Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf ·...

60
Absolute continuity vs total singularity –Part II– Absolute continuity vs total singularity –Part II– E. Arthur (Robbie) Robinson The George Washington University February 16, 2012

Transcript of Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf ·...

Page 1: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Absolute continuity vs totalsingularity–Part II–

E. Arthur (Robbie) Robinson

The George Washington University

February 16, 2012

Page 2: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Outline

1 Introduction

2 A “converse” to Villani’s theorem

3 An easy TS example

4 Raphael Salem’s examples

5 The Hartman-Kreshner approach

6 Minkowski’s ?(x) and Conway’s �(x)

7 Spectral measures

8 References

Page 3: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Introduction

1 Introduction

2 A “converse” to Villani’s theorem

3 An easy TS example

4 Raphael Salem’s examples

5 The Hartman-Kreshner approach

6 Minkowski’s ?(x) and Conway’s �(x)

7 Spectral measures

8 References

Page 4: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Introduction

Review

In the first lecture I proved the following theorem:

Lemma (Soichi Kakeya, 1924 )

If f : [0, 1]→ R is continuous, strictly monotone and satisfies|f ′(x)| ≥ a > 0 a.e., then f−1(x) is absolutely continuous, and|(f−1)′(x)| ≤ 1/a a.e..

The proof is based on the following result.

Lemma (A. Villani, 1985)

Let ϕ : [a, b]→ R be continuous, strictly monotone. Then ϕ−1(x)is absolutely continuous if and only if |ϕ′(x)| > 0 a.e..

Villani says he believes this lemma is known (clearly it was knownto Kakeya) but he could not find it in the literature.

Page 5: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Introduction

Today

Definition

We call an continuous increasing function f : [a, b]→ R singular(continuous) if f ′(x) = 0 λ-a.e.. We call such an f totally singular(TS) if it is strictly increasing.

The best known example of a singular continuous function is theCantor function (we review it below). However, it is not strictlyincreasing, so it is not totally singular.

Examples of totally singular functions abound in the literature.The best known example is probably Minkowski’s “question markfunction” ?(x) (we discuss it later).

However, these examples are not so widely known.

Page 6: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

A “converse” to Villani’s theorem

1 Introduction

2 A “converse” to Villani’s theorem

3 An easy TS example

4 Raphael Salem’s examples

5 The Hartman-Kreshner approach

6 Minkowski’s ?(x) and Conway’s �(x)

7 Spectral measures

8 References

Page 7: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

A “converse” to Villani’s theorem

Converse

The following result seems to be well known (many authors state itas a fact and it is often attributed to Lebesgue).

Theorem (Lebesgue)

If f : [a, b]→ R is totally singular (i.e., continuous and strictlyincreasing with f ′(x) = 0 λ-a.e.), then so is f−1.

The proof uses a lemma from Natanson, related to one from thefirst lecture.

Lemma (Natanson)

Let ϕ : [c, d]→ R and let ϕ′(x) ≥ η > 0 for x ∈ E ⊆ [c, d]. Then

λ∗(ϕ(E)) ≥ ηλ∗(E),

where λ∗ denotes Lebesgue outer measure.

Page 8: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

A “converse” to Villani’s theorem

Converse

The following result seems to be well known (many authors state itas a fact and it is often attributed to Lebesgue).

Theorem (Lebesgue)

If f : [a, b]→ R is totally singular (i.e., continuous and strictlyincreasing with f ′(x) = 0 λ-a.e.), then so is f−1.

The proof uses a lemma from Natanson, related to one from thefirst lecture.

Lemma (Natanson)

Let ϕ : [c, d]→ R and let ϕ′(x) ≥ η > 0 for x ∈ E ⊆ [c, d]. Then

λ∗(ϕ(E)) ≥ ηλ∗(E),

where λ∗ denotes Lebesgue outer measure.

Page 9: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

A “converse” to Villani’s theorem

Proof of converse lemma

Let ϕ = f−1 and note that ϕ : [f(a), f(b)]→ R is continuous andstrictly increasing.

