998q.1I8

59985.9

59987.70

59989.3

59991.06

59992.3

59994.08

59995.4q59997.05

59998.0

59999.67

60000.8

60002.15

60003

60004.54

60005.4

60006.73

60007.6

60008.77

60010.74

60012.61

60014.3

60016.0

60017.4q

60018.9

60020.3

60022.7

60023.8

60055. 6

60149.3

60272.8

60281

60316.9

60395

60420. 8

60488.2

60568.7

60576

60606. 1

60630

60682. 6

60732.0

60787.02

3P23

3P'2

3P23

3P23

3P2

3P,'

3p,'

3)P3

3'P2

3P,

3P23

3P2

3','

3P,'

3P2

3p,'

3P,'

3P,'

3p,

3p,

3P,'

3p,3

3P,,

3,,,-3p,

3p,,

3p,,

3P,,

3p,,

3p,'

3p,'

3P,'

3p,,

I1a WJAVELENGT WAVENMU CLASJFncRwJ0N(A) )c..I) 3 J I n ~,

-1

-3

-3

-1

-2

-3

-3

-1

-3

-3

-1

-3

-3

-1

-3

-3

-1

-3

-3

-1

-3

-3

-1

-3

-1

-3

-1

-3

-1

-3

-1

-3

-1

3

-1

-3

-1

-3

-1-3

-1

-3

-1

-3

-1

-3

-1

-3

-1

-3

-3

-3

-3

-3

-3

-3

-3

-3

-3

-1

-2

-0

-i

-2

-1

-1

-2-o-1-2

-1

- I

-2

-o

27.39

27.84

27. 96628.40o

28.57

28.83

28. 96329.40o

29.85

29.964

30.4

30.9

30.96

31.4

31.9

31.96

32.4

32.8

32.95

33.4q

33.8

33.96

34.4q

34. 95

35.4

35.94

36.4

36.94

37. 4

37.914

38.4

38.95

39.439.94q

410.4q

40. 95

41 .44 1.93

42.442.95

43.3

413.95

44.4q

44.94q

45.345.94q

46.3

416.94q

417.4

47. 93

48.95

49. 95

50.92

51.99

53.0

Sq. 0

55.0

57.0

57.9

7.949g

8.173

8. 498

8.527

8. 624t

5.960

8.945

9.174

9.470

9.5039.617

6.201

9.94410.175

10. 447

220

8

18

35

25i

Sooc

20'

30d

30d

20'

45d

20d

30'

30

1o~

'Si

25d

30'

25

1io30d

20d

3iS

10128d

20d

'Si

10i

26d

20'

25

30

25

181

8ii28

22

15i

6

5

26

22

108Si

1644.95

1644.25

1642.69

164 1.67

1640. 626

1640. 50

1640. 2

1639.94

1638.73

1637. 96

1637. 184

1637.09

1636. 617

1635. 67

1635.06

1634. 477

1634. 40

1 634.0 1

1633. 61

1633. 250

1632.77

1632. 313

1632. 25

1631. 92

1631. 305

1630. 91

1630.55

1630.50

1630.22

1629. 713

1629. 59

1629.39

1629. 104

1629. 061

1628. 828

1628. 401

1628.13

1627. 898

1627. 861

1627.664

1627. 305

1627.08

1626. 880

1626.85

1626. 69

1626. 37

1626.187

1626.02

1625. 995

1625. 85

1625. 584

1625.42

1625. 280

1625.26

1625. 133

1624. 903

1624.76

1624. 641

1624.63

1624. 51

1624. 316

1624.30

1624. 19

1624. 09

1624.08

1623.98

1623. 803

1623.70

1623.601

1623.59

1623.51

1623.361623. 271623.18

60792. 2

60818. 0

60875. 9

60913.4

60952.34

60957

60968

60977. 9

61022.9

61051. 7

61080. 48

61084.0

61101. 65

61137. 1

61160. 0

61181. 64

618184.5

61199. 2

61214

61227.63

61245. 8

61262.76

61265.2

61277.4q

61300.60

61315.6

61328.9

61330.9

61341. 3

61360.50

61365

61372.6

61383.42

61385.05

61393. 84

61409.93

61420. 1

61428.90

6130.32

61437.72

61451.3061459. 9

61467.35

61468.5

61474.7

61486. 5

61493.54

61500.0

61500.82

61506.2

61516.34

61522.4

61527.86

61528.6

61533.43

61542.14

61547.5S

61552.05

61552.6

61556.9

61564.39

61565

61569.0

61573.0

61573.4

61577.0

61583.81

61587.6

61591.48

61592.0

61594.8

61600.761604.2

61607.6

612 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977 Bone l 1

3,,, - 2

3E- 2

1 - 1

-P 2

-P 2

3 - 2

3 - 23p,, - I

-P 2

-P 2

-p 1

-P~23fp) - 0

3P~) - 13E- 2

3,') - 2

3,- 0

-P 2

-P 2

-P 0

3,,) -2

IE- 2

'O- I

3,- 23,- 0

3,', - 2

3,- 2

31P) - I

3P', - 23,- 1

1 - 2

3,- 2i3p,) - 1'I', - 2

3 - 2

3p, - 0

-P 23p~, -

3,- 2

3,- 2i

IE- 13p', - 2

3P', - 2

3,,, -I

3,- 2

3,', - 2

-P 0

1 0.48i

10. 612

10. 942

11. 173

11. 42951 1.4q6

6.604

11. 607

II. 942

12. 172

1 2. 4 156

12.4q5

12. 6044

12. 941

13. 173

13. 40415

13. 44

13. 601

6. 953

13. 9394

14. 17

14q. 395

14. 43

14q.60

14. 939

15. 17

15. 387

15.42

15.60

15. 939

7. 196

16. 17

16. 381

16.4q1

16. 594

16. 938

17. 17

17. 376

17. 41

17. 590

17. 937

18. 17

18. 375

18. 41

18. 59

18. 938

19. 16

19. 373

19.410

19. 58

19. 938

20.16

20. 368

20.40

20.58

20. 939

21. 17

21. 369

21. 40

21. 59

21. 938

7.556

22.16

22. 366

22.40O

22.57

22. 938

23. 15

23. 372

23. 41

23.57

23. 93424. 15

24. 37

Brown et aL 612

Page 7: Absorption spectrum of Sn I between 1580 and 2040 Å

TABLE I. (Continued).

la WRVELENGTH WRVEDJ#BER CLRSSIFICRTIONb

(R (CM-i) 9 J nI

4

l0

15

8

2

1-1

14

11

11 21

0

0

12

0

0

0

10

0

0

0

9

0

0

8a

0

0a

0

7

06

0

6

0

50

5

0

4

0

4

0q

0

3

0

3

0

2

0

0

0

100

120'

40t

I801

30'

751

90'

25'

701

80'

