Aashto Seismic Design Guidelines

103
Western Bridge Engin eers’ Seminar September 24-26, 2007 1  AASHTO LRFD Guide Specifications for Seismic Design of Highway Bridges Roy A. Imbsen

Transcript of Aashto Seismic Design Guidelines

Page 1: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 1/103

Western Bridge Engineers’ Seminar September 24-26, 2007 1

 AASHTOLRFD Guide Specifications

for Seismic Design of Highway Bridges

Roy A. Imbsen

Page 2: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 2/103

Western Bridge Engineers’ Seminar September 24-26, 2007 2

Presentation Topics

♦Background-AASHTO LRFD Guide Specifications

♦Excerpts selected from the Guide Specifications

♦AASHTO T-3 Committee recent activities

supporting adoption as a Guide Specification

♦Current status

♦Planned activities post-adoption

♦Conclusions

Page 3: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 3/103

Western Bridge Engineers’ Seminar September 24-26, 2007 3

 AASHTO T-3 Working Group that defined

the objectives and directed the project

♦ Rick Land, CA (Past chair)

♦ Harry Capers, NJ (Past Co-chair)

♦ Richard Pratt, AK (Current chair)

♦Kevin Thompson, CA (Current Co-chair)

♦ Ralph Anderson, IL

♦ Jugesh Kapur, WA

♦ Ed Wasserman, TN♦ Paul Liles, GA

Page 4: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 4/103

Western Bridge Engineers’ Seminar September 24-26, 2007 4

Project Phases♦ 2002 AASHTO T-3 Committee Meeting

♦ 2003 MCEER/FHWA – Task F3-4 Road Map

 – Task F3-5 Suggested Approach

♦ 2004 NCHRP 20-07/Task 193 AASHTO Guide Specifications

 for LRFD Seismic Bridge Design♦ AASHTO T-3 Committee and Volunteer States

 – 2006 Trial Designs

 – 2007 Technical Review

♦ 2007 AASHTO Adoption as a Guide Specification with thecontinuous support and guidance of the T-3 Committee

Page 5: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 5/103

Western Bridge Engineers’ Seminar September 24-26, 2007 5

Overall T-3 Project Objectives

♦Assist T-3 Committee in developing a LRFD

Seismic Design Specification using availablespecifications and current research findings

♦Develop a specification that is user friendly and

implemental into production design

♦Complete six tasks specifically defined by theAASHTO T-3 Committee, which were based onthe NCHRP 12-49 review comments

Page 6: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 6/103

Western Bridge Engineers’ Seminar September 24-26, 2007 6

Stakeholders Table

George Lee, MCEER, Chair 

Rick Land, T-3 Chair 

Geoff Martin, MCEER 

Joe Penzien, HSRC, EQ V-team

John Kulicki, HSRC

Les Youd, BYU

Joe Wang, Parsons, EQ V-team

Lucero Mesa, SCDOT V-team

Rick Land, CA (Past chair)

Harry Capers, NJ

(Past Co-chair)

Richard Pratt, AK

(Current chair)

Kevin Thompson, CA

(Current Co-chair)

Ralph Anderson, IL

Jugesh Kapur, WA

Ed Wasserman, TN

Paul Liles, GA

Roy Imbsen, IAI

Roger Borcherdt, USGS

Po Lam, EMI

E. V. Leyendecker, USGS

Lee Marsh, Berger/Abam

Randy Cannon, formerly

SCDOT

Technical Review Panel

(to be invited)

T-3 Working GroupIAI Team

(as needed)

Page 7: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 7/103

Western Bridge Engineers’ Seminar September 24-26, 2007 7

THE MEMBERS OF THE

TECHNICAL REVIEW TEAM♦ MARK MAHAN, CA DOT (TEAM LEADER)