Suppose λ(F ) > 0 where F = {y : ϕ′(y) > 0}. There existsγ > η > 0 and E ⊆ F (measurable) so that λ(E) > η andη ≤ ϕ′(x) ≤ γ for x ∈ E.

Note that ϕ(E) = f−1(E) is measurable. By Natanson’s lemma,

λ(ϕ(E)) = λ∗(ϕ(E)) ≥ ηλ∗(E) = ηλ(E) > η2 > 0.

But for (λ-a.e.) x ∈ ϕ(E),

f ′(x) =1

ϕ′(f(x))≥ 1

γ> 0.

Page 10: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

An easy TS example

1 Introduction

2 A “converse” to Villani’s theorem

3 An easy TS example

4 Raphael Salem’s examples

5 The Hartman-Kreshner approach

6 Minkowski’s ?(x) and Conway’s �(x)

7 Spectral measures

8 References

Page 11: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

An easy TS example

Definition of the Cantor function

For x ∈ [0, 1] write x = .d1d2d3 . . . in base 2 (so di ∈ {0, 1}) andx = .c1c2c3 . . . in base 3 (so di ∈ {0, 1, 2}).

The Cantor set C ⊆ [0, 1] is the set of all x = .c1c2c3 . . . so thatci 6= 1∀i.

Define the Cantor function g(.c1c2c3c3 . . . ) = .d1d2d3 . . . asfollows:

If ci 6= 1∀i then i0 =∞,

else let i0 be the first i so that ci = 1.

Then for i < i0, di = 0 if ci = 0 and di = 1 if ci = 2. And for alli ≥ i0 put di = 0.

Page 12: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

An easy TS example

Graph of Cantor function (c 1883)

The Cantor functiong : [0, 1]→ [0, 1] is an increasing continuoussurjection with g′(x) = 0 a.e. (singular). It is not strictlyincreasing (not 1:1) so not TS.

(Source: http://mathworld.wolfram.com/CantorFunction.html)

Page 13: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

An easy TS example

Brown’s example

This is related to an example I recall from grad school. It is easierto state than mine, but harder to visualize.

Let g be the Cantor function. For an interval I = [a, b] ⊆ [0, 1]define gI(x) = 0 if x < a, gI(x) = 1 if x > b, and

gI(x) = g

(x− ab− a

)if x ∈ [a, b].

Note that I is continuous, increasing and singular.

Let I1, I2, I3, . . . be an enumeration of the dyadic intervals in[0, 1]. Define

f(x) =

∞∑k=1

1

2kgIk(x).

Page 14: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

An easy TS example

Brown’s example. . .

The function f is TS because it has the following properties:

continuous; (uniform limit of continuous functions),

strictly increasing; (any interval I contains a dyadic intervalIk = [ak, bk], and f(bk)− f(ak) > 2−k), and

has f ′(x) = 0; (follows from next lemma).

Lemma (Riesz-Sz. Nagy)

If f(x) =∑

k fk(x) for λ-a.e. x ∈ [0, 1], where each fk(x) isincreasing, then f ′(x) =

∑k f′k(x).

Page 15: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

An easy TS example

The “jimmied” Cantor function

This is the example I remember from grad school.

Start with f1(x) = (1/2)g(x).

Take f2(x) = (1/22)g[1/3,2/3](x).

This fills in the biggest “hole” of length 1/3 in C, but creates newholes of lengths 1/9, 1/27, . . . . These are in addition to thepre-existing holes of the same sizes.

Make f3(x) to fill in all the holes of length 1/9 (they are finitein number) with a total “rise” of 1/23,

. . .

Make fk(x) to fill in all the holes of length 1/3k−1 (they arefinite in number) with a total “rise” of 1/2k,

. . .

Define f(x) =∑

k fk(x).