1623. 096

1622.96

1622.88

1622. 801

1622.79

1622. 729

1622.61

1622.54

1622. 466

1622. 403

1622.294

1622.24

1622.170

1822. 113

1622.017

1621.96

1621. 902

1621.85

1621.76

1621.71

1621. 663

1621.62

1621.54

162 1. 49

1621. 446

1621.410

1621.33

1621.30

1621. 249

1621.21

1621. 16

1621.070

1621.03

1620.98

1620.909

1620.83

1620. 761

1620.69

1620. 624

1620.56

1620. 4981620.44

1620. 385

1620.33

1620. 277

1620.22

1620.178

1620.13

1620. 089

1620.04q

1620.005

1619.96

1619. 925

1619.89

1619.85

1619.82

1619.78

1619.75

1619.72

1619.69

1619.66

1619.50

1616.76

1613.48

1609.97

1608.08

1605.89

1603.22

1601.85

1600.36

1598.27

1597.29

1596.15

1594.53

61610.67

61615.9

61618.9

61621.86

61622.3

61624.58

61629.2

61631.6

61634.58

61636.98

61641.1061643.1

61645.84

61647.97

61651.63

61653.7

61655.99

61657.9

61661.3

61663.3

61665.11

61666.9

61669.8

61671.8

61673.36

61675.0

61677.8

61678.8

61680.85

61682.2

61684.4

61687.63

61689.0

61690.9

61693.77

61696.7

61699.43

61702.2

61704.64

61707.2

61709.4161711.6

61713.74

61715.9

61717.84

61719.9

61721.61

61723.4

61725.02

61726.8

61728.21

61729.8

61731.25

61732.7

61734.0

61735.4

61736.6

61737.9

61739.1

61740.3

61741.4

61747.3

61852

61977.9

62112.8

62186

62270.9

62374.3

62428

62486

62567.6

62605.9

62650.6

62714.6

3p1 -

3P, -

3P -3P1 -

3P -

3P1 -

3P1 -

3P1 -

3PI -

3P -

3P1

-

'PI -

3IF -

3P, -

3P, -

3I, -

3I, -

3P, -

3P, -

3P, -

3P, -

3F,-

3P,-

3P,-

3P,-

3P,-3

P,-

3P -

3PI-

3PI,

3PI,

3PI,

3P,

3P,

3P,

3P,

3P,

3P,

3P,

3P,

3P,

3PI

3P,

3P,

-p,

3p,

3F,

IF,3F,3p,

IF,3p0

3p0

IF0IF03F0

3p03p03p0IF0

3p0

-p2

-p2

3P,

2P

2P

0P

2p

2P

3P

2P

2P

0P

2P

2P

0P

2P

2P

3P

2P

2P

2P

-1O

-2O

3P0

-2O

- 2

-1s

-02

-12

- 0

- 1

-0T

-1T

-0-

I-1

-0O

24.575

24. 936

25.15

25.369

25.40

25. 573

25. 937

26.12

26.371

26.574

26.93527.11

27.366

27. 567

27.929

28.13

28.366

28.56

28.937

29.16

29.365

29.57

29. 933

30.17

30.37

30.6

30.94

31.1

31.37

31.6

31.94

32.37

32.6

32.93

33.36

33.93

34.36

34.94

35.37

35.92

36.3736.93

37.36

37.94

38.37

38.9

39.38

39.9140.36

40.9

41.36

41.9

42.37

42.9

43.4

43.9

44.4144.9

45.4

45.9

46.4

7.949

8.200

8.527

1 8.945

1 9.194

1 9.503

1 9.944

10.193

1 0.48

10.942

I11. 178

111.46

11.942

I" WRVELENGTH WRVJENUH8E CLASSIFICRTIONb(RI (CM-,1 9 J ' n 2

20i 1593.75 62745 3P 0 - 1 12.18

7 0 h 1592.93 62777.4 3PO - 1 12.45

7 5 d 1591.63 62828.8 3P, - 1 12.941

18i 1591.01 62853 3P0 - 1 13.19

65i 1590.39 62877.6 'PO - I 13.44

7 0 d 1589.33 62919.4 'P 0 - I 13.9394

15' 1588.85 62938.6 3P 0 - 1 14.18

60h 1588.36 62957.9 3PO - I 14.43

6 5 d 1587.492 62992.43 1pi - I 14.939

12i 1587.10 63008.2' 3Pi - 1 15.18

5 5 h 1586.71 63023.5 3P 0 - I 15.42

60 1585.987 63052.20 Po - 1 15.939

101 1585.67 63064.8 3P' - 1 16.18

5 0 h 1585.35 63077.7 3P0 - 1 16.41

55 1584.744 63101.67 3Pl - I 16.938

8i 1584.48 63112.3 3Po - 1 17.18

45 h 1584.22 63122.7 3PO - 1 17.41

50 1583.705 63143.08 3P0 - 1 17.937

7' 1583.48 63151.9 3P0 - 1 18.17

40h 1583.260 63160.82 3P0 - I 18.41

45 1582.825 63178.18 3PI - 1 18.938

6' 1582.65 63185.2 3P0 - 1 19.16

4 0h 1582.449 63193.21 3po - I 19.40

40 1582.076 63208.10 3PI - 1 19.938

5' 1581.92 63214.4 'PI - 1 20.17

40h 1581.76 63220.9 3PI - I 20.40

35 1581.431 63233.86 3P0 - 1 20.939

5' 1581.30 63239.1 3P 0 - 1 21.160

40h 1581.16 63244.9 3po - 1 21.40

35 1580.874 63256.17 3P1 - 1 21.938

4' 1580.77 63260.5 3P - 1 22.15

35i 1580.63 63265.8 3Pi - 1 22.40

30 1580.388 63275.61 'Po - 1 22.938

3' 1580.29 63279.6 3P, - 1 23.16

30h 1580.18 63284.0 3P0 - 1 23.41

25 1579.963 63292.62 3P 0 - 1 23.934

2' 1579.88 63295.9 3PO - 1 24.14

2 5 h 1579.777 63300.09 3P1 - 1 24.39

25 1579.587 63307.70 3P0 - 1 24. 936

2i 1579.52 63310.5 3P0 - 1 25.14

2 5 h 1579.42 63314.3 3P1 - 1 25.40

20 1579.253 63321.06 'P0 - 1 25.937

1i 1579.19 63323.6 3P0 - 1 26.14

2 0 h 1579.11 63327.0 P - I 26.40

20 1578.957 63332.93 3P0 - 1 26. 935

(i 1578.91 63334.9 3P, - 1 27.11

2 0 h 1578.83 63338.2 3P0 - 1 27.39

18 1578.692 63343.57 3P1 - 1 27.929

Oi 1578.64 63345.5 3P0 - 1 28.13

18h 1578.574 63348.32 3PF - I 28.40

17 1578.454 63353.13 Po - 1 28.937

0i 1578.41 63355.0 'PF - 1 29.15

Ish 1578.35 63357.4 3Pj - 1 29.40

16 1578.240 63361.71 'Po - 1 29.933

17h 1578.14 63365.7 3P, - 1 30.4

15 1578.046 63369.50 3P, - 1 30.94

15 1578.046 63369.50 3P, - 1 30.94

1 7 h 1577.96 63373.0 'P0 - 1 31.4

14 1577.870 63376.60 3Po - 1 31.94

1 6 h 1577.79 63379.9 3Po -1 32.4

13 1577.710 63383.01 3P0 - 1 32.93

1 5h 1577.64 63386.0 3P1 - 1 33.4

12 1577.564 63388.86 3PO - 1 33.993

14 1577.49 63391.7 3Po - 1 34. 4

11 1577.429 63394.28 3P0 - 1 34.94

1 3 h 1577.37 63396.8 3Po - I 35.4

10 1577.308 63399.15 3P - 1 35.92

1 2 h 1577.25 63401.6 3P0 - I 36.4

10 1577.194 63403.74 3PI - 1 36.93

1lh 1577.14 63406.0 3Po - 1 37.4

10 1577.090 63407.94 3Po - I 37.94

10h 1577.04 63410 'Po - 1 38.4

9 1576.99 63411.8 3P0 - 1 38.9

10h 1576.95 63413.7 3P0 - 1 39.4

I" WAVELENGTH WARVEMBEA CLSWIFICRTIONb(R (CH-,1 9 Jo n2

9 1576.90 63415.4 q 'o - 1 39.9

9 1576.86 63417.2 3Po - 1 40.4

8 1576.82 63418.6 3Po - 1 40.9

9 1576.779 63420.42 Po -I 91. 4

8 1576.75 63421.7 3Po - I 41.9

8 1576.71 63423.4 Po - I 42.4

7 1576.68 63424.6 Po - I 42. 9

7 1576.64 63426.1 'Po - 1 43.3

7 1576.61 63427.2 3Po - 1 43.9

7 1576.57 63428.7 -o - I 44. 4

6 1576.55 63429.7 'Po - I 44.9

6 1576.51 63431.2 tPo - I 45.3

5 1576.49 63432.1 'o - 1 45.95 1576.45 63433.5 Po - 1 46.3

5 1576.43 63434.3 3Po - 1 46.9

4 1576.40 63435. 6 Po - 1 47.4

4 1576.39 63436.2 Po - 1 47.8

4 1576.35 63437.5 Po - 1 48.5

4 1576.33 63438.3 tPo - I 48.9

3 1576.30 63439.5 Po - 1 49.6

3 1576.29 63440.1 'PO - 1 49.9

2 1576.26 63441.2 'Po - 1 50.5

2 1576.25 63441.7 'Po - 1 50.8

2 1576.22 63442.9 'o - 1 51.6

1 1576.21 63443.3 tPo - 1 51.8

1 1576.18 63444.4 3o - 1 52.5

1 1576.17 63444.9 Po - 1 52.9

1 1576.15 63445. 9 Po - 1 53.5

Of 1576.14 63446.3 3o - 1 53,8

is 1576.11 63447.4 Po - I 54.6

09 1576.07 63448.8 Po - 1 55.7

09 1576.04 63450.0 'Po - 1 56.7

aRelative intensities are basedon visual estimates fromphotographic emulsions andare intended only as a qualita-tive guide for the reader.

bThe breakdown of conventionalnotations is serious enoughin the case of Sni to forcetheir abandonment (see text).The lower level (from 5p2),the J' value of the upperlevel, and the effective quan-tum number of the upper

level (based on the S,,/2ionization limit) appear inthe last three columns.

