Absorption Spectroscopy

83
CHM 5175: Part 2.3 Absorption Spectroscopy 1 Sourc e hn Sample Detecto r Ken Hanson MWF 9:00 – 9:50 am Office Hours MWF 10:00-11:00

description

Absorption Spectroscopychemistry

Transcript of Absorption Spectroscopy

Page 1: Absorption Spectroscopy

1

CHM 5175: Part 2.3Absorption Spectroscopy

Sourcehn

Sample

Detector

Ken HansonMWF 9:00 – 9:50 am

Office Hours MWF 10:00-11:00

Page 2: Absorption Spectroscopy

Sourcehn

Sample

Detector

Absorption Spectroscopy

Page 3: Absorption Spectroscopy

Why Absorption Spectroscopy?

• Color is ubiquitous to humans

• 1000 x more sensitive than NMR

• Qualitative technique (what is in the solution)

• Quantitative technique (concentrations, ratios, etc.)

• Its easy

• It is inexpensive

• Numerous applications

Sourcehn

Sample

Detector

Page 4: Absorption Spectroscopy

Structure Differentiation

C

O

OH C

O

OH

214 nm 253 nm

Levopimaric acidAbietic Acid

Absorption Spectroscopy in Action

HPLC

pKa Determination

Yellow (pH > 4.4)

Red (pH > 3.2)

Page 5: Absorption Spectroscopy

Examples

First homework (not really): Think of examples of absorption spectroscopy

Sourcehn

Sample

Detector

Source

Sample

Detector

Source

Sample

3D Glasses

Detector

Astrochemistry

Page 6: Absorption Spectroscopy

Outline

1) Absorption

2) Spectrum Beer's Law

3) Instrument Components•Light sources•Monochrometers•Detectors•Other components•The sample

4) Instrument Architectures

5) UV-Vis in Action

6) Potential Complications

Sourcehn

Sample

Detector

Page 7: Absorption Spectroscopy

Absorption by the Numbers

hn

Sample

• Transmittance:T = P/P0

• Absorbance: A = -log T = log P0/P

hn

P0

Sample

(power in)

P

(power out)

We don’t measure absorbance. We measure transmittance.

Page 8: Absorption Spectroscopy

The Beer-Lambert Law (l specific):

A = absorbance (unitless, A = log10 P0/P)

e = molar absorptivity (L mol-1 cm-1)

l = path length of the sample (cm)

c = concentration (mol/L or M)

Beer’s Law

P0

A = e c l

Concentration Absorbance

Path length Absorbance

Molar Abs. Absorbance

Sample

(power in)

P

(power out)

l in cm

Page 9: Absorption Spectroscopy

Absorption SpectrumAlexandrite GemstoneBeAl2O4 (+ Cr3+ doping)

Sunlight

Candle/Incandescent

Page 10: Absorption Spectroscopy

The Beer-Lambert Law: A = absorbance (unitless, A = log10 P0/P)

e = molar absorbtivity (L mol-1 cm-1)

l = path length of the sample (cm)

c = concentration (mol/L or M)

Beer’s Law

Find e1) Make a solution of know concentration (C)2) Put in a cell of known length (l)3) Measure A by UV-Vis4) Calculate e

A = e c l

Find Concentrations1) Know e2) Put sample in a cell of known length (l)3) Measure A by UV-Vis4) Calculate C A = e c l

A = e c ly = m x + b

Page 11: Absorption Spectroscopy

N

NN

NRu

H2O3P

H2O3P2

RuP2

N719

400 500 600 700

0.0

0.5

1.0

1.5

2.0

2.5

A

bso

rban

ce (a.

u.)

Wavelength (nm)

TiO2 TiO2-RuP2 TiO2-N719 TiO2-RuP2-Zr-N719

NCS

NCSN

NRu

HOOC

-OOC2

2 NBu4

PO OO

P OO OTiO2

ZrO O

Beer’s Law Applied to Mixtures

Atotal = A1 + A2 + A3…

Atotal = e1 c1 l + e2 c2 l + e3 c3 l

Atotal = l(e1 c1 + e2 c2 + e3 c3)

A1 = e1 c1 l

Page 12: Absorption Spectroscopy

Limitations to Bear’s Law

Reflection/Scattering Loss

The Beer-Lambert Law:A = e c l

A = -log T = log P0/P

Reflection/Scattering- Air bubbles- Aggregates

Lamp effects- Temperature (line broadening)

- Light source changes- Solvent lensing

Absorbance too high (above 2)- Local environment effects- Dimerization- Refractive index change (ionic strength)

Sample changes- Photoreaction/decomposition- Side of the cuvette- Hydrogen bonding- Non-uniform through length

Page 13: Absorption Spectroscopy

Source

hn

Sample

Detector

Absorption Spectroscopy

??