Page 16: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

An easy TS example

Picture

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Figure: The jimmied Cantor function

Page 17: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

1 Introduction

2 A “converse” to Villani’s theorem

3 An easy TS example

4 Raphael Salem’s examples

5 The Hartman-Kreshner approach

6 Minkowski’s ?(x) and Conway’s �(x)

7 Spectral measures

8 References

Page 18: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

The induction step

Suppose g : [a, b]→ [c, d] has g(a) = c, g(b) = d, and is linear inbetween.

Let e =(12

)a+

(12

)b and note that g(e) =

(12

)c+

(12

)d.

For µ > 0, µ 6= 2, define a new function Bµg : [a, b]→ [c, d] by(Bµg)(a) = c, (Bµg)(b) = d,

(Bµg)(e) =

(1

µ

)c+

(1− 1

µ

)d,

and linear in between.

Note that g and (Bµg) are both strictly increasing and continuous.

Page 19: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

Picture

a b

c

d

(1/2)(a+b)

(1/6)c+(5/6)d

Figure: The functions g and Bµg in the case µ = 3.

Page 20: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

Definition

Fix some µ > 0, µ 6= 2. Define f0 : [0, 1]→ [0, 1] by f0(x) = x.

Now suppose (by induction) that we have a strictly increasing,continuous fn that satisfies:

fn(0) = 0, fn(1) = 1, and

fn is linear on each interval of the form In,k = [k−12n ,k2n ].

Construct fn+1 by replacing (fn)|In,k with Bµ(fn)|In,k , fork = 1, 2, . . . , 2n.

Definef(x) = lim

n→∞fn(x).

Page 21: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

The Salem function

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Figure: The Salem function f(x) for µ = 4.

Page 22: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

The Salem function

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Figure: f−1(x) for µ = 4 or f(x) for µ = 4/3.

Page 23: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

Koch snowflake (1904)

Page 24: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

Properties

Put µ0 = µ and let µ1 satisfy 1µ0

+ 1µ1

= 1.

f is continuous since fn → f uniformly: indeed

|fn+1(x)− fn(x)| ≤ 1

2

(max

{1

µ0

,1

µ1

})n.

f is strictly increasing: the vertices of each fn lie on thegraph of f . Thus f is constant on no interval.

f ′(x) = 0 a.e: The proof will follow below.

Page 25: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

Dynamical interpretation

Fix µ > 0. Define Tµ : [0, 1]→ [0, 1] by

Tµ(x) =

{µ0x if 0 ≤ x < 1

µ0,

µ1(x− 1µ0

) if 1µ0≤ x ≤ 1.

Also define Dµ(x) = χ[1µ0,1](x).

Page 26: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

Interval map

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Figure: The binary generalized Luroth function, µ = 3.

Page 27: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

µ-representations and µ-expansions

For x ∈ [0, 1], define Rµ(x) = d = .d1d2d3 · · · ∈ {0, 1}N by

dk = Dµ(T k−1µ (x)).

For d = .d1d2d3 · · · ∈ {0, 1}N define

Eµ(d) =d1µd1

+d2

µd2µd1+

d3µd3µd2µd1

+ . . .

Page 28: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

Properties

Rµ(x) exists for all x ∈ [0, 1], and Eµ(d) converges for alld ∈ {0, 1}N (comparison to geometric series).

These are “f -expansions”a la Renyi. They satisfy Kakeya’scriterion T ′µ(x) > 1, so Eµ(Rµ(x)) = x (“valid”).

The case µ = 2 is the usual base 2. For µ 6= 2 these are“binary” (cases of) “Generalized Luroth Series” (GLS) Dajaniand Kraaikamp.

For all µ > 0, Tµ preserves Lebesgue measure and is ergodic.

Let µ 6= 2. The Salem function is given by f(x) = Eµ(R2(x)).

Page 29: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

Properties

Rµ(x) exists for all x ∈ [0, 1], and Eµ(d) converges for alld ∈ {0, 1}N (comparison to geometric series).