'Very diffuse line.

dDiffuse, symmetrical line.'Diffuse shoulder.6Shoulder measurement.gBlended line. If more thanone transition is indicated,the first entry in the tablewas judged to be the major

contributor to the line.hDiffuse, unsymmetrical line.An emissionlike feature ap-pears to the red of themeasured position.

'Diffuse, unsymmetrical line.

An emissionlike feature ap-pears to the violet of themeasured position.

"Unassigned line.

Brown et al. 613613 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977

-

3PO80

Page 8: Absorption spectrum of Sn I between 1580 and 2040 Å

TABLE II. Observed odd-energy levels of Sn I. a

LEvEL J

34640.76 0

34914.28 1

38628.88 2

39257.05 1

39625.51 2

43682.74 2

44144.37 2

44508.68 144576.00 3

47145.68 2

47487.70 3

48107.27 4

48216.36 0

48222.16 1

48669.41 2

48981.93 149487.13 0

49823.82 3

50125.97 1

51010.94 2

51160.52 2

51474.711 1

51754.67 3

52415.83 2

52706.80 1

52919.77 0

53020.97 1

53592.77 1

53631.83 2

53826.55 3

54211.76 2

54653.86 3

54713.32 2

54830.19 3

55073.21 1

55131.53 0

55156.74 1

55296.28 2

55444.61 4

55621.89 0

55688.37 1

55741.17 3

55805.35 2

55854.62 2

56175.54 3

56242.35 1

56297.98 3

56358.87 0

56390.11 1

56546.14 2

56659. 18 1

56779.98 2

56838.68 3

57094.33 1

57103.95 0

57104.73 2

57106.96 1

57150.16 2

57181.71 3

57283.66 1

57374.56 2

57513.02 3

57517.71 3

57533.30 2

57562.44 1

57592.56 0

57603.16 1

57775. 44 2

57847.17 3

57856.75 2

57874.90 3

57898.20 1

nI

2.1124

2. 1243

2. 3078

2.3438

2. 3657

2.6565

2.6968

2.7300

2.7363

3.0131

3.0567

3. 1406

3.1561

3.1570

3.2231

3.2719

3.3556

3.4279

3.4713

3.6534

3.6871

3.7610

3.8307

4.0122

4. 1007

4.1693

4. 2031

4. 4110

4.4264

4.5054

4. 6750

4.8955

4.9276

4. 9926

5. 1364

5.1728

5.1888

5.2799

5.3823

5.5128

5.5643

5.6062

5.6585

5.6996

5.9913

6.0578

6.1150

6.1794

6.2133

6.3912

6.5300

6.6889

6. 7704

7. 1637

7.1799

7. 1812

7. 1850

7.2591

7.3147

7.5036

7.6849

7.9883

7.9992

8.0359

8.1056

8.1797

8.2063

8.6778

8.8996

8.9306

8. 9901

9.0682

RELRTIVELo<c

0,, P.

n'2

1.9505

1 .9598

2.1012

2.1283

2.1446

2.3541

2.3820

2.4048

2.4091

2.5916

2.6192

2.6714

2.6809

2.6815

2.7216

2.7508

2.8000

2.8416

2.8662

2.9661

2.9841

3.0225

3.0587

3.1487

3.1909

3.2229

3.2385

3. 3308

3.3374

3. 3709

3.4402

3.5252

3.5372

3.5610

3.6120

3.6246

3.6301

3.6609

3.6945

3.7360

3.7518

3.7646

3.7803

3.7925

3.8749

3.8927

3.9077

3.9244

3.9330

3.9770

4.0098

4. 0458

4.0636

4.1441

4.11472

4.1475

4. 1482

4.1623

4.1727

4. 2069

4.2381

4.2869

4.2886

4.2942

4.3048

4. 3158

4.3197

4.3844

4.,4122

4. 4159

4.4231

4. 4323

b

b

b

b

b

b

b

b

bb

bbbbbbb

bbb

bbbbbb35

3

15

S

12

80

15

100

6

12

b 5

b 50

b 30

b

40

80

90

20

12

10

350

- 40

- 200

- 100

- 15

- 150

- 50

- 100

- 70

- 200

- 500

- 30

- 5

- 300

- 450

- 250

- 10

so

4

300

80

30

2

57930.23 0 9.1790 4.4450

LnEvL BRILL RE3-P, 3p,

b 10

b b 20

b 30

b b 40

b 5o 5s

b 60

b 70

b b 8090

b 10°

11°

120

b 130

b b 140

b 150

b 30 160

b 170 5s

180

b 75 190 5s

1 0 200 5s

3 210

1 5 75 220

230

100 240

60 300 250

75 260

25 6009 270

100 1000 280 5s

500 290 5s

300 5s

15 310

320

9 33°

340

250 1200 350

220 360

70 800 370

400 385

390

125 400

350 125 41°

420

300 430

15 440

200 300

120

100

1000

300

50

250

1OOf

500

ISO

120

450

460

470

480

490

510

520

53o

54o

1000 550

50 60 W.

150 56°

570

35 120 580

25 590

300

200

100

25

35

300

200

50

150

120

58

600

610

620Wo

630

640

65°140

TABLE II. (Co

ENEfGmLEvEL J n,

(CM-1

57935.30 1 9.19

58057.94 2 9.66

6s 3P0 55100.69 2 9.84

3 5 0 58100.89 3 9.845P S2 58133.05 3 9.98

58143.31 1 10.03

58173.13 0 10.17

58176.00 1 10.15

58260.64 2 10.62

58287.20 2 10.77

3 58292.33 3 10.805d F, 58324.00 1 10.98

58324.01 3 10.98

58352.89 0 11.16

58354.92 1 11.18

33 0 58390.58 2 11.41

;5P Po 58435.01 2 11.72

3 3 o 58438.55 3 11.7'

3 3P1 58449.60 1 11.83

5P P2 58456.21 2 11.88

58465.59 0 11.9E

58469.26 3 11.9E

3 58490.37 1 12.15

75 32 58521.91 4 12.42

58500.42 0 12.24

58523.55 1 12.43

3 3 58548.45 2 12.6E

3P D1

58552.03 3 12.65

5p3 3 D20 58553.55 2 12.71

i5p D3 58594.44 1 13.11

58602.44 0 13.1'

58607.88 1 13.25

58636.00 2 13.56

5g J 30 58641.27 3 13.62

58648.41 2 13.7C

58671.90 3 13.98

58679.11 1 14.O0

58687.73 0 14.19

58690.06 1 14.22

58709.34 2 14.48

58712.49 3 14.52

58724.88 2 14.70

58744.24 3 14.95

58748.85 1 15.066

g J=3' 58757.00 0 15.18

58758.38 1 15.21

58770.69 3 15.41

58770.78 2 15.41

58787.34 2 15.69

58803.36 3 15.98

58806.48 1 16.04

58813.89 0 16.18

58814.81 1 16.20

- 58819.74 3 16.30.

58822.59 2 16.35

8s 3p 2 ° 58838.97 2 16.69

58852.53 3 16.99

58854.45 1 17.03'

33 58861.15 0 17.18

s5

p S° 58861.78 1 17.20

58862.17 3 17.21i

8g J=3° 58866.63 2 17.31!

58882.18 2 17.69!

58893.53 3 17.98i

58894.75 1 18.02

58899.21 3 18.14

58901.19 0 18.19

58901.32 1 18.291

58904.20 2 18.271

58918.65 2 18.69'