Procedure

Step 1: Prepare a sample

Step 2: ???

Step 3: Obtain spectra (Profit!)

Page 14: Absorption Spectroscopy

Sample

Instrumentation

Sourcehn

Sample

Detector

Sourcehn

Sample

Detector

Full spectra detection Single l detection

Sourcehn

Page 15: Absorption Spectroscopy

InstrumentationSource

hn

Sample

Detector

Full spectra detection Single l detection• Source • Sample• Monochrometer• Area detector

• Source • Monochrometer• Sample• “Point” detector

1. Light sources 2. Monochrometer3. Detectors4. Samples

Page 16: Absorption Spectroscopy

Light Sources, Ideal

Experimentally we would like ~200 – 900 nm

200 300 400 500 600 700 800 900 1000

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsi

ty

Wavelength (nm)

Ideal Light Source

Sourcehn

Sample

Detector

Page 17: Absorption Spectroscopy

Light Sources: The Sun

hn

Sample

Detector

Pros:

It’s free!

Does not die

Relatively uniform from 400-800 nm

Cons:

Inconsistent

Minimal UV-light

Intense absorption lines

Page 18: Absorption Spectroscopy

Light Sources: Xe Lamp

Electricity through Xe gas Pros:

Mimics the sun (solar simulator)

It’s simple

Cons:

Relatively Expensive

Minimal UV-light (<300 nm)

Potential Instability

Page 19: Absorption Spectroscopy

Light Sources: Xe Lamp

Page 20: Absorption Spectroscopy

Light Sources: Tungsten Halogen Lamp

Halogen gas and the tungsten filamentHigher pressure (7-8 ATM)

Pros:

Compact size

High intensity

Low cost

Long lifetime

Fast turn on

Stable

Cons:

Very hot

Bulb can explode

Minimal UV-light (<300 nm)

Page 21: Absorption Spectroscopy

Deuterium lamp –200-330

“White” LightDeuterium lamp

+

Tungsten lamp – >300 nm

Page 22: Absorption Spectroscopy

Other Light Sources

Page 23: Absorption Spectroscopy

Separating the Light

Prism Grating

Sourcehn

Sample

Page 24: Absorption Spectroscopy

Monochromator: Prism

Wavelength Deviation

n0 is constants is constant

nprism is l dependent

White Light

Prism Slit

Monocromatic Light

n0 = refractive index of air

nprism = refractive index of prism

s = prism apex angle

d = deviation angle

Page 25: Absorption Spectroscopy

Monochromator: Prism

Page 26: Absorption Spectroscopy

Wavelength Diffraction

White Light

Grating

Slit

Monocromatic Light

λ = 2d(sin θi + sin θr)

λ = wavelength

d = grating spacing

θi = incident angle

θr = diffracted angle

d is constantθi is constant

θr is l dependent

Monochromator: Grating

Page 27: Absorption Spectroscopy

MirrorsGrating

Slits

Source

Monochromator: Grating

Page 28: Absorption Spectroscopy

Detectors

PMT

Full spectra detectionSingle l detectionDiode CCD Diode Array

hn

Detector

electrical signal

• high sensitivity• high signal/noise • constant response for λs • fast response time

Page 29: Absorption Spectroscopy

Detectors: Diode

n-type (extra electrons)- P or As dopedp-type (extra holes)- Al or B doped

Forward Bias:Apply a positive potentialholes + e- = exciton = lightLight Emitting Diode

Zero Bias:Apply 0 potentialexciton = holes + e- = currentsilicon solar cell

Negative Bias:Apply a negative potentialexciton = holes + e- = more currentphotodetector

Page 30: Absorption Spectroscopy

Detectors: DiodePros:

Long Lifetime

Small/Compact

Inexpensive

Linear response

190-1000 nm

Cons:

No wavelength discrimination

Minimal internal gain

Much lower sensitivity

Small active area

Slow (>50 ns)

Low dynamic range0.025 mm wide

Page 31: Absorption Spectroscopy

Detectors: PMT

• Cathode: 1 photon = 5-20 electrons• More positive potential with each dynode• Operated at -1000 to -2000 V