♦ ROY A. IMBSEN, IMBSEN CONSULTING♦ ELMER MARX, AK DOT & PF

♦ JAY QUIOGUE, CA DOT

♦ CHRIS UNANWA, CA DOT

♦ FADEL ALAMEDDINE, CA DOT♦ CHYUAN-SHEN LEE, WA STATE DOT

♦ STEPHANIE BRANDENBERGER, MT DOT

♦ DANIEL TOBIAS, IL DOT

♦ DERRELL MANCEAUX, FHWA

♦ LEE MARSH, BERGER/ABAM

Page 8: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 8/103

Western Bridge Engineers’ Seminar September 24-26, 2007 8

THE STATES WHO PERFORMED

THE TRIAL DESIGNS♦ ALASKA

♦ ARKANSAS♦ CALIFORNIA

♦ ILLINOIS

♦ INDIANA

♦ MISSOURI♦ MONTANA

♦  NEVADA

♦ OREGON

♦ TENNESSEE

♦ WASHINGTON STATE

Page 9: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 9/103

Western Bridge Engineers’ Seminar September 24-26, 2007 9

Support

♦MCEER/FHWA “Seismic Vulnerability of the

Highway System” Task F3-4 AASHTO T-3

Support

♦ NCHRP 20-07/Task 193 Updating“Recommended LRFD Guidelines for Seismic

Design of Highway Bridges”

♦AASHTO T-3 Committee

Page 10: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 10/103

Western Bridge Engineers’ Seminar September 24-26, 2007 10

Background-NCHRP 20-07

Task 6 Report (1.1)

♦ Review Reference Documents

♦ Finalize Seismic Hazard Level♦ Expand the Extent of the No-Analysis Zone

♦ Select the Most Appropriate Design Procedure for

Steel Bridges♦ Recommend Liquefaction Design Procedure

♦ Letter Reports for Tasks 1-5 (Ref. NCHRP 20-07/Task193 Task 6 Report for Updating “Recommended

LRFD Guidelines for Seismic Design of HighwayBridges” Imbsen & Associates, Inc., of TRC )

Page 11: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 11/103

Western Bridge Engineers’ Seminar September 24-26, 2007 11

Page 12: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 12/103

Western Bridge Engineers’ Seminar September 24-26, 2007 12

Table of Contents♦ 1. Introduction

♦ 2. Symbols and Definitions♦ 3. General Requirements

♦ 4. Analysis and Design Requirements

♦ 5. Analytical Models and Procedures♦ 6. Foundation and Abutment Design Requirements

♦ 7. Structural Steel Components

♦8. Reinforced Concrete Components♦ Appendix A – Rocking Foundation Rocking Analysis

Page 13: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 13/103

Western Bridge Engineers’ Seminar September 24-26, 2007 13

Table of Contents♦ 1. Introduction

• 1.1 Background (NCHRP 20-07/Task 193 Task 6 Report)♦ 2. Symbols and Definitions

♦ 3. General Requirements

♦ 4. Analysis and Design Requirements

♦ 5. Analytical Models and Procedures

♦ 6. Foundation and Abutment Design Requirements

♦ 7. Structural Steel Components

♦ 8. Reinforced Concrete Components♦ Appendix A Foundation Rocking Analysis

Page 14: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 14/103

Western Bridge Engineers’ Seminar September 24-26, 2007 14

Background Task 2 - Seismic

Hazard Level (1.1)

♦ Design against the Effects Ground Shaking Hazard ♦ Selection of a Return Period for Design less than 2500 Years

♦ Inclusion of the USGS 2002 Update of the National SeismicHazard Maps

♦ Effects of Near Field and Fault Rupture to be addressed in afollowing Task 

♦ Displacement Based Approach with both Design SpectralAcceleration and corresponding Displacement Spectra provided 

♦ Hazard Map under the control of AASHTO with each Statehaving the option to Modify or Update their own State Hazardusing the most recent Seismological Studies

Recommended approach to addressing the seismic hazard:

Page 15: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 15/103

Western Bridge Engineers’ Seminar September 24-26, 2007 15

Background Task 2-Seismic Hazard

(1.1)

