Absence of an induced magnetic moment in Pt on … · Absence of an Induced Magnetic Moment in Pt...

1
Absence of an Induced Magnetic Moment in Pt on Y 3 Fe 5 O 12 Stephan Geprägs 1 , Matthias Opel 1 , Sibylle Meyer 1 , Fabrice Wilhelm 2 , Katharina Ollefs 2 , Andrei Rogalev 2 , Sebastian T.B. Goennenwein 1 , Rudolf Gross 1,3 1 Walther - Meißner - Institut (WMI), Bayerische Akademie der Wissenschaften , 85748 Garching , GERMANY 2 European Synchrotron Radiation Facility (ESRF), 38043 Grenoble Cedex 9, FRANCE 3 Physik - Department, Technische Universität München, 85748 Garching, Germany www.wmi.badw.de MA 55.9 – DPG Frühjahrstagung (Dresden, 2014) www.wmi.badw.de Yttrium Iron Garnet (YIG, Y 3 Fe 5 O 12 ) and Pt Spin Currents X-Ray Absorption Near Edge Spectra (XANES) Summary This work was supported by the ESRF via HE-3784 and the DFG via priority program SPP 1538. High -quality epitaxial Y 3 Fe 5 O 12 (YIG) thin films via pulsed laser deposition on Y 3 Al 5 O 12 (YAG) substrates In -situ e-beam evaporation of thin Pt layers (1.6, 3, 7, 10 nm) XANES at Pt L 2,3 edges compatible with metallic Pt on Y 3 Fe 5 O 12 No indication for oxidation of Pt → high interface quality Element -specific magnetization in four Pt|Y 3 Fe 5 O 12 samples Finite XMCD for Pt|Fe (FMM), no XMCD for Pt|Y 3 Fe 5 O 12 (FMI) No indication for magnetic proximity effect in Pt on Y 3 Fe 5 O 12 Supports spin -Hall interpretation of MR in Pt (SMR model) Element-Specific Investigation Laser-MBE of Y 3 Fe 5 O 12 Thin Films [1] H. Nakayama et al., Phys. Rev. Lett. 110 , 206601 (2013). [2] M. Althammer et al., Phys. Rev. B 87 , 224401 (2013). [3] S. Meyer et al., submitted to Appl. Phys. Lett. (2014), arXiv:1401.7787 [4] Y.M. Lu et al., Phys. Rev. Lett. 110 , 147207 (2013). [5] Y.-T. Chen et al., Phys. Rev. B 87 , 144411 (2013). [6] S. Geprägs et al., Appl. Phys. Lett. 101 , 262407 (2012). [7] S. Geprägs et al., arXiv:1307.4869 (2013). Comparison with MPMR model (Lu et al.) Magnetic Proximity MR vs. Spin-Hall MR X-Ray Magnetic Circular Dichroism (XMCD) resonant excitation theory: Tserkovnyak, PRL 88 , 117601 (2002) expt.: Mosendz, PRL 104 , 046601 (2010) scaling: Czeschka, PRL 107 , 046601 (2011) FMM: Uchida, Nature 455 , 778 (2008) FMI: Uchida, Nature Mater. 9 , 894 (2010) DMS: Jaworski, Nature Mater. 9 , 898 (2010) local SSE: Weiler, PRL 108 , 106602 (2012) thermal excitation Transfer of Angular Momentum, No Transfer of Electrical Charge spin current normal metal NM ferromagnet FM magnons spin current detection → via inverse spin-Hall effect (iSHE) in normal metal (NM) problem → conductivity of the ferromagnet (FM) solution → use ferromagnetic insulators (FMI) NECESSARY: Clean Interfaces Element-Specific Determination of Induced Magnetic Moments Finite Magnetoresistance (MR) in non-magnetic Pt m agnetic p roximity m agneto- r esistance (MPMR) idea: induced magnetic moments in Pt on Y 3 Fe 5 