Page 32: Absorption Spectroscopy

Photocathodes

Circular Cage

Detectors: PMT

Linear

Architectures

Page 33: Absorption Spectroscopy

Pros:

Extremely sensitive

UV-Vis-nIR

100,000,000x current amplifier

(single photons)

Low Noise

Compact

Inexpensive ($175-500)

Cons:

No wavelength discrimination

Wavelength dependent t

Saturation

Magnetic Field Effects

Detectors: PMT

Page 34: Absorption Spectroscopy

Detectors: PMT

Super-Kamiokande Experiment

• 1 km underground

• h = 40 m, d = 40 m

• 50,000 tons of water

• 11,000 PMTs

• neutrino + water = Cherenkov Radiation

Page 35: Absorption Spectroscopy

Instrumentation

Sourcehn

Sample

Detector

Single l detection

SampleSource

hn

Detector

Sourcehn

Sample

Detector

Full spectra detection

Page 36: Absorption Spectroscopy

Sourcehn

Sample

Detector

Full Spectrum Detection

CCDDiode Array

Page 37: Absorption Spectroscopy

Detectors: Diode ArrayDiode

Diode Array

Sourcehn

Sample

Pros:

Quick measurement

Full spectra in “real time”

Inexpensive

Less moving parts

Cons:

Lower resolution (~1 nm)

Slow (>50 ns)

More expensive than a single l

Page 38: Absorption Spectroscopy

Detectors: Charge-Coupled Device

Sourcehn

Sample

Page 39: Absorption Spectroscopy

Detectors: CCD

Pros:

Fast

Efficient (~80 % quantum yield)

Full visible spectrum

Wins you the 2006 Nobel Prize (Smith and Boyle)

Cons:

Lower dynamic range

Fast (<50 ns)

Gaps between pixels

Expensive (~$10,000-20,000)

Page 40: Absorption Spectroscopy

Area Detector Calibration

650 nm

Detector

Sourcehn

Sample

Sourcehn

Sample

Red?

Detector Offset

Green?Blue?

Sourcehn

Sample

Red?

Detector To Close

Green?Blue?

Page 41: Absorption Spectroscopy

Area Detector Calibration

Detector

Hg Lamphn Ph

otoc

urre

nt

Length/Area

546 nm

Detector

365 nm 436 nm

CalibratedDetector

Hg Lamp Spectrum

Page 42: Absorption Spectroscopy

Instrumentation

Sourcehn

Sample

Detector

Single l detection

SampleSource

hn

Detector

Sourcehn

Sample

Detector

Full spectra detection

Page 43: Absorption Spectroscopy

Other Components

Mirrors

Lenses

Entrance/Exit Slits

Chopper

Shutter

Page 44: Absorption Spectroscopy

Other Components

Polarizer Beam Splitter

Page 45: Absorption Spectroscopy

Side Note: Pub Highlight

DOI: 10.1021/ja406020r

Page 46: Absorption Spectroscopy

Side Note: Pub Highlight

DOI: 10.1021/ja406020r

Page 47: Absorption Spectroscopy

Side Note: Pub Highlight

Biological Tissue Window

Hemoglobin Absorption

Pig Lard Absorption

Page 48: Absorption Spectroscopy

Side Note: Pub Highlight

Biological Tissue Window

Plasmonic Heating

Photo Drug Delivery

Page 49: Absorption Spectroscopy

THE SAMPLESource

hn

Sample

Detector

Solutions Solids

Page 50: Absorption Spectroscopy

The Sample: Cuvette for Solutions

Plastic Glass Quartz

Typically 1 x 1 cm

A = e c l

Page 51: Absorption Spectroscopy

The Sample: CuvetteTransmission Window

(—) PC > 340 nm

(—) Polystyrene > 320 nm $0.25

(—) PMMA > 300 nm $0.29

(—) Glass > 270 nm $100

(—) Quartz > 170 nm $200

Acetone

Polystyrene

Page 52: Absorption Spectroscopy

Path length

The Sample: Specialty CuvettesFlow Cell

Gas Cell

Spec-echem

Dilute Samples

1 x 1 cm10 x 1 cm

0.5 cm0.2 cm

Concentrated Samples

A = e c l

Air-free

Page 53: Absorption Spectroscopy

• Concentration (typically <50 mM)

• Solubility

• Ionic strength

• Hydrogen bonding

• Aggregation

• p-stacking

• Solvent absorption

The Sample: Solvent

Common solvent cutoffs in nm:water 190acetonitrile 190isooctane 195cyclohexane 200 n-hexane 200ethanol 205methanol 210 ether 2101,4-dioxane 215THF 220CH2Cl2 235Chloroform 240CCl4 265benzene 280toluene 285acetone 340

Page 54: Absorption Spectroscopy

The Sample: Solvent

200 300 400 500

0.0

0.5

1.0

1.5

2.0

Ab

sorb

ance

(O

.D.)