These are “f -expansions”a la Renyi. They satisfy Kakeya’scriterion T ′µ(x) > 1, so Eµ(Rµ(x)) = x (“valid”).

The case µ = 2 is the usual base 2. For µ 6= 2 these are“binary” (cases of) “Generalized Luroth Series” (GLS) Dajaniand Kraaikamp.

For all µ > 0, Tµ preserves Lebesgue measure and is ergodic.

Let µ 6= 2. The Salem function is given by f(x) = Eµ(R2(x)).

Page 30: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

Proof that f ′(x) = 0 a.e.

For x ∈ [0, 1] with d = .d1d2d3 · · · = R2(x), and for p ∈ N, letxp = E2(.d1d2 . . . dp).

Note that if x < x′ with xp = x′p, then

f(x′)− f(x) <1

µd1µd2 . . . µdp.

Now a.e. x ∈ [0, 1] is normal, meaning

d1 + d2 + · · ·+ dp =p

2+ ϕ(p),

where ϕ(p)/p→ 0 as p→∞. (This is Borel’s normal numbertheorem or the Birkhoff ergodic theorem.)

Page 31: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

Proof that f ′(x) = 0 a.e., cont.. . .

Denote the normal numbers N , so that λ(N) = 0, and fix x ∈ N .

Let hp = εp+1/2p+1 where εp+1 = (−1)dp+1 .

Thus

|f(x+ hp)− f(x)| < 1

µd1µd2 . . . µdp

(x to x+ hp flips the (p+ 1)st digit).

We also have ∣∣∣∣ 1

hp

∣∣∣∣ = 2p+1.

Page 32: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

Proof that f ′(x) = 0 a.e., cont.. . .

Since x ∈ N ,

1

µd1µd2 . . . µdp=

1

µp/2+ϕ(p)0

· 1

µp/2−ϕ(p)1

<1

(µ0µ1)p/2−|ϕ(p)|.

We have

2p+1 |f(x+ hp)− f(x)| <(

2

(µ0µ1)1/2

)p· 2(µ0µ1)

|ϕ(p)|.

Page 33: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

Proof that f ′(x) = 0 a.e., cont.. . .

We have

2

(µ0µ1)1/2< 1, so that

(2

(µ0µ1)1/2

)p= K−p1 for K1 > 1.

and(µ0µ1)

|ϕ(p)| = K|ϕ(p)|2 for K2 > 1.

Thus

f ′(x) = limp→∞

|f(x+ hp)− f(x)||hp|

= 2K−p1 K|ϕ(p)|2 = 0,

for x ∈ N such that f ′(x) exists, since |ϕ(p)|/p→ 0.

Page 34: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Raphael Salem’s examples

Additional results by Salem

f satisfies a Holder condition

|f(x)− f(y)| ≤ 2γ−1|x− y|log γ/ log 2,

where γ = max{1/µ0, 1/µ1}.The Fourier coefficients of the Lebesgue-Steltjes measure dfon [0, 1] are given by

cn :=

∫ 1

0einx df(x) =

∞∏k=1

(1

µ0+

1

µ1e2πin/2

k

)cn 6→ 0 (not a Rajchman measure) since

|c2m |2 > (1− 2/µ0)2 cos2(π/4) cos2(π/8) cos2(π/16) . . . .

Page 35: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

The Hartman-Kreshner approach

1 Introduction

2 A “converse” to Villani’s theorem

3 An easy TS example

4 Raphael Salem’s examples

5 The Hartman-Kreshner approach

6 Minkowski’s ?(x) and Conway’s �(x)

7 Spectral measures

8 References

Page 36: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

The Hartman-Kreshner approach

Good binary trees

Consider a sequence Pn = {Ink : n = 1, 2, . . . 2n} of partitions of[0, 1), with Ink = [ank−1, a

nk), and 0 = an0 < an1 < · · · < an2n = 1.