O 12 Huang et al., PRL 109 , 107204 (2012) Lu et al., PRL 110 , 147207 (2013) Nakayama et al., PRL 110 , 206601 (2013) Althammer et al., PRB 87 , 224401 (2013) Meyer et al., APL (2014), arXiv:1401.7787 Experiments (compatible): s pin-Hall m agnetor esistance (SMR) theory/model: absorption of spin current by ferromagnetic insulator (FMI) Chen et al., PRB 87 , 144411 (2013) experimentally established for Pt on ferromagnetic metals (FMM) Parra and Medina, PRB 22 , 5460 (1980) Wilhelm et al., PRL 85 , 413 (2000) Wilhelm et al., PRL 87 , 207202 (2001) Wende, Rep. Prog. Phys. 67 , 2105 (2004) Wilhelm et al., PRB 69 , 220404 (2004) magnetic proximity effects ? Y 3 Fe 5 O 12 Pt Pt/Y 3 Fe 5 O 12 Pt/Au/Y 3 Fe 5 O 12 Pt/Cu/Y 3 Fe 5 O 12 Pt/Fe 3 O 4 Pt/NiFe 2 O 4 FMI: Y 3 Fe 5 O 12 (y ttrium i ron g arnet, YIG) NM: Pt (large spin-Hall angle) Y 3 Fe 5 O 12 (YIG) ferrimagnetic due to Fe 3+ ions high Curie temperature T C = 560 K electrically insulating Nakayama et al., PRL 110 , 206601 (2013) -40 -20 0 20 40 408.7 408.8 408.9 long (nm) Althammer et al., PRB 87 , 224401 (2013) -20 -10 0 10 20 -150 -100 -50 0 50 100 150 M (kA/m) 0 H (mT) Experimental observations magnetic hysteresis in ferrimagnetic Y 3 Fe 5 O 12 magnetoresistance effect in non -magnetic Pt magnetic proximity effect? European Synchrotron Radiation Facility (ESRF) Beamline ID12 Pt Fe L 2 edge: 2p 1/2 → 5d 13273 eV L 3 edge: 2p 3/2 → 5d 11564 eV K edge: 1s → 3d 7112 eV X-ray Absorption Near Edge Spectra XANES element-specific X-ray absorption X-ray Magnetic Circular Dichroism XMCD = XANES (H+,σ+) XANES (H-,σ+) = XANES (H+,σ+) XANES (H+,σ-) magnetic field: H (parallel to photons, in-plane) circular polarization: σ XMCD element-specific magnetic X-ray spectroscopy substrate IR heating laser and pyrometer 140 W, 938 nm RHEED screen UV excimer laser 248 nm target carousel zoom optics plasma plume target PLD parameters substrate: Y 3 Al 5 O 12 (111) (YAG) target: Y 3 Fe 5 O 12 (YIG) fluence: 2 J/cm 2 rep. rate: 10 Hz temperature: 500°C atmosphere: 2.5×10 -2 mbar O 2 thickness: ~ 60 nm 20 nm, 10 nm, 7 nm, 3 nm, 1.6 nm Pt by in-situ electron-beam evaporation 60 nm YIG(111) by pulsed laser deposition (PLD) SUB YAG(111) lattice mismatch = 3% Y 3 Fe 5 O 12 (111) FM insulator Pt normal metal Y 3 Al 5 O 12 (111) substrate PLD target PLD plasma plume 10 mm In-situ Thin Film Deposition via PLD (Y 3 Fe 5 O 12 ) and Electron-Beam Evaporation (Pt) -5000 0 5000 -200 -100 0 100 200 no Pt 3 nm Pt 7 nm Pt 10 nm Pt 0 H (mT) M (kA/m) Pt/YIG 300 K -20 0 20 0 H (mT) M (kA/m) 4 NM|FMI samples Pt|Y 3 Fe 5 O 12 on Y 3 Al 5 O 12 NM|FMM reference sample Pt|Fe on Y 3 Al 5 O 12 -100 -50 0 50 100 -1000 -500 0 500 1000 no Pt 10 nm Pt 0 H (mT) Pt/Fe 300 K YIG bulk SQUID Magnetometry SQUID results magnetization of Pt|Y 3 Fe 5 O 12 close to Y 3 Fe 5 O 12 bulk value of 143 kA/m excellent magnetic quality Pt|Fe sample for comparison