♦  NEHRP 1997 Seismic Hazard Practice

♦ Caltrans Seismic Hazard Practice

♦  NYCDOT and NYSDOT Seismic Hazard Practice

♦  NCHRP 12-49 Seismic Hazard Practice

♦ SCDOT Seismic Hazard Practice

♦ Site-Specific Hazard Analyses Conducted for CriticalBridges

Seismic Hazard Practice can be best illustrated in looking

at the following sources:

Page 16: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 16/103

Western Bridge Engineers’ Seminar September 24-26, 2007 16

Background Seismic Hazard for

Normal Bridges (1.1)♦ Selection of a lower return period for Design is made

such that Collapse Prevention is not compromisedwhen considering large historical earthquakes.

♦ A reduction can be achieved by taking advantage of

sources of conservatism not explicitly taken intoaccount in current design procedures.

♦ The sources of conservatism are becoming moreobvious based on recent findings from bothobservations of earthquake damage and experimentaldata.

Page 17: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 17/103

Western Bridge Engineers’ Seminar September 24-26, 2007 17

Background Task 2-Sources of

Conservatism (1.1)

Sou rce of Cons ervatism Safety Factor

Compu ta tional vs. Experiment a l Displacement

Capa city of Component s

1.3

Effect ive Damping 1.2 to 1.5

Dyna mic Effect (i.e., st ra in ra te effect ) 1.2

Push over Techniques Govern ed by First Plast ic

Hinge to Reach Ultima te Capa city

1.2 to 1.5

Out of Phase Displacement a t Hinge Seat Addressed in Task 3

Page 18: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 18/103

Western Bridge Engineers’ Seminar September 24-26, 2007 18

Idealized Load – Deflection Curve

Considered

in Design

Page 19: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 19/103

Western Bridge Engineers’ Seminar September 24-26, 2007 19

Page 20: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 20/103

Western Bridge Engineers’ Seminar September 24-26, 2007 20

Design Approaches

-Force- -Displacement-

♦ Division 1A and Current

LRFD Specification♦ Complete w/ service load

requirements

♦ Elastic demand forces w/

applied prescribed ductility

“R”

♦ Ductile response is assumed

to be adequate w/overification

♦  New 2007 Guide Specification

♦ Complete w/ service loadrequirements

♦ Displacements demands w/

displacement capacity checks

for deformability

♦ Ductile response is assured

with limitations prescribed for

each SDC

Page 21: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 21/103

Western Bridge Engineers’ Seminar September 24-26, 2007 21

Background Seismic Hazard

Normal Bridges (1.1)

♦ An appropriate method to design adequate seatwidth(s) considering out of phase motion.

♦ An appropriate method to design the ductilesubstructure components without undue conservatism

Two distinctly different aspects of the design process

need to be provided:

These two aspects are embedded with different levels ofconservatism that need to be calibrated against the single

level of hazard considered in the design process.

Page 22: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 22/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 22

Background Task 3

Expand the No-Analysis Zone (1.1)

P − Δ

♦ At a minimum, maintain the number of bridges under the

“Seismic Demand Analysis” by comparing ProposedGuidelines to AASHTO Division I-A.

♦ Develop implicit procedures that can be used reduce the

number of bridges where “Seismic Capacity Analysis” needs to

 be performed, This objective is accomplished by identifying athreshold where an implicit procedures can be used (Drift

Criteria, Column Shear Criteria).

♦ Identify threshold where “Capacity Design” shall be used. Thisobjective is achieved in conjunction with the “Seismic Capacity

Analysis” requirements.

Page 23: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 23/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 23

Guidelines-General

Seismic Load Path and Affected Components

Page 24: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 24/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 24

Guidelines

Performance Criteria

♦ Type 1 – Design a ductile substructure with an

essentially elastic superstructure.♦ Type 2 – Design an essentially elastic

substructure with a ductile superstructure.

♦ Type 3 – Design an elastic superstructure andsubstructure with a fusing mechanism at theinterface between the superstructure and the

substructure.