9g J=30 58928.87 1 19.001

58931.49 3 19.081

58934.82 1 19.191

'ntinued) .RAnrAv Srornor

n2 LowoE LEvEL BRILL REHMWS1°2

3P2 31P, 3P

170

651

59

468

898

67

69

08

252

34

27

94

94

84

13

56

92

553

379

882

607

'94

587

253

418

399

642

175

17

26

'55

528615

218

048

389

0

9

0

9

2

4

8

8

6

8

5

2

B

5

0

3

0 40 - 100 66°

15 20

- 240

180

20

1 100 150

4. 4471

4.4970

4. 5149

4.5149

4. 5285

4.5328

4. 5455

4.55468

4.5835

4.5952

4. 5974

4.6115

4.6115

4.6245

4.6254

4.6416

4. 6619

4.6636

4.6687

4.6718

4.6761

4.6778

4. 6877

4.7026

4. 6924

4.7034

4.7152

4. 7169

4.7176

4. 7373

4.7412

4. 7438

4.7576

4.7602

4. 7637

4.7753

4. 7789

4.7832

4. 7843

4. 7940

4.7956

4.8018

4. 8116

4.8139

4.8181

4. 8188

4.8251

4. 8251

4. 8336

4. 8419

4. 8435

4.8473

4. 8478

4. 8504

4. 8519

4. 8604

4. 8675

4. 8685

4.8721

4. 8724

4.8726

4. 8750

4. 8832

4.8892

4. 8899

4.8922

4.8933

4.8934

4. 8949

4.9026

4. 9081

4. 9096

4.9113

5

45

4

80

5

50

20

30

75

670

680

lOg J- 3

90

85 100 690

40

40

85

15

40

90

40

11g J 30

80

60

12g J=30

80 80

- 35

- 25

- 20

- 90

- 25

- 30

- 25

- 25

- 30

0 35

- 15

- 30

- 25

0 35

- 25

- I

- 25

- 5

0 40

- 55

- 4

- 3

- 15

- 20

- 45

3 60

- 4

- 3

- 4

- 22

4 1009

- 4

- 3

- 2

- 18

4 80

- 40

- 2

4 900 45

- 3

- -

4 80

35

50

35

45

so

40

25

35

80

60

700

710

90

70 720

80 730

14g J 30

60 740

60 750

15g J 30

60 760

60 77o

16g J-30

45

30

35

100

20

35

20f

45

120

30

40

S

709120

30

35

70

70 W0

17g J=30

60

60 W0

18g J-3'

60

60

60

60 60

Wo

WO

4

614 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977 Brown et al. 614

65

90

80

40

90

60

70

120

. .- -

I

I

I

Page 9: Absorption spectrum of Sn I between 1580 and 2040 Å

TABLE II. (Continued), TABLE II. (Continued).

ENERGY

LEVEL(C. 1

58936.50

58949.73

58957.94

58959.67

58963.49

58964.38

58976.41

58982.85

58984.24

58988.23

58988.63

58999.46

59004. 17

59005.79

59009.72

59009.78

59019.53

59022.23

59024.66

59028.37

59028.37

59037.33

5904 1. 34

59044. 71

59044.78

59050.30

59052.63

59056.11

59059.23

59059.25

59062.46

59066.39

59069.24

59072.12

59072.13

59074.20

59078.64

59080.90

59083.60

59083.67

59085.20

59089.54

59091.44

59093.92

59094.01

59095.19

59099.30

59100.95

59103.22

59103.30

59104.32

59105.62

59108.17

59109.49

59111.63

59111.72

59112.58

59116.11

59117.14

59119.26

59119.34

59120.12

59123.38

59124.20

59126.18

59126.25

59126.97

59130.06

59130.56

59132.50

59132.63

59133.22

59136.01

J BRILL REI1

5P ..n',

19.249

19. 694

19. 986

20.049

20.191

20. 224

20.694

20.959

21.017

21.188

21.205

21.692

21. 915

21. 993

22.186

22. 189

22. 690

22. 836

22.969

23.176

23.176

23. 702

23. 94924. 163

24i. 167

24. 530

24.688

24.93025.154

25.155

25. 391

25.690

25. 913

26.144

26.145

26.315

26.692

26.890

27. 132

27. 138

27. 279

27. 689

27.875

28. 123

28.132

28.252

28.684

28. 864

29.116

29.125

29.240

29.389

29.689

29.847

30.110

30.121

30.23

30.68

30.82

31.11

31.12

31.23

31.69

31.8132.10

32.11

32.22

32.70

32.78

33.10

33.12

33.21

33.69

n2

4.9123

4.9194

4. 9239

4. 92484. 9269

4.9274

4. 9340

4. 9375

4. 9382

4. 9404

4. 9407

4. 9466

492470

4. 9501

4. 9523

4. 9523

4. 9577

4. 9592

4. 9606

4. 9626

4. 9626

4. 9676

4.9699

4. 97 18

4. 97 18

4.9749

4. 9762

4. 9782

4.9799

4.9799

4. 9817

4. 9839

4. 9856

4.9872

4. 9872

4. 9884

4. 9909

4. 9922

4. 9937

4. 9937

4. 9946

4.9971

4. 9981

4. 9995

4. 9996

5.0003

5.0026

5.0036

5. 0049

5.0049

5. 0055

5. 0062

5.0077

5. 0084

5.0097

5. 0097

5.0102

5. 0122

5. 0128

5. 0140

5. 0141

5. 0145

5.0164

5.01695. 0180

5.0181

5. 0185

5.0203

5. 0205

5. 0217

5.0217

5. 0221

5. 0237

ID

0

4

4

0

3

0

0

3

0

0

3

C

3

C

RELATIVE STRENGTHLOwEn LEVEL

3* , 3P1

40 100

3 30

4 30

75

2f 60 S

40 90

5 30f

10 5

70

40 150

3 25

20 30

60

- 150

40 -

- 25

25 40

40- 120

30 -

40 100 E

35

35 -

- 100

40 80

25

35 -

- 80

35 70

1 8

3 7

- 75

35 -

30 65

1 5

- 70

- 35 -

25 60

- 0 5

8

- 65

30 -

20 55

0 5

is

- - 60

30 -

20 50

0 4

3 20

- 50

- 25 -

15 40- - 4

3 30

- 45

- 20 -

15 35

- 3

3 30- 40

- 15 -

5f 25

- 3

2 30

- 35

- 15 -

5 25

- 2

35

25

25

20

25

20

25

20

10

10

ni n2

50 W°

ID

30

S TRENGTHLEVEL BRILL REHms3

p, 3p,

ENERGY

WS L EVEL J

59136.44 3

59138.28 1

59138.35 2

59138.89 1

59141.53 2

59141.77 3

59143.58 1

59143.69 2

59144.25 1

59146.56 2

59146.66 3

59148.43 1

59148.57 2

59151.19 3

59151.19 2

59152.90 1

59152.97 2

59155.38 3

59155.47 2

59157.01 1

59157.11 2

59159.25 3

59159.39 2

59160.84 1

59160.92 2

59162.80 3

59162.95 2

59164.39 1

59164.41 2

59166.14 3

59166.33 2

59167.67 2

59167.67 1

59169.22 3

59169.5 2

59170.69 1

59170.70 2

59172.06 3

59172.5 2

59173.54 1

59173.55 2

59174.80 3

59175.1 2

59176.18 2

59176.19 1

59177.31 3

59178.62 2

59178.64 1

59179.64 3

59180.98 1

59181.0 2

5g F 0? 59181.87 3

59183.14 1

59183.2 2

59183.99 3

59185.19 1

59185.91 3

59187. 10 1

59187.74 3

59188.91 1

59189.49 3

59190.59 1

59191.13 3

59192.20 1

59192.64 3

59193.70 1

59194.14 3

59195.14 1

59195.53 3

59196.47 1

59196.81 3

59197.77 1

59198.14 3

n '

33.77

34. 10

34.11

34.21

34.70

34.75

35.10

35. 12

35.23

35.70

35.72

36.09

36.12

36.70

36.70

37.08

37.11

37.68

37.70

37.70

38.11

38.66

38.70

39.09

39.11

39.63

39.6740.09

40.10

40.61

40.6741.09

41.09

41.59

41.7

42.08

42.08

42.55

42.7

43.08

43.08

43.55

43.7

44.07

44. 08

44.52

45.06

45.07

45.49

46.08

46. 1

46.47

47.07

47. 1

47.48

48.0848. 44

49.07

49.42

50.08

50.41

51.07

51.40

52.07

52.36

53.07

53.37

54.07

S54.36

55.06

55.32

56.07

56.37

n'2

5. 0239

5.0250

5.0250

5. 0254

5.0269

5.0270

5.0281

S. 0281

5.0285

5.0298

5.0299

5.0309

5.0310

5.0325

5.0325

5.0335

5. 0335

5.0349

5.0350

5.0350

5.0359

5.0372

5.0372

5. 0381

5.0381

5. 0392

5.0393

5.0402

5. 0402

5.0412

5. 0413

5.0421

5. 0421

5.0430

5.0431

5.0438

5.0438

5.0446

5. 0449

5.0455

5. 0455

5.0462

5.0464

5. 047 1

5. 0471

5.0477

5.0485

5.0485

5. 0491

5.0499

5.0499

5.0504

5.0511

5.0512

5.0516

5.0523

5.0528

5.0535

5.0538

5.0545

5.0549

5.0555

5. 0558

5.0565

5.0567

5.0574

5.0576

5.0582

5.0584

5. 0590

5.0592

5.0598

5. 0600

Brown et al. 615615 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977

I0j

RELATJVELOwER

2 30

- 10

2 25

- 10

2 25

- 10

2 20

- 10

2 20

- 10

2 18

- 7

2 15- 8

2 13

4

2 12

- 3

2 11

22 10

- 2

2 9

- 1

2 8

- 0

2 7

- Of

2 6

1 5

1 41

1 4

1 3

1 3

1 3

0 3

0 2

0 2

14

11 13

11 12

11 12

10 11

10 10

9 10

9 10

9 9

8 8

35

20

2

20

15

1

20

17

18

I

0

16

0

15

Of

15

0

14

0

13

13

12

12

50

50

60

60

50

50

50

40

40

35

35

35

35

Wo

- - - -.