Wavelength (nm)

MeCN Acetone Aceton in MeCN

Common solvent cutoffs in nm:water 190acetonitrile 190isooctane 195cyclohexane 200 n-hexane 200ethanol 205methanol 210 ether 2101,4-dioxane 215THF 220CH2Cl2 235Chloroform 240CCl4 265benzene 280toluene 285acetone 340

Page 55: Absorption Spectroscopy

1,2,4,5-Tetrazine

The Sample: SolventVibrational Structure Solvatochromism

NH

N

N

N

N

OH

OH

Cl

Cl

Page 56: Absorption Spectroscopy

Correcting for background

A = -log T = log P0/P

P0

cuvette + solvent + sample

We want to know A (log P0/P) for only our sample!

Aall = Acuvette + Asolvent + Asample

P

cuvette + solventAbackground = Acuvette + Asolvent

P0 P

Aall - Abackground = Asample

Page 57: Absorption Spectroscopy

Instrument Architectures

Aall - Abackground = Asample

How do we measure background (reference) and sample?

Architectures

1) Single Beam

2) Double Beam•Spatially Separated

•Temporally Separated

Page 58: Absorption Spectroscopy

Single Beam Instrument

Sequence of Events1) Light Source On2) Reference in holder3) Open Shutter 4) Measure light (P0)5) Raster l and repeat 46) Close Shutter7) Sample cell in holder8) Open Shutter 9) Measure intensity (P)10) Raster l and repeat 911) Close Shutter

A = -log T = log P0/P

Pros:SimpleLess expensiveLess opticsLess moving partsHigher light intensityCan use the same cuvette

Cons:Changes over timeBetter for short term experimentsManually move samples

Page 59: Absorption Spectroscopy

Compensates for:1) Lamp Fluctuations

2) Temperature changes

3) Amplifier changes

4) Electromagnetic noise

5) Voltage spikes

6) Continuous recording

Double Beam InstrumentSpatially Separated

Temporally Separated

Page 60: Absorption Spectroscopy

Double Beam Instrument: Spatial

Sequence of Events1) Light Source On2) Reference and sample in holder3) Open Shutter4) Measure detector 1 (P0) and 2 (P)5) Raster l and repeat 46) Close Shutter

A = -log T = log P0/P

Pros:Both samples simultaneouslyLess moving parts (than temporal)

Cons:Two different cuvettesTwo different detectors½ the intensityMore expensive

Page 61: Absorption Spectroscopy

Double Beam Instrument: Temporal

Sequence of Events1) Light Source On2) Reference and sample3) Rotate Chopper4) Open Shutter5) Monitor detector

6) Raster l and repeat 47) Close Shutter

A = -log T = log P0/P

Pros:Both samples “simultaneously”Same Detector

Cons:Two different cuvettes½ the intensity rotating mirrorsnot really simultaneous

P0

PTime

Curr

ent

Page 62: Absorption Spectroscopy

Double Beam

Instrument Architectures

Single Beam

Page 63: Absorption Spectroscopy

Instrument Architectures

Agilent 8453: Single Beam, Diode Array Detector

Page 64: Absorption Spectroscopy

Instrument Architectures

Ocean Optics: Single Beam, CCD Detector

Page 65: Absorption Spectroscopy

Instrument Architectures

Cary 50: Single Beam, PMT detector

Page 66: Absorption Spectroscopy

Instrument Architectures

Hitachi U-2900: Double Beam, 2 x PMT detector

Page 67: Absorption Spectroscopy

Instrument Architectures

Cary 300: Double Beam, PMT detector

Page 68: Absorption Spectroscopy

Instrument ArchitecturesCary 5000: Double Beam, PMT detector

Page 69: Absorption Spectroscopy

Single Beam InstrumentDIY Spectrometer

http://publiclab.org/wiki/spectrometer

$35

Page 70: Absorption Spectroscopy

Other Sampling AccessoriesProbe-type

Fiber Optics Microplate Spectrometer

Cryostat

Page 71: Absorption Spectroscopy

Sourcehn

Sample

DetectorSolids/Films

• More scatter, more reflectance• No reference

The Sample: Solids

Page 72: Absorption Spectroscopy

A = -log T = log P0/P

SourceP0

Sample

DetectorP

ScatterReflectance

P does not take into account reflectance and scatter!