Appl. Phys. Lett. 101 , 262407 (2012) Pt L 3 normalized whiteline intensity ~1.25 a.u. → compatible with metallic Pt EXAFS wiggles at ~11587 eV and ~13299 eV → characteristic for Pt metal arXiv:1307.4869 (2013) Appl. Phys. Lett. 101 , 262407 (2012) XANES results for Pt metallic Pt layer no indication for oxidation or intermixing with Y 3 Fe 5 O 12 probing depth = Pt thickness 11540 11560 11580 11600 0.00 0.05 0.10 0.15 0.20 0.25 0.035 Pt (3nm)/YIG XANES (a.u.) Photon Energy (eV) Pt (20nm)/YIG 0.185 Absolute XANES Step Intensity Pt L 3 edge thickness: × 6.5 XANES step intensity: × 5.5 11560 11580 11600 13250 13300 13350 0.0 0.5 1.0 1.5 * * L 2 edge norm. XANES (a.u.) 295 K 0.6 T Pt(1.6nm)/YIG Pt L 3 edge 11540 11560 11580 11600 0.0 0.5 1.0 Pt(3nm)/YIG Pt(7nm)/YIG Pt(10nm)/YIG norm. XANES (a.u.) Photon energy (eV) 295 K 60 mT 1.25 1.25 Normalized XANES in Pt|Y 3 Fe 5 O 12 Samples Pt L 3 edge Pt L 2 edge EXAFS wiggle EXAFS wiggle arXiv:1307.4869 (2013) Appl. Phys. Lett. 101 , 262407 (2012) XMCD results XMCD for Pt on Fe BUT: no finite XMCD for Pt on Y 3 Fe 5 O 12 no magnetic proximity effect for Pt on Y 3 Fe 5 O 12 XANES and XMCD in Pt|Fe Reference Sample 11560 11580 11600 13250 13300 13350 0.0 0.5 1.0 1.5 * * L 2 edge norm. XANES (a.u.) 295 K 0.6 T Pt(1.6nm)/YIG Pt L 3 edge -1.0% -0.5% 0.0% 0.5% 1.0% 1.5% 2.0% XMCD 11540 11560 11580 11600 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 Pt(3nm)/YIG Pt(7nm)/YIG Pt(10nm)/YIG norm. intensity (a.u.) Photon energy (eV) XANES XMCD x100 < 0.003 μ B /Pt XANES and XMCD in Pt|Y 3 Fe 5 O 12 Samples from integrated XMCD signal: Pt|Y 3 Fe 5 O 12 : m s < 0.003 μ B /Pt 11540 11560 11580 11600 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 XMCD x100 Pt(10nm)/YIG Pt(10nm)/Fe Photon energy (eV) norm. intensity (a.u.) XANES 0.03 μ B /Pt Pt|Fe: m s = 0.03 μ B /Pt consistent with literature values for Pt|Ni, etc… Phys. Rev. Lett. 110 , 147207 (2013) Lu, Choi, Ortega, Cheng, Cai, Huang, Sun, Chien, PRL 110 , 147207 (2013) XAS/XMCD in only one single Pt|Y 3 Fe 5 O 12 sample 2.07 no detection of EXAFS wiggles Pt L 3 "normalized XAS step height" [3] = 2.07 a.u. → not compatible with metallic Pt from literature Lu et al. report XMCD for Pt on Y 3 Fe 5 O 12 , BUT: XAS/XMCD investigation of only one single sample strong indication for non-metallic Pt MPMR explanation questionable for Pt on Y 3 Fe 5 O 12 Kolobov et al., APL 86 , 121909 (2005) Compound Whiteline Intensity ("XAS step height") PtO 1.6 2.20 a.u. PtO 1.36 1.50 a.u. Pt 1.25 a.u. XRD results epitaxial, oriented growth no secondary phases detectable low mosaic spread FWHM = 0.1° for YIG(444) X-Ray Diffraction (XRD) ω-2θ scan 20° 40° 60° 80° 100° 120° 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 * * I (cps) 2 YIG (888) YAG (888) Y 3 Fe 5 O 12 on Y 3 Al 5 O 12 * 50° 51° 52° 53° 54° 10 1 10 2 10 3 10 4 10 5 YIG (444) YAG (444) Phys. Rev. B 87 , 224401 (2013)