Call {Pn} a good binary tree if:

each interval in Pn−1 is cut into two intervalsIn−1k = In2k−1 ∪ In2k in Pn.

||Pn|| = max{λ(In) : i = 1, 2, . . . , 2n} → 0 as n→∞.

For the last condition, it suffices to show ∪nPn is dense in [0, 1].

Page 37: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

The Hartman-Kreshner approach

The Hartmen-Kreshner function

Let {Pn} be a good binary tree, and let {Qn} denote the partitionof [0, 1) into 2n dyadic intervals of length 2−n (a good binary tree).

Define fn(i/2n) = ani for i = 0, 1, . . . 2n, and extend tofn : [0, 1]→ [0, 1] by linear interpolation.

Define f(x) = limn→∞ fn(x).

Clearly f(x) is continuous and strictly increasing.

Note: f : Z[12

]→ ∪nPn is a strictly increasing bijection.

Here, Z[12

]= ∪nQn.

Page 38: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

The Hartman-Kreshner approach

Expansions using good binary trees

Let {Pn} be a good binary tree. For x ∈ [0, 1), defineR{Pn}(x) = .d1d2d3 . . . by

dn =

{0 if x ∈ In−1k ∩ In2k−1, and

1 if x ∈ In−1k ∩ In2k.

Given d = .d1d2d3 . . . let rn(d) = dndn−1 . . . d1.02 ∈ N (base 2integer), and let

E{Pn}(d) = limn→∞

anrn(d).

Then E{Pn}(R{Pn}(x)) = x (“valid”).

The Hartman-Kreshner function is given by

y = f(x) = E{Pn}(R{Qn}(x)),

where {Qn} denotes the dyadic binary tree.

Page 39: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

The Hartman-Kreshner approach

Some definitions. . .

Let {Pn} be a good binary tree, and let {Qn} be the dyadic binarytree.

Let In(y) denote the interval of Pn that contains y. Write

In(y) = An(y) ∪Bn(y) where Bn(y) < An(y) ∈ Pn+1.

Note that (for d = EPn(y)) dn = 0 if y ∈ An(y) and dn = 1 ify ∈ Bn(y).

Let

εn(y) = (−1)dn(y)λ(Bn(y))− λ(An(y))

λ(In(y)).

Page 40: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

The Hartman-Kreshner approach

The Hartman-Kreshner theorem

Theorem (Hartman-Kreshner)

The strictly increasing continuous function y = f(x) is totallysingular, mixed, or absolutely continuous according whether the setof points y for which the infinite product

∞∏k=1

(1 + εn(y))

diverges, is of measure one, of measure between zero and one, orof measure zero.

Page 41: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

The Hartman-Kreshner approach

A corollary

Corollary

If

lim infn→∞

λ(Bn(y))

λ(An(y))< 1

for λ-a.e. y, then y = f(x) is totally singular.

Proof.

|εn(y)| =∣∣∣∣λ(An)− λ(Bn)

λ(An) + λ(Bn)

∣∣∣∣ > 1

2

∣∣∣∣1− λ(Bn)

λ(An)

∣∣∣∣ .This implies

lim supn→∞

|εn(y)| > 0

for λ-a.e. y, which implies the divergence of the infinite product inthe theorem.

Page 42: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Minkowski’s ?(x) and Conway’s �(x)

1 Introduction

2 A “converse” to Villani’s theorem

3 An easy TS example

4 Raphael Salem’s examples

5 The Hartman-Kreshner approach

6 Minkowski’s ?(x) and Conway’s �(x)

7 Spectral measures

8 References

Page 43: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Minkowski’s ?(x) and Conway’s �(x)

Farey fractons

Let pq <

rs be two fractions in lowest terms. Define the Farey sum

p

q⊕ r

s=p+ r

q + s.

Thenp+rq+s is in lowest terms, and

pq <

p+rq+s <

rs .

Page 44: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Minkowski’s ?(x) and Conway’s �(x)

The Farey tree

Start with P1 ={01 <

11

}.

Make Pn+1 out of Pn by dividing each interval at the Farey sum ofits two endpoints.