Measured A > Actual A

More scatter/reflectance = More error

The Sample: Solids

Page 73: Absorption Spectroscopy

The Sample: Solids

Integrating Sphere

Page 74: Absorption Spectroscopy

Solid SampleA = -log T = log P0/P

P0 ≈ Tt(without sample) – Rd(with sample)

P ≈ Tt(with sample)

A ≈ log (Tt(without sample) – Rd(with sample)) /Tt(with sample)

Page 75: Absorption Spectroscopy

Outline

1) Beer's Law

2) Absorption Spectrum

3) Instrument Components•Light sources•Monochrometers•Detectors•Other components•The sample

4) Instrument Architectures

5) Applications

6) Limitations

Sourcehn

Sample

Detector

Page 76: Absorption Spectroscopy

HPLC

Page 77: Absorption Spectroscopy

Titration of bromocresol green

Isosbestic point

pKa Determination

A @

615

nm

pKa = 4.8

1) Bromocresol Green in H2O2) Titrate with base3) Monitor pH4) Monitor Absorption

Change5) Graph absorbance vs pH6) Inflection point = pKa

- H+

+ H+

yellow blue

Page 78: Absorption Spectroscopy

300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

Ab

sorb

ance

(O

.D.)

Wavelength (nm)

RuBP pre photolysis RuBP post photolysis

N

N N

N

Ru

PO3H2

PO3H2OH

PO3H2

PO3H2

OH2

2+

N

N N

NRu

2+

2 COOH

COOH

Reaction Kinetics

hn

Page 79: Absorption Spectroscopy

N

N N

N

Ru

PO3H2

PO3H2OH

PO3H2

PO3H2

OH2

2+

300 400 500 6000.0

0.5

1.0

1.5

2.0

2.5

Ab

sorb

ance

(O

.D.)

Wavelength (nm)

hN

N N

NRu

2+

2 COOH

COOH

+ 4PO43-

Real Time MonitoringUV-Vis

455 nm source

3mL of 40 mM RuBP in pH 1, atm

Monitor: Every 5 min for 180 min Every 30 min for 180 min

Every 60 min for 3420 min

Page 80: Absorption Spectroscopy

300 400 500 6000.0

0.5

1.0

1.5

2.0

2.5b)

Abso

rban

ce (O

.D.)

Wavelength (nm)

300 400 500 6000

1

2

3

4

5

6

7

(10

4 M

-1cm

-1)

Wavelength (nm)

A B C D E

A B C D E

0 100 200 300 400 500 6000.0

0.2

0.4

0.6

0.8

1.0

Conce

ntr

atio

n (M

)

Time (min)

Spectral Fitting

Page 81: Absorption Spectroscopy

300 400 500 6000

1

2

3

4

5

6

7

(10

4 M

-1cm

-1)

Wavelength (nm)

A B C D E

0 100 200 300 400 500 6000.0

0.2

0.4

0.6

0.8

1.0

Conce

ntr

atio

n (M

)

Time (min)

Spectral Fitting

SolventkA→B

(10-4 s-1)

kB→C

(10-4 s-1)

kC→D

(10-5 s-1)

kD→E

(10-6 s-1)

H2O 2.8 (0.06) 1.3 (0.07) 3.4 (0.07) 4.0 (0.6)

D2O 8.3 (0.08) 1.1 (0.02) 2.9 (0.07) 4.8 (1.1)

0.1 M HClO4 3.2 (0.3) 1.5 (0.06) 2.9 (0.09) 1.6 (0.4)

0.1 M HClO4b 16.4 (1.4) 2.9 (0.02) 4.9 (0.04) 2.9 (0.3)

a) In atmosphere with 455 nm (50 mW/cm2) irradiation unless otherwise noted. b) Bubbled with pure O2.

Table 1. Reaction rate constants for the photodecomposition of RuBP (error in parentheses).a

Page 82: Absorption Spectroscopy

Potential Complications

With the Cuvette + Solvent• Cuvette non-uniformity• Sample holder mobility• Lensing (abs + heat)• Temperature (line broadening)

With the Sample• Photo Reaction/Decomposition• Concentration to high

- non-linear (A > 2)- Aggregation- Refractive index change

• Air bubble generation

With the Instrument• Lamp Stability• Room Lighting• Noise

Page 83: Absorption Spectroscopy

Absorption End

Any Questions?