Transcript of Absence of an induced magnetic moment in Pt on … · Absence of an Induced Magnetic Moment in Pt...

Page 1: Absence of an induced magnetic moment in Pt on … · Absence of an Induced Magnetic Moment in Pt on Y 3 Fe 5 O 12 ... PRL 85, 413 (2000) Wilhelm et al., PRL 87, 207202 (2001) Wende,

Absence of an Induced Magnetic Moment in Pt on Y3Fe5O12

Stephan Geprägs1, Matthias Opel1, Sibylle Meyer1, Fabrice Wilhelm2, Katharina Ollefs2, Andrei Rogalev2,Sebastian T.B. Goennenwein1, Rudolf Gross1,3

1 Walther-Meißner-Institut (WMI), Bayerische Akademie der Wissenschaften, 85748 Garching, GERMANY2 European Synchrotron Radiation Facility (ESRF), 38043 Grenoble Cedex 9, FRANCE3 Physik-Department, Technische Universität München, 85748 Garching, Germany

www.wmi.badw.de

MA 55.9 – DPG Frühjahrstagung (Dresden, 2014)

www.wmi.badw.de

Yttrium Iron Garnet (YIG, Y3Fe5O12) and PtSpin Currents

X-Ray Absorption Near Edge Spectra (XANES)

Summary

This work was supported by the ESRF via HE-3784and the DFG via priority program SPP 1538.

High-quality epitaxial Y3Fe5O12 (YIG) thin films via pulsed laser deposition on Y3Al5O12 (YAG) substrates

In-situ e-beam evaporation of thin Pt layers (1.6, 3, 7, 10 nm)

XANES at Pt L2,3 edges compatible with metallic Pt on Y3Fe5O12

No indication for oxidation of Pt → high interface quality

Element-specific magnetization in four Pt|Y3Fe5O12 samples

Finite XMCD for Pt|Fe (FMM), no XMCD for Pt|Y3Fe5O12 (FMI)

No indication for magnetic proximity effect in Pt on Y3Fe5O12

Supports spin-Hall interpretation of MR in Pt (SMR model)

Element-Specific Investigation

Laser-MBE of Y3Fe5O12 Thin Films

[1] H. Nakayama et al., Phys. Rev. Lett. 110, 206601 (2013).[2] M. Althammer et al., Phys. Rev. B 87, 224401 (2013).[3] S. Meyer et al., submitted to Appl. Phys. Lett. (2014), arXiv:1401.7787[4] Y.M. Lu et al., Phys. Rev. Lett. 110, 147207 (2013).[5] Y.-T. Chen et al., Phys. Rev. B 87, 144411 (2013).[6] S. Geprägs et al., Appl. Phys. Lett. 101, 262407 (2012).[7] S. Geprägs et al., arXiv:1307.4869 (2013).

Comparison with MPMR model (Lu et al.)

Magnetic Proximity MR vs. Spin-Hall MR

X-Ray Magnetic Circular Dichroism (XMCD)

resonant excitation

theory: Tserkovnyak, PRL 88, 117601 (2002)expt.: Mosendz, PRL 104, 046601 (2010)

scaling: Czeschka, PRL 107, 046601 (2011)

FMM: Uchida, Nature 455, 778 (2008)FMI: Uchida, Nature Mater. 9, 894 (2010)

DMS: Jaworski, Nature Mater. 9, 898 (2010)local SSE: Weiler, PRL 108, 106602 (2012)

thermal excitation

Transfer of Angular Momentum, No Transfer of Electrical Charge

spin current

no

rmal

met

alN

M

ferr

om

agn

etFMmagnons

spin current detection→ via inverse spin-Hall effect (iSHE) innormal metal (NM)

problem→ conductivity of the ferromagnet (FM)

solution→ use ferromagnetic insulators (FMI)

NECESSARY:Clean InterfacesElement-Specific Determination of Induced Magnetic Moments

Finite Magnetoresistance (MR) in non-magnetic Pt

magnetic proximity magneto-resistance (MPMR)

idea:induced magnetic momentsin Pt on Y3Fe5O12

Huang et al., PRL 109, 107204 (2012)Lu et al., PRL 110, 147207 (2013)

Nakayama et al., PRL 110, 206601 (2013)Althammer et al., PRB 87, 224401 (2013)Meyer et al., APL (2014), arXiv:1401.7787