Page 25: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 25/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 25

Guidelines

Performance Criteria

♦ For Type 3 choice, the designer shall assess the

overstrength capacity for the fusing interfaceincluding shear keys and bearings, then design for anessentially elastic superstructure and substructure.

♦The minimum overstrength lateral design force shall be calculated using an acceleration of 0.4 g or theelastic seismic force whichever is smaller.

♦ If isolation devices are used, the superstructure shall

 be designed as essentially elastic.

Page 26: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 26/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 26

Table of Contents♦ 1. Introduction

 –  1.3 Flow Charts♦ 2. Symbols and Definitions

♦ 3. General Requirements

♦ 4. Analysis and Design Requirements

♦ 5. Analytical Models and Procedures

♦ 6. Foundation and Abutment Design Requirements

♦ 7. Structural Steel Components

♦ 8. Reinforced Concrete Components♦ Appendix A – Rocking Foundation Rocking Analysis

Page 27: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 27/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 27

LRFD

Flow Chart

Fig 1.3-1A

Page 28: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 28/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 28

LRFDFlow Chart

Fig 1.3-1B

Page 29: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 29/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 29

LRFDFlow Chart

(Fig 1.3-5A )

Page 30: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 30/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 30

Page 31: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 31/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 31

Table of Contents♦ 1. Introduction

♦ 2. Symbols and Definitions♦ 3. General Requirements

♦ 4. Analysis and Design Requirements

♦5. Analytical Models and Procedures♦ 6. Foundation and Abutment Design Requirements

♦ 7. Structural Steel Components

♦ 8. Reinforced Concrete Components

♦ Appendix A – Rocking Foundation Rocking Analysis

Page 32: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 32/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 32

 Applicability (3.1)

♦Design and Construction of New Bridges

♦Bridges having Superstructures Consisting of:

 – Slab

 – Beam – Girder 

 – Box Girder 

♦Spans less than 500 feet

Page 33: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 33/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 33

Performance Criteria (3.2)

♦One design level for life safety

♦Seismic hazard level for 7% probability of

exceedance in 75 years (i.e.,1000 year return

 period)

♦Low probability of collapse

♦May have significant damage and disruption to

service

Page 34: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 34/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 34

Table of Contents♦ 1. Introduction

♦ 2. Symbols and Definitions♦ 3. General Requirements

3.3 Earthquake Resisting Systems

♦ 4. Analysis and Design Requirements

♦ 5. Analytical Models and Procedures

♦ 6. Foundation and Abutment Design Requirements

♦ 7. Structural Steel Components

♦ 8. Reinforced Concrete Components♦ Appendix A – Rocking Foundation Rocking Analysis

Page 35: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 35/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 35

Earthquake Resisting Systems-ERS

(3.3)

♦ Required for SDC C and D

♦ Must be identifiable within the bridge system

♦ Shall provide a reliable and uninterrupted load path

♦ Shall have energy dissipation and/or restraint to controlseismically induced displacements

♦ Composed of acceptable Earthquake Resisting Elements

(ERE)

Page 36: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 36/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 36

Permissible

Earthquake

Resisting

Systems

(ERS)

ERS (3.3)

Page 37: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 37/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 37

Permissible

EarthquakeResisting

Elements that

Require Owner’s

 Approval

ERS (3.3)

Page 38: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 38/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 38

Table of Contents♦ 1. Introduction

♦2. Symbols and Definitions

♦ 3. General Requirements

Seismic Ground Shaking Hazard 

♦ 4. Analysis and Design Requirements

♦ 5. Analytical Models and Procedures

♦ 6. Foundation and Abutment Design Requirements

♦ 7. Structural Steel Components

♦ 8. Reinforced Concrete Components♦ Appendix A – Rocking Foundation Rocking Analysis

Page 39: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 39/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 39

Seismic Hazard (3.4)

♦ 7% Probability of Exceedence in 75 Years

♦ AASHTO-USGS Technical Assistance Agreement to:

 – Provide paper maps – Develop ground motion software

♦ Hazard maps for 50 States and Puerto Rico – Conterminous 48 States-USGS 2002 maps

 – Hawaii-USGS 1998 maps – Puerto Rico-USGS 2003 maps

 – Alaska-USGS 2006 maps

♦ Maps for Spectral Accelerations Site Class B

 – Short period (0.2 sec.) – Long period (1.0 sec.)