, c

20

15

20

20

18

18

18

17

16

16

16

15

15

Page 10: Absorption spectrum of Sn I between 1580 and 2040 Å

TABLE II. (Continued).

FsERGi litulJVt :51-1,

LEvEL J n I n ,, LoHE LEVEL 8lLL REMARKS(aUl) lo0 2 *13

3P*

ENEN 5 11-VL, WM.NOlLEvE J n, n2 LowEi LEvEL BRILL REMMS(a~tl lo, 3p, 3p, *P --

59198.98 1 57.07

59199.28 3 57.33

59200.13 1 58.07

59200.41 3 58.32

59201.23 1 59.08

59201.51 3 59.34

59202.26 1 60.07

59202.49 3 60.3059203.24 1 61.06

59203.52 3 61.36

59204.21 1 62.10

59204.40 3 62.30

59205.08 1 63.07

59205.24 3 63.25

59205.92 1 64.05

59206.07 3 64.23

59206.78 1 65.1

59206.95 3 65.3

59207.54 1 66.1

59207.68 3 66.3

59208.29 1 67.1

59208.42 3 67.3

59209.02 1 68.1

59209.65 1 69.0

59210.27 1 70.0

59211.0 1 71

59211.6 1 72

59212.2 1 7359212.7 1 74

59213.2 1 75

59230 3

59375.4 2

59427 1

60290 3

60013 0

60395 1

60441.04 2

60454 3

60603 260630 1

60946 0

60968 1

61214 1

61245 3

61351.0 2

61365 1

61550 0

61562 1

61600.0 2

61696 3

61747.4 1

61766.0 3

61841.5 2

61852 1

61857 2

61964.6 0

61975 1

62008.6 2

62080 3

62112.7 1

62125.3 3

62180.4 2

62186 1

62260.5 0

62269 1

62297.7 2

62350 3

62374.4 1

62382.98 3

62424.2 2

62428 1

62433 2

5.0605 - - 8 95.0606 0 25.0611 - - 7 85.0613 0 2

5.0618 - - 7 95.0620 0 25.0624 - - 6 85.0625 - 25.0630 - - 6 85.0631 0 25.0636 - - 5 75.0637 - 25.0641 S- 65.0642 -

5.0646 - - 5 55.0647 -

5.0651 - - 5 55.0652 - 15.0655 - - 4 45.0656 -

5.0660 - - 4 45.0660 - 05.0664 - - 4 35.0668 - - 3 25.0671 - 2 15.0676 - - 2 15.0679 - - I 05.0683 - - 1 05.0686 - - I -5.0689 I5.079 - lO00C5.1680 - 2 0 0 h 5001

5.201 - - - 400i5.861 - 2 0 0 C5.623

2 0C5.960 - IOC 20 C 3 0 0 C6.0052 - 25 -

6.018 50C 9 00C6.171 - 5 0 e 1 0 0 i6.201 - - - 50h

6.575 3 0C

6.604 - - - looc6.953 - - 18 0 C 2 0 0 d

7.001 100c 5 0 0 h7.172 - 2 0 h 7 0 ;7.196 - - - SOi7.532 ISOC7.556 - -

3 0 C 100h7.632 - I5d 707.834 - 20C

7. 949 - - 200d 1 5d

7.992 3 0 0 d 3 0 0 h8.173 - 3 0 h 4 0 i8.200 - - - 451

8.212 IOC - -

8.498 80d

8.527 - -2 0 C

100h8.624 - 1Od 408.840 - OO0C8.945 - Od 4 0 d 1 2 0 d8.986 3 0 0 d 2 0 0 h

9.174 - 1Oh 4 0 d9.194 - - - 40;

9.470 6 0 d

9.503 - 5 C 2 0 C 8 0 h9.617 - ISi 40i9.836 - IC9.944 OC IOC 5 0 d 1 OOd9.9826 150 9 0 h

10.175 - 15h 4 0 i

10.193 - - - 30'

10.217 lOC - -

990

1000W°

1030

I 040

1050

1060

10.447 5 0 d

10.48 - IC 15 d 7 5 h 108°10.612 -

5 C 35

10.83 - 20C10.942 5C - 3 0 d 9 0 d 1090

10.9799 110 70h W.

62478.8 062485 1

62509.7 2

62549 3

62567.6 1

62573.95 3

62605.2 2

62605.9 1

62644.15 0

62649 1

62669.7 2

62703 3

62714.7 1

62719.40 3

62743.5 2

62745 1

62772.29 0

62776 162793.46 2

62818 3

62828.9 162832.51 3

62851.8 2

62853 1

62856.2 262873.45 0

62877 162891.0 2

62910 3

62919.42 1

62922.32 39s 3p o 62937.6 2

62938.6 1

62941.0 2

62954.57 0

3 62957.0 16g F 2 ? 62969.2 2

62986 3

lOs 3p 62992.46 162994.82 363007.4 2

63008.2 1

63010.3 263020.70 0

lls 3

P 0 63022.7 163033.1 2

63047 3

63052.26 1

63054.11 3

63064.4 2

63064.8 1

63067.6 212s 3p o 63075.23 0

63076.9 1

63085.65 2

63097.1 3

63101.70 1

63103.24 3

63111.9 2

63112.3 1

63114.2 2

13s 3

P2 ° 63120.71 0

63122.2 1

63129.53 2

63139.4 3

63143.09 1

63144.43 3

63151.7 2

63151.9 1

lls 3 o2 63153.6 2

63159.16 0

63160.3 1

11.173

11.178

11. 4295

11.46

11 * 607

11.85

11. 942

11.9786

12.172

12.18

12.4156

12.45

12.6044

12.83

12.941

12.9766

13.173

13.19

13.219

13.4045

13.4413.601

13.82

13.9394

13.9753

14.17

14.18

14.21

14. 395

14.43

14.60

14.84

14.939

14.97515.17

I5. 18

15.22

15.387

15.42

15.60

15. 8415.9739

15.974

16.17

16. 18

16.23

16.381

16.41

16.594

16.84

16.938

16.972

17.17

17. 18

17.22

17.376

17.41

17.590

17.84

17.937

17.972

18.17

18.17

18.22

18.375

18.41

616 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977

TABLE II. (Continued).

Brown et al. 616

2525i W' 15s 3P2.-- - 25i 1 10°

50d

- 200C 2 0 d 7 0 h 1120- -

3 0 d

- 1C

2C - 3 0 d 8 0 d 1130f 50h W°

- - 20i Wa 16s 3

P20- - - 205 1140

45d

- - 2 0 d 7 0 h 116°- - 30i

- 20C

IC - 30 7 5 d 117040 40 W°

- - 15' 17s 3P°- - - 18i 118°4 C -

40d

- - 2 0 d 65' 1200- IOC 20'

- 20C

oC - 25 7 0 d 121030 4 5 h W.- - 15; 18s P2- - - 15'3C - -

35d

- - 2 0 d 6 0 h 123°- - 30i

od - 30 65 d 124025 4 0 h W.

- - 10 19s P2°122

2C - -

30d

- 1 5d 2 0 d 55h 1260- sC 15i- IOc

2c - 25 60 127°

2 C 40 Wa

- - lo 20s 3

p 0

- - - 10~

30

- 15 d 2 5 d 5 0 h 1290

- - 20;

- 1 5 C

- - 25 55 130"20 40 W.

- - Ioi 21s 3

P 0- - - 82

od - -

30

- lod 20 4 5 h 1310- lod 15i- 25C

- - 15 50 W°20 35 W°

- - 10i 22s 3P 0

- - -7 i

28

- 15 20 4 0 h 1320

800

810

83°

82°

83°

840

85°

860

880

890

900

920

930

940W°

970

98"

Page 11: Absorption spectrum of Sn I between 1580 and 2040 Å

TABLE II. (Continued).