Experiments (compatible):

spin-Hall magnetoresistance(SMR)

theory/model:absorption of spin current byferromagnetic insulator (FMI)

Chen et al., PRB 87, 144411 (2013)

experimentally established for Pton ferromagnetic metals (FMM)

Parra and Medina, PRB 22, 5460 (1980)Wilhelm et al., PRL 85, 413 (2000)Wilhelm et al., PRL 87, 207202 (2001)Wende, Rep. Prog. Phys. 67, 2105 (2004)Wilhelm et al., PRB 69, 220404 (2004)

magnetic proximity effects

?Y3Fe5O12

Pt

Pt/Y3Fe5O12

Pt/Au/Y3Fe5O12

Pt/Cu/Y3Fe5O12

Pt/Fe3O4

Pt/NiFe2O4

FMI: Y3Fe5O12

(yttrium iron garnet, YIG)

NM: Pt (large spin-Hall angle)

Y3Fe5O12 (YIG)

ferrimagnetic due to Fe3+ ionshigh Curie temperature TC = 560 Kelectrically insulating

Nakayama et al.,PRL 110, 206601 (2013)

-40 -20 0 20 40

408.7

408.8

408.9

lo

ng (

n

m)

Althammer et al.,PRB 87, 224401 (2013)

-20 -10 0 10 20

-150

-100

-50

0

50

100

150

M (

kA

/m)

0H (mT)

Experimental observations

magnetic hysteresis in ferrimagnetic Y3Fe5O12

magnetoresistance effect in non-magnetic Pt

magnetic proximity effect?

European Synchrotron Radiation Facility(ESRF)

Beamline ID12

Pt

Fe

L2 edge: 2p1/2 → 5d 13273 eVL3 edge: 2p3/2 → 5d 11564 eV

K edge: 1s → 3d 7112 eV

X-ray

Absorption

Near

Edge

Spectra

XANES element-specific X-ray absorption

X-ray

Magnetic

Circular

DichroismXMCD = XANES (H+,σ+) – XANES (H-,σ+)

= XANES (H+,σ+) – XANES (H+,σ-)

magnetic field: H (parallel to photons, in-plane)circular polarization: σ

XMCD element-specific magnetic X-ray spectroscopy

substrate

IR heatinglaser andpyrometer140 W, 938 nm

RHEEDscreen

UV excimerlaser

248 nm

targetcarousel

zoom optics

plasmaplume

target

PLD parameters

substrate: Y3Al5O12(111) (YAG)

target: Y3Fe5O12 (YIG)

fluence: 2 J/cm2

rep. rate: 10 Hz

temperature: 500°C

atmosphere: 2.5×10-2 mbar O2

thickness: ~ 60 nm

20 nm, 10 nm, 7 nm, 3 nm, 1.6 nm Ptby in-situ electron-beam evaporation

60 nm YIG(111)by pulsed laser deposition (PLD)

SUB YAG(111)lattice mismatch = 3%

Y3Fe5O12(111) FM insulator

Pt normal metal

Y3Al5O12(111) substrate

PLD target

PLDplasmaplume

10 mm

In-situ Thin Film Deposition via PLD (Y3Fe5O12) and Electron-Beam Evaporation (Pt)

-5000 0 5000-200

-100

0

100

200

no Pt

3 nm Pt

7 nm Pt

10 nm Pt

0H (mT)

M (

kA

/m)

Pt/YIG

300 K

-20 0 20

0H (mT)

M (

kA

/m)

4 NM|FMI samplesPt|Y3Fe5O12 on Y3Al5O12

NM|FMM reference samplePt|Fe on Y3Al5O12

-100 -50 0 50 100

-1000

-500

0

500

1000 no Pt

10 nm Pt

0H (mT)

Pt/Fe

300 K

YIGbulk

SQUID Magnetometry

SQUID results

magnetization of Pt|Y3Fe5O12

close to Y3Fe5O12 bulk value of 143 kA/m

excellent magnetic quality

Pt|Fe sample for comparison

Appl. Phys. Lett. 101, 262407 (2012)

Pt L3 normalized whiteline intensity ~1.25 a.u.→ compatible with metallic Pt

EXAFS wiggles at ~11587 eV and ~13299 eV→ characteristic for Pt metal

arXiv:1307.4869 (2013)Appl. Phys. Lett. 101, 262407 (2012)

XANES results for Pt

metallic Pt layer

no indication for oxidationor intermixing with Y3Fe5O12

probing depth = Pt thickness

11540 11560 11580 116000.00

0.05

0.10

0.15

0.20

0.25

0.035

Pt (3nm)/YIG

XA

NE

S (

a.u

.)