P2 ={

01 <

01 ⊕

11 = 0+1

1+1 = 12 <

11

}.

P3 ={01 <

13 <

12 <

23 <

11

}.

P4 ={01 <

14 <

13 <

25 <

12 <

35 <

23 <

34 <

11

}.

. . .

Theorem

Q = ∪nPn.

If pq <

rs are adjacent in Pn then rq − ps = 1.

Page 45: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Minkowski’s ?(x) and Conway’s �(x)

The function

Define f(x) using the Hartman-Kreshner recipe, using the Fareytree Pn, and the dyadic tree Qn.

This function f(x) is J. H. Conway’s box function �(x). Eitherf(x) or f−1(x) is the Minkowski “question mark” function ?(x)(depending on whose account one accepts).

Theorem

Both f(x) and f−1(x) are totally singular.

Comment: f : Z[1/2]→ Q is an order preserving bijection.

Page 46: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Minkowski’s ?(x) and Conway’s �(x)

Conway’s box

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Figure: The Box function �(x).

Page 47: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Minkowski’s ?(x) and Conway’s �(x)

Minkowski’s question mark (1897)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Figure: The function ?(x).

Page 48: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Minkowski’s ?(x) and Conway’s �(x)

Proof

By the corollary, if f is not TS then (since 0 < λ(Bn)/λ(An) ≤ 1),lim inf λ(Bn)/λ(An) = 1 on a set of positive measure.

This implies ∃ N and a set P , with λ(P ) > 0 so that

λ(Bn(y))

λ(An(y))> 1/2 for y ∈ P and n ≥ N.

Now consider how an interval IN (y) = INk = [p/q, r/s) ∈ Pn iscut into four intervals in Pn+2:

IN+24k , IN+2

4k+1, IN+24k+2, I

N+24k+3,

and each of these is cut

IN+24k+i = BN+2

4k+i ∪AN+24k+i.

Page 49: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Minkowski’s ?(x) and Conway’s �(x)

Proof

The endpoints are of the IN+24k+i are

p

q,2p+ r

2q + s,p+ r

q + s,p+ 2r

q + 2s,q

s.

A calculation shows λ(BN+24k )/λ(AN+2

4k ) = q/(2q + s) < 1/2.

Thus y 6∈ IN+24k .

A similar calculation shows y 6∈ IN+24k+3. Thus y ∈ IN+2

4k+1 ∪ IN+24k+2

In fact, we have y ∈ IN+`2`k+2`−1 ∪ IN+`

2`k+2`−1+1for all ` ≥ 2.

It follows that #(P ) <∞, so λ(P ) = 0.

Page 50: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Minkowski’s ?(x) and Conway’s �(x)

Proof of Hartmen-Kreshner

We consider only the TS case. We will show

(f−1)′(x) =1∏∞

k=1(1 + εn(x)).

The result will then follow from the Lebesgue lemma.

Write In(y) = (ynk , ynk+1) (the endpoints are a set of measure 0,

which we ignore. Define

∆n(y) :=f−1(ynk+1)− f−1(ynk )

ynk+1 − ynk.

Page 51: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Minkowski’s ?(x) and Conway’s �(x)

Proof of Hartmen-Kreshner

Then ∆n(y)→ (f−1)′(y) whenever (f−1)′(y) exists (i.e., a.e.),and y not an endpoint.

Suppose In+1(y) = An(y). Then

λ(An)− λ(Bn) = εn(y)λ(In(y)),

or

λ(An) =1

2λ(In)(1 + εn(y)),

or

λ(In+1) =1

2λ(In)(1 + εn(y)).

The same formula holds if In+1(y) = Bn(y).

Page 52: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Minkowski’s ?(x) and Conway’s �(x)

Proof of Hartmen-Kreshner

Since λ(I0) = 1,

λ(In(y)) =

(1

2

)n n∏k=0

(1 + εn(y)).