RELATIVE STRENGTHENEITO LOwNE LEVEL

LEVEL J nl n2 u BRIL REMPS

(lm-) ID 3P 3P 3P

263166.5

63175.1

63178.22

63179.29

63185.2

63187. 2

63191.81

63192.7

63197.9

63205.5

63208.13

63209.01

63214.2

63214.4

63216.363219.67

63220.5

63225.2

63231.5

63233.90

63234.62

63239.1

63239.3

63240.5

63243.86

63244.5

63248.7

63254.43

63256.18

63256.82

63260.5

63260.8

63262.0

63264.81

63265.4

63268.7

63274.0

63275.62

63276.19

63279.4

63279.6

63283.29

63284.0

63286.6

63290.99

63292.62

63293.15

63295.9

63296.0

63299.4

63299.7

63302.48

63306.28

63307.70

63308.12

63310.5

63310.7

63313.67

63314.1

63316.39

63319.9

63321.06

63321.39

63323.4

63323.6

63326.39

63326.7

63328.79

63331.92

63332.93

63333.26

63334.9

63334.9

20

od

20

od

18.59

18.84

18.938

18.972

19.16

19.22

19.373

19.40

19.58

19.84

19.938

19. 970

20.16

20.17

20.2420.368

20.40

20.58

20.84

20.939

20.969

21.160

21.17

21.22

21.369

21.40

21.59

21. 855

21.938

21.969

22.15

22.16

22.22

22.366

22.40

22.57

22.85

22.938

22.969

23.15

23.16

23.372

23.41

23.57

23.833

23.934

23.967

24.14

24.15

24.37

24.39

24. 575

24.836

24.936

24.966

25.14

25.15

25.369

25.40

25.573

25.85

25.937

25.963

26.12

26.14

26.371

26.40

26.574

26. 846

26.935

26.965

27.11

27.11

j8d

30

jod

,od

1 2 d

30

25

i5

,od

25

98d

2od

20

5d

5d

20

6

8

15

S

10

1

10

5

26

209'

9

3i

25

188i

8

3

22

15

6

5

2

22

102i

2

20

8

4

18

4

0

15

8

2

15

od

15

09

12

0

10

12

10

8

TABLE II. (Continued).RELRTIVE STMENGTH

ENE , LowER LEVEL ,.LEvEL J n0 n 2 83 RILL EMS(cm-1) ID2 -3P2 3P 3PO

- 315d 5is 63337.65

63337.945 W. 63339.78

63342.6

6i 63343.50

63343.8763345.5

4 0 h 1330 63345.563347.80

63348. 1

40 Wa 63349.7

63352.2

24s 3P 0 63353.13

5; 63353.37

63355.0

63355.1

40h 1340 63356.92

63357.2

63358.735 W. 63361.0

63361.71

Si 25s 3P 2 . 63361.96

63363.6

63365.17

63365.3

4 0 h 135° 63366.8

63369.0

63369.5635 W. 63369.70

63370.6

4 i 63372.66

26s 3

P 0 63372.9

63374.0

63376.2

35i 136' 63376.60

63376.7263379.44

30 63379.7

63380.8

27s 3

p 0 63382.4

3' 63383.01

63383.11

30h 1370 63385.58

63385.7

63388.2

25 63388.86

63389.01

2i 63391.24

28s 3P2 ° 63391.4

63394.28

2 5 h 1380 63394.35

63396.45

63396.7

25 63399.15

63399.25

2' 63401.22

29s 3P 2 o 63401.4

63403.74

2 5 h 63403.76

63405.55

63405.7

20 63407.9463407.94

30s 3P2° 63409.65

63409.7

63411. 8

20h 63411.8563413.42

63413.6

20 63415.38

63415.4

31s 3

P 0 63416.83

1' 63417.0

27.366

27.3927.56727.84

27.929

27.966

28.13

28.13

28.366

28.40

28.56

28.83

28.937

28.963

29.15

29.16

29.365

29.40

29.57

29.85

29.933

29.964

30.17

30.37

30.4

30.6

30.9

30.94

30.96

31.1

31.37

31.4

31.6

31.931.94

31.96

32.37

32.4

32.6

32.8

32.93

32.95

33.36

33.4

33.8

33.93

33.96

34.36

34.4

34.94

34.95

35.37

35.4

35.92

35.94

36.37

36.4

36.93

36.94

37.36

37.4

37.9437.94

38.37

38.4

38.9

38.95

39.38

39.4

39.94

39.9

40.3640.4

2

6d

1 6

6

I 0

1It

617 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977

122 0 h

0 18

32s 3P 2oj

17

0'

- 4d

- 8

6 12

- 4d

- 4d

- 3 f

6 10

5 10

5 9

5 8

4 8

3 7

2 7

33 3P 2

0 16

0

9

0

34V 3o p

0 15

0

8

0

3o35V P2 o

0 14

8

0

0 13

7

0 12

6- 14

0 11

6- 13h

0 10

5

- 12h

0 10

Id6

S

0

4

0

4

10

10h

9

10h

9

9

0

12

0

0

0

10

0

1

-

9d

- 12d

- j0d

17h

16h

I

I

Brown et al. 617

Page 12: Absorption spectrum of Sn I between 1580 and 2040 Å

TABLE II. (Continued).

RELATIVE STREGTH

LEVEL J n n2o Lo LEVEL BILL ROES-(a I) 1 02 3 'I 3P,

63418.6 1 40.9 - - 0 8

63418.73 3 40.95 1 5

63420.02 0 41.36 3

63420.2 1 41.4 - I - 9

63421.7 1 41.9 - - 0 8

63421.76 3 41.93 1 5

63423.07 0 42.37 3

63423.I 1 42.4 - ] - 8

63424.6 1 42.9 - - 0 7

63424.70 3 42.95 1 5

63425.7 1 43.3 - 0 - 7

63425.8 0 43.4 2

63427.2 1 43. 9 - - 0 7

63427.36 3 43.95 1 5

63428.4 0 44.4 1

63428.5 1 44.4 - 0 - 7

63429.7 1 44.9 - - 0 6

63429.84 3 44.94 1 4

63430.8 1 45.3 - 0 - 663430.9 0 45.4 1

63432.1 1 45.9 - - 0 5

63432.18 3 45.94 1 4

63433.1 1 46.3 - 0 - 5

63433.2 0 46.4 1

63434.3 1 46.9 - - - 5

63434.37 3 46.94 0 4

63435.3 1 47.4 - 0 - 4

63436.2 1 47.8 - - - 463436.42 3 47.93 0 4

TABLE II. (Continued).

RELATIVE STRENTH

LEva J nl n2 LowE LEVEL BRILL REHerS(a"-lJ ID, 3p, 3p, 3po,

63437.5 1 48.5 - - - 463438.3 1 48.9 - - - 463438.38 3 48.95 0 3

63439.5 1 49.6 - - - 3

63440.1 I 49.9 - - - 3

63440.21 3 49.95 0 3

63441.2 1 50.5 - - - 2

63441.7 1 50.8 - - - 2

63441.86 3 50.92 0 3

63442.9 1 51.6 - - - 2

63443.3 1 51.8 - - - I

63443.58 3 51.99 0 2

63444.4 1 52.5 - - - 1

63444.9 1 52.9 - - - I

63445.1 3 53.0 - 2

63445.9 1 53.5 - - -

63446.3 1 53.8 - - - Of

63446.6 3 54.0 - 2

63447.4 1 54.6 - - - 13

63447.9 3 55.0 0 1

63448.8 1 55.7 - - - 09

63449. 1 3 55.9 0 -

63450.0 1 56.7 - - - 03

63450.4 3 57.0 0 1

63451.5 3 57.9 0 0

63452.5 3 58.9 0 -

63453.6 3 59.9 0 -

75952 1 1390

aThe third and fourth columns contain the effective quantum numbers based on the 1/2=59232.69 cm 1 and the 2 P3,2 =63484.18cm-' ionization limits, respectively. The next four columns summarize the observed combinations of the reported levels withthe levels of the 5p2 1D and 3 P terms. A number in any of these columns gives the estimated intensity of the spectral line fromTable I. A dash in any of the four columns indicates an allowed transition not observed in the present work. The level numbersin column nine are from Ref. 2, while a W indicates the level was listed in Ref. 3. Several energy levels assigned to electronicconfigurations other than 5pns or 5pnd have been designated in the remarks column. In keeping with our multichannel quantumdefect treatment, the effective quantum numbers provide the most useful level labels. Using the fractional part of n* from thistable, along with Figs. 5, 6, 7, and 8, one can estimate the fraction iVI2 of each close-coupled channel in the given energylevel.Indicates transitions outside our wavelength region observed in emission (see Ref. 2). When no transitions were measured inthis work, energy levels from Ref. 2 have been included in column 1 for completeness.