Photon Energy (eV)

Pt (20nm)/YIG0.185

Absolute XANES Step Intensity

Pt L3 edge

thickness: × 6.5XANES step intensity: × 5.5

11560 11580 11600 13250 13300 13350

0.0

0.5

1.0

1.5

**

L2 edge

norm

. X

AN

ES

(a.u

.)

295 K

0.6 TPt(1.6nm)/YIG

Pt L3 edge

11540 11560 11580 116000.0

0.5

1.0

Pt(3nm)/YIG

Pt(7nm)/YIG

Pt(10nm)/YIGnorm

. X

AN

ES

(a.u

.)

Photon energy (eV)

295 K

60 mT

1.2

51

.25

Normalized XANES in Pt|Y3Fe5O12 Samples

Pt L3 edge Pt L2 edge

EXAFS

wiggle

EXAFS

wiggle

arXiv:1307.4869 (2013)Appl. Phys. Lett. 101, 262407 (2012)

XMCD results

XMCD for Pt on Fe

BUT: no finite XMCD for Pt on Y3Fe5O12

no magnetic proximity effect for Pt on Y3Fe5O12

XANES and XMCD in Pt|Fe Reference Sample

11560 11580 11600 13250 13300 13350

0.0

0.5

1.0

1.5

**

L2 edge

norm

. X

AN

ES

(a.u

.)

295 K

0.6 TPt(1.6nm)/YIG

Pt L3 edge

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

XM

CD

11540 11560 11580 11600-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

Pt(3nm)/YIG

Pt(7nm)/YIG

Pt(10nm)/YIG

norm

. in

tensity (

a.u

.)

Photon energy (eV)

XANES

XMCD

x100

< 0.003 µB/Pt

XANES and XMCD in Pt|Y3Fe5O12 Samples

from integrated XMCD signal:

Pt|Y3Fe5O12: ms < 0.003 µB/Pt

11540 11560 11580 11600-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

XMCD x100

Pt(10nm)/YIG

Pt(10nm)/Fe

Photon energy (eV)

norm

. in

tensity (

a.u

.)

XANES

0.03 µB/Pt

Pt|Fe: ms = 0.03 µB/Pt

consistent with literaturevalues for Pt|Ni, etc…

Phys. Rev. Lett. 110, 147207 (2013)

Lu, Choi, Ortega, Cheng, Cai, Huang, Sun, Chien, PRL 110, 147207 (2013)

XAS/XMCD in only one single Pt|Y3Fe5O12 sample

2.0

7

no detection of EXAFS wiggles

Pt L3 "normalized XAS step height" [3] = 2.07 a.u.→ not compatible with metallic Pt

from literature

Lu et al. report XMCD for Pt on Y3Fe5O12, BUT:

XAS/XMCD investigation of only one single sample

strong indication for non-metallic Pt

MPMR explanation questionable for Pt on Y3Fe5O12

Kolobov et al., APL 86, 121909 (2005)

Compound Whiteline Intensity("XAS step height")

PtO1.6 2.20 a.u.

PtO1.36 1.50 a.u.

Pt 1.25 a.u.

XRD results

epitaxial, oriented growth

no secondary phases detectable

low mosaic spreadFWHM = 0.1° for YIG(444)

X-Ray Diffraction (XRD)

ω-2θ scan

20° 40° 60° 80° 100° 120°

101

102

103

104

105

106

107

108

**

I (c

ps)

2

YIG

(888)

YA

G (8

88)

Y3Fe

5O

12

on Y3Al

5O

12

*

50° 51° 52° 53° 54°

101

102

103

104

105

YIG

(444)

YAG

(444)

Phys. Rev. B 87, 224401 (2013)