The result follows since

∆n(y) =

(1

2

)n 1

λ(In(y)).

Page 53: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Spectral measures

1 Introduction

2 A “converse” to Villani’s theorem

3 An easy TS example

4 Raphael Salem’s examples

5 The Hartman-Kreshner approach

6 Minkowski’s ?(x) and Conway’s �(x)

7 Spectral measures

8 References

Page 54: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Spectral measures

Ergodic theory

Let T : (X,µ)→ (X,µ) be an invertible ergodic measurepreserving transformation, and the the induced unitary(UT f)(x) = f(Tx) on L2(X,µ)

For h(x) ∈ L2(X,µ), ||h|| = 1, define cn = 〈UnT h, h〉.

Since cn is positive definite ∃ probability measure σh on [0, 1] sothat ∫ 1

0e2πin dσh = cn.

There is an (almost unique) hmax (“maximal spectral type”) sothat σT := σh << σhmax for all h.

Page 55: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Spectral measures

Ergodic theory

Apply the Lebesgue decomposition σT = σac + σsc + σd. Defineσ0T = σac + σsc.Assume T is weakly mixing (iff σd = δ0. since T ergodic)

If σac = 0, we say T has singular continuous spectrum.

If σsc = 0, we say T has Lebesgue spectrum.

T is mixing iff cn → 0 as n→ ±∞ (σ0T is a Rajchmanmeasure).

If T has Lebesgue spectrum, cn → 0 (σ0T is a Rajchman byRiemann-Lebesgue lemma): Lebesgue spectrum → mixing.

Mixing 6→ Lebesgue spectrum (∃ SC Rajchman measures:rank 1 mixing).

Page 56: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Spectral measures

Ergodic theory

Examples:

SC, non-Rajchman: Chacon, weakly mixing substitutions,Morse ( span eigenvalues).

SC, Rajchman: Rank 1 mixing.

AC: Bernoulli shifts, Rudin-Shapiro ( span eigenvalues).

Question: Is σh(I) > 0 for any interval I (True or false)?Answer: Yes! (thanks to Karl Petersen) sp(UT ) = T (an ergodictheory result), and any open set I ⊆ sp(UT ) = T = 2π[0, 1) hasσT (I) > 0 (see Rudin, Functional Analysis).

Page 57: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Spectral measures

Morse sequence shift T

Figure: The distribution for σsc for the Morse sequence:0→ 01, 1→ 10 (Baake & Grimm, 2008)

Page 58: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

Spectral measures

Challenge

Draw a graph of the distribution of a TS Rajchman measure.

Preferably it should be the spectral measure for a mixing Twith singular continuous spectrum (e.g. rank 1 mixing).

How does the graph of a non-Rajchman distribution lookcompared to how the graph of a Rajchman distribution?What does a AC one look like?

Page 59: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

References

1 Introduction

2 A “converse” to Villani’s theorem

3 An easy TS example

4 Raphael Salem’s examples

5 The Hartman-Kreshner approach

6 Minkowski’s ?(x) and Conway’s �(x)

7 Spectral measures

8 References

Page 60: Absolute continuity vs total singularity Part IIrobinson/Documents/Total Singularity.pdf · Absolute continuity vs total singularity {Part II{Introduction 1 Introduction 2 A \converse"

Absolute continuity vs total singularity –Part II–

References

Arlen Brown, “An Elementary Example of a ContinuousSingular Function”, Monthly 76, (1969), 295-297.

John H. Conway. “Contorted Fractions”, On Numbers andGames, (1976).

Philip Hartman and Richard Kershner, “The Structure ofMonotone Functions”, American J. of Math., 59, (1937),809-822.

Hermann Minkowski, “Zur Geometrie der Zahlen.” (circa1897) In Gesammelte Abhandlungen, Chelsea, 44-52, (1991).

Raphael Salem, “On Some Singular Monotone Functionswhich Are Strictly Increasing.” Trans. Amer. Math. Soc. 53,427-439, (1943).