'Very diffuse line.dDiffuse, symmetrical line.'Diffuse shoulder.fShoulder measurement.'Blended line. If more than one transition is indicated, the first entry in the table was judged to be the major contributor to theline.hDiffuse, unsymmetrical line. An emissionlike feature appears to the red of the measured position.'Diffuse, unsymmetrical line. An emissionlike feature appears to the violet of the measured position.

Although the reader is referred to Brill's2 and Wil-son's3 theses for summaries of previous level designa-tions, whenever possible we have included Brill's levelnumbers in Table II. Transitions to levels 1°-15°, 170,180, 230, 390, and 70O were not observed in the presentwork. The energies for these levels in Table II areBrill's, rounded to the nearest 0. 01 cm-. Brill'senergies for levels 16°-49°, 510, 520, 560, and 58°-600 were listed with absolute uncertainties of ±f 0. 015cm-' or less. Because of the slightly higher uncertain-ties in our data, Brill's energies for these levels prob-ably are more accurate than the values appearing inTable II. Above 60°, the energy levels in Table II aresuperior to previous data in both completeness and ac -curacy. Although we have attempted to indicate levelsabove 60° listed by Brill and by Wilson, in many cases

the correlation between the present work and previouslow-resolution results is not obvious. In ambiguouscases, the level number (or a Wif the level is listed byWilson) was given to a nearby level of the same J valueif one was found within a reasonable energy interval.

The data in Table II for the levels below the 2P 1 2

limit were used to evaluate the multichannel param-eters 11,u and Ui<: in Eq. (2). The least-squares itera-tive procedures used to determine the best values ofthese parameters are similar to those previously dis-cussed. 8 Table III gives the values of the matrix ele-ments determined in this work along with the eigen-quantum defects g,0, for the close-coupled states.

Figures 1-4 are reproductions of plots of the(n*)modl vs (nl*)modl for the J levels observed below

618 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977 Brown et aL 618

Page 13: Absorption spectrum of Sn I between 1580 and 2040 Å

TABLE III. Transformation matrices Uia and eigenquantum defects for 5pns and 5pnd of SnI.a

d3 P; s 3Po

J=O N 1 2

(32) 1 0.9960 0.089041 6<n 1 <19 N=14

2 2 2 0. 08904 0.9960 j u=0.0037

0. 6791 0. 1812

d3D', d

1P-, d

3P. s

3P1p s'P

J=1 1 2 3 4 5

(2 1. 3811 0.0531 - 0.0564 0.4292 - 0. 8153

(1° 2 -0. 5153 0. 1669 -0. 5792 -0. 4396 -0. 4217 4<nt <37 N=61

0, 2a t 3 0. 6902 + 0.3782 - 0. 0596 - 0. 6134 0. 0276 cp=0.013

(I 2)t 4 -0. 1858 - 0. 2634 + 0.7266 - 0.4599 - 0. 3957

(L2, 2) 5 0.2799 - 0. 8701 - 0. 3603 - 0. 1864 0. 0029

0. 942 0.683 0.155 0.060 0.215

d3

P2 d3D2 d

3F2 d'D2 s

3 P2

J=2 i 1 2 3 4 5

, q1 - 0.7519 0.2016 - 0. 5909 - 0.2117 0

(3 3 2 0.3130 0.5652 - 0. 4311 0.6298 0

(2 3242 3 0. 3139 -0. 6953 -0. 6460 0. 0258 0 4<n1 <48 N=79

(1 a ) 4 0.4880 0.3954 -0.2184 -0.7469 0 a0.010

( ,2250 0 0 01

L ° 6924 0.0714 0.5988 0.7256 0. 17

d tF d3F3 d3D3

J=3 1 2 3

2 2 1 -0. 1304 0. 5153 0. 8470 5<n1 <65 N58

2 2, L3 0. 8148 0. 5424 - 0.2046 0. 025

3 -0.5648 0.6635 -0.4906

, 0. 965 0.707 0.0986

aThe matrix elements Ui, appear in the square brackets. The LS labels on the columns and the jj labels on the rows indicate the

starting point of the iterative fitting procedure (see text). Since the Ui,'s were adjusted considerably, these labels do not neces-

sarily reflect the properties of the a and i states. Included on the right are the range of n* values considered, the actual number

of energy levels used, and the standard deviation of n* of the resultant fit.bThe ns 3 P2 levels were assumed to have negligible interaction with the nd J = 2 levels.

the 512P 1?,2 limit. These figures include portions ofthe function n*=G(n2*) together with the functions n*=f (nj*) computed from the parameters in Table III. Thelevels indicated by open circles belong to levels withlow values of ni, while levels indicated by triangles be-long to interlopers from 5s5p3 . These levels wereomitted from the parametric fitting of the f functions.The remaining levels were judged to be representativeof the limiting behavior of f(n*) i* and were used todetermine the parameters in Table III. To partiallycompensate for the density of points near n1 -oc, the

data were weighted by a factor (n'*)-1 2. In addition,a few points on the steep portions of the f curves weregiven additional weight to speed the convergence of theiterative procedure.

The composition of a given Rydberg level in termsof the close-coupled eigenstates can be determined from

the mixing coefficients Ma computed using Eq. (4) andthe data in Table III. Figures 5-8, which are plots of

(, Vs (n2 )modl for J=O through J= 3, respectively,summarize the results of such calculations for Sni.The composition of the close-coupled portion of thewave function of any level is given by the M2 values ona vertical line drawn through the level's (nf*)madl value.The n* values listed in Table II together with Figs. 5-8define the composition of levels near El.. belonging tothe 5pns and 5pnd channels with deviations expected inthe vicinity of interloper levels.

The 5s5p3 configuration contributes 3 '5S', 1"3 p0 , andl, 3

D' terms to the structure of Sni. As noted above,extra levels occur in the Sni electronic structure andthe energy-level patterns deviate from the regular fcurves in the vicinity of these levels. Many levels areaffected and any attempt to identify a given level as

619 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977 Brown et al 619

Page 14: Absorption spectrum of Sn I between 1580 and 2040 Å

0.0

(n* md L

0.5-

6 8 9 10 i

0.0 0.5 1.0(n2)mod 1

FIG. 1. Lu-Fano plot for J = 0 odd-parity levels of Sn i ob-served below the 2

PI/ 2 limit. The thin black curves are thefunction nt = G(n2) from Eq. (1) plotted modulo 1. The num-bers on these curves indicate the principal part of n*'(i. e.the curve numbered 4 corresponds to 4 < z* - 5). The heavycurve is the calculated function n* =f(n2') [the solutions of Eq.(2)] plotted modulo 1. The solid data points indicate the dataused in the least-squares parametric fitting, the open circlesthe data not included (see text) and the solid triangle the5s5p3 3P' level.

purely 5s5p3 is artificial. As in the analogous situa-tion in Ge i, the designation of levels associated with5s5p 3 in Table II was based largely on the assumptionthat all levels below the interloper are perturbed tolower energies and all levels above are perturbed up-wards. Our designation of the 5 S2O level at 39 625 cm-1

is unchanged from previous assignments. The 3 DO term

0.0- D B E

A 2A

(nmmod I

0.5 -

9 10 II 12 131415 20

0.0 D10 B'Q t El 1.0

(f2'mod 1

F 1G. 2. Lu-F ano Plot for the J- 1 odd-parity 1evels of Sni.The triangles mark the 5s5p3 3 P, 3D,, and 3SI levels. Seecaption to Fig. 1.

0.0 Y 0;5 B 1.0(n2)

2mod IFIG. 3. Lu-Fano plot for the J=2 odd-parity levels of Snz.The solid triangles mark the 5s5p3 5S2, 3 P2, and 3 D2 levels.The diamonds mark levels belonging to the 5pns 3P` channelwhich was omitted from the parametric fitting (see text), andthe square indicates a level at n4 = 6. 0052 which was tentativelyassigned to 5p6g3 F2. See caption to Fig. 1.

in Table II is regular and consists of levels 280, 290,and 30° near 53 600 cm-'. We have chosen to assignlevels 170, 190, and 200 to the 3

P0 term and the J=1level at 75 952 cm-' from Wilson to 'Pa. We have notassigned a level to 'D', however; the level at 59105cm-1 assigned tentatively to 5P5g 3 F2 is a possibility.Attempts at correlating the sp3 levels using Slaterparameters were not successful.

We have observed twelve J= 3 levels which do not fit

( li)mod 1

I n

(n2)mod 1FIG. 4. Lu-Fano plot for the J = 3 odd-parity levels of Sn I.The solid triangle indicates the 5s5p3 3D3 level and the opensquares indicate tho levels which have been assigned to the5pngJ=3 series converging on the 2 P,/ 2 limit (see text). Seecaption to Fig. 1.

620 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977

(I

Iv

Brown et al. 620

Page 15: Absorption spectrum of Sn I between 1580 and 2040 Å

FIG. 5. Plot of the squaresof the mixing coefficientsM' (-, a =1; - -- , a =2),

VS (nn)mod I for J = 0 levelsof SnI.

1,

M

0

C

0-I N

2 NIl I

51 �I II II \ I /

I * I

0.0 0.5 1.0 0.50.0 (n) 1

2 mo.d I

1.0

FIG. 6. Piot ofM2 vs (n4)modI for J= 1 levels of SnI. (---,

a=1; - -, a=2; - a=3; --- , a=4; --- a = 5). The

left half of the figure corresponds to points on the branch ofthe Lu-Fano curve traced from A-B, B' -C in Fig. 2, whilethe right half corresponds to points on the branch C' -D,D'-E, E'-A'.

1.0.

2/ ''.'

0.5-

FIG. 7. Plot of M2 vs

Nd ( l2)madI for J=2 levels ofS' \ | /nI( a 1 - - -,

0.0- . . . a=4). The upper figure

0.0 0.5 1.0 corresponds to points onthe branch A-B, B'-A'

1.0- Ain Fig. 3 while the lowerifigure corresponds to

\ points on the curveX-X,I Y-

M2

0.5,

0.0 0.5 1 .0

0.0 0.5(n) 10(2mod 1

FIG. 8. Plot of M2 VS (n2)modI for J=3 levels of Sni (-, a=1;

-a=2; --- , a=3).

into the level schemes for 5pnd or 5s5p3. These levels(see open squares in Fig. 4) form a series with nearlyintegral n* values which converge regularly on the2P 1 / 2 limit. We have assigned these levels to 5png

(5' n- 18). It should be noted that the 5p8g and a J= 3level from nd are nearly coincident (see the levels at57513 and 57518 cm-'). These levels interact slightly,as can be seen from small energy shifts in the ob-served energies from their interpolated positions andfrom intensity anomalies in their transitions from

5p2 3 p2. Finally, two J =2 levels (at 59105.62 and

60 441.04 cm 1 ) have been tentatively assigned to5p5g 3F2 and 5p6g3F2 levels, with effective quantumnumbers 5.0062 and 6. 0050 based on 5p P3/2 .

In summary, with the aid of multichannel quantum de-fect theory we have been able to provide an essentiallycomplete assignment of the high dispersion absorptionspectrum of Sni in the 1580-2040 A region. Except forfive weak lines, all observed spectral features in TableI have been identified.

*Ball Brothers Research Corporation.tPresent Address: NASA Headquarters, Washington, D.C.,

20546.$Partially supportedby the E. 0. HulburtCenter for Space Re-

search.'C. E. Moore, Atomic Energy Levels, III, Natl. Bur. Stand.

(U.S.), Circ. No. 467 (U.S. GPO, Washington, D.C., 1958),p. 74.

2 W. G. Brill, "The Arc Spectrum of Tin," Thesis (PurdueUniversity, Lafayette, Ind., 1964).

3J. M. Wilson, "The Atomic Absorption Spectra of Silicon,Germanium, Tin and Lead," Thesis (Imperial Coll. of Sci.and Tech. of London, 1964).

4K. T. Lu and U. Fano, "Graphical analysis of perturbedRydberg series," Phys. Rev. A 2, 81-86 (1970).

5U. Feldman, C. M. Brown, G. A. Doschek, C. E. Moore,and F. D. Rosenberg, "XUVspectrumofCiobservedfromSky-lab during a solar flare," J. Opt. Soc. Am. 66, 853-859 (1976).

GC. M. Brown, S. G. Tilford, R. Tousey, and M. L. Ginter,"Absorption spectrum of Sii between 1500 and 1900 A," J.Opt. Soc. Am. 64, 1665-1682 (1974).

7C. M. Brown, S. G. Tilford, and M. L. Ginter, "Extendedidentifications of odd energy levels of Sii: Lu-Fano graphi-cal analysis," J. Opt.Soc. Am. 65, 385-388 (1975).

8C. M. Brown, S. G. Tilford, and M. L. Ginter, "Absorption

spectrum of Gei between 1500 and 1900 A," J. Opt. Soc. Am.67, 584-606 (1977) (this issue).

621 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977 Brown et al. 621l

Page 16: Absorption spectrum of Sn I between 1580 and 2040 Å

9K. T. Lu, "Spectroscopy and collision theory. The Xe ab-sorption spectrum," Phys. Rev. A 4, 579-596 (1971).

"0 C. M. Lee and K. T. Lu, "Spectroscopy and collision theory.II. The Ar absorption spectrum," Phys. Rev. A 8, 1241-1257 (1971).

tHA set of parameters (designated pa',, Da, and Uia with thenumbers of i's and at's equal to the number of channels beingconsidered) result from separating the state representing thesystem composed of Rydberg electrons plus a charged ioncore into two regimes and matching the states appropriatein the two regimes at their common boundaries. In the first(close-coupled, short-range) regime, the Rydberg electronsare strongly correlated with electrons in the core. In thesecond (loose-coupled, long-range) regime, the electrons aresubject mainly to attractions from a centralized charged ioncore, and the eigenstates appropriate at these large electron-core separations are the Coulomb functions. The total stateof the system is then a linear combination of the above eigen-states with the coefficients in the combination (i. e., the mix-ing coefficients) determined by the boundary conditions at in-finity and at some point ro where the two solutions join. Forthis situation the wavefunctions for r-ro can be represented

(see Ref. 9) as

OWt )= F, d6[f(;z*, li, r) F, Ui,,(cos7rp,ll)Mb,

+ g(0' , lid,r) Uic (simry a)Ma]

where a and i label the close-coupled and loose-coupled rep-resentations, respectively. In this expression, the ion core,spins, and angular parts are represented by hi, f and g arethe regular and irregular Coulomb functions, the Uia arematrix elements of the transformation between the closecoupled and loose coupled configurations, the p1

a are eigen-quantum defects of the close-coupled eigenstates, and theMa (denoted U a in Ref. 10 andAa in Ref. 9) are the coeffi-cients of the linear combinations of close-coupled statesmaking up a given level.

12C. M. Brown, R. H. Naber, S. G. Tilford, and M. L. Gin-ter, "High temperature furnace system for vacuum ultravio-let spectroscopic studies," Appl. Opt. 12, 1858-1864 (1973).

13 Gallard-Schlesinger Chem., 99. 999% purity.14C. M. Brown, S. G. Tilford, and M. L. Ginter (unpublished

data, 1976).

Absorption coefficient of pure water at 488 and 541.5 nm byadiabatic laser calorimetry*

M. Hass and J. W. DavissonNaval Research'Laboratory, Washington, D.C. 20375

(Received 22 December 1976)

The absorption coefficient of pure water was found to be 0.00017 cm-' at 488 nm and 0.00029 cm-' at 541.5nm using adiabatic laser calorimetric techniques. These values are in good agreement with the generallyaccepted long-path transmission spectra of Clarke and James.

INTRODUCTION

The transmission of light through water has been thesubject of many investigations. ' It has been establishedthat there is an acute minimum for the attenuation in thevisible part of the spectrum. However, there have beenlarge differences among various investigators about themagnitude of the attenuation at the minimum. 2 It is notclear whether these differences are due to the nature ofthe technique or to the purity of the water. 3 All of theseprevious determinations have been carried out usinglong-path-length transmission cells which require care-ful evaluation of cell reflections and preparation ofwater free from absorbing contaminants and scatteringcenters.

In this present investigation, adiabatic laser calorim-etry has been employed which avoids many of the prob-lems of long-path-length transmission methods. Thismethod has been widely employed for studying absorp-tion in low-loss solid materials. 4

EXPERIMENTAL

A simple modification of the usual experimental ar-rangement for studying absorption coefficients for solidmaterials has been employed4'5 and is illustrated inFig. 1. Laser light is weakly focused along the axis ofa vertical liquid Raman cell 8 cm long and 0. 6 cm in

622 J. Opt. Soc. Am., Vol. 67, No. 5, May 1977

diameter. This cell is located inside of the blackenedenclosure and supported by nylon threads to reduce theheat losses. Absorption of laser light by the liquid con-tained in the cell results in heating and the resulting

DIFFERENTIALTHERMOCOUPLE

METER

CALORIMETER

LENS

FIG. 1. Experimental arrangement for adiabatic laser cal-orimetry of liquids. The liquid is contained in a vertical cell.

Copyright (D 1977 by the Optical Society of America 622