 – Peak (PGA 0.0 sec.)

Page 40: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 40/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 40

Design

Spectrum,Figure 3.4.1-1

Seismic Hazard

2-Point Method

for Design

SpectrumConstruction

(3.4)

Page 41: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 41/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 41

Trial Design MO-2 (3.1)38'-10"

8'-10" 8'-10" 8'-10" 8'-10"

3'-3" DEEP

PS/PC I-GIRDER

TYP

3'-3"x3'-6" BEAM

3'-0" COLUMNS (TYP) 13'-0"

(TYP)

8 12" SLAB

3'-3"

   2   6   '  -   6   "

   4   '  -   0   "

   V   A   R   I   E   S

 ELV -3.0

13 - #8

(TYP)

 1'-8"

(TYP)

 5'-0"

(TYP)

COLUMN

1'-2" CIP

CONC PILE

W/STEEL

CASING, TYP

9'-14" CIP (TYP)

(13'x13'x4' PILE CAP)

SECTION-INTERMEDIATE PIER1 _

SCALE: 1/16" = 1'-0"

Elevation of Intermediate Pier

14'-4" 14'-4"

ELV 0

  COLUMN

Page 42: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 42/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 42

Trial Design MO-2 (3.1)

   B   R   G

    A   B   U   T

   A

   B   E   N

   T   1

   B   E   N

   T   2

   B   R   G

    A   B   U   T

   B

14" CIP

CONC PILEW/STEEL

CASING, TYP

13'-0"

ELEVATION - MISSOURI SITE1'=40'

 

Page 43: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 43/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 43

Figure 3.4.1-2a Peak Horizontal

Ground Acceleration for the

Conterminous United States

(Western) With 7 Percent

Probability of Exceedance in

75 Years (Approx. 1000 Year

Return Period).

 AASHTO/

USGS Maps

(3.4.1)

Page 44: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 44/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 44

 AASHTO/USGS Maps (3.4.1)

LRFD –

Page 45: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 45/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 45

LRFD  

HorizontalSpectral

Response Acceleration

(3.4.1)AASHTO/USGS Maps

Region 3

0.2 second period 

Longitude 89.817o West

Latitude 36.000o NorthAcceleration=1.89g

Page 46: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 46/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 46

Site Effects Fv (3.4.2)

Page 47: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 47/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 47

Seismic Hazard

2-Point Methodfor Design

Spectrum

Construction

(3.4)

Page 48: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 48/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 48

Page 49: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 49/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 49

Page 50: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 50/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 50

Page 51: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 51/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 51

Page 52: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 52/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 52

Page 53: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 53/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 53

Page 54: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 54/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 54

Page 55: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 55/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 55

Page 56: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 56/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 56

Table of Contents♦ 1. Introduction

♦ 2. Symbols and Definitions

♦ 3. General Requirements

3.5 Seismic Design Category

♦ 4. Analysis and Design Requirements

♦ 5. Analytical Models and Procedures♦ 6. Foundation and Abutment Design Requirements

♦ 7. Structural Steel Components

♦ 8. Reinforced Concrete Components♦ Appendix A – Rocking Foundation Rocking Analysis

SDC Range of Applicable

Page 57: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 57/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 57

SDC Range of Applicable

 Analysis (3.5)

♦ Seismic Demand Analysis requirement

♦ Seismic Capacity Analysis requirement♦ Capacity Design requirement

♦ Level of seismic detailing requirement including four

tiers corresponding to SDC A, B, C and D♦ Earthquake Resistant System

Four Seismic Design Categories (SDC)

A, B, C and D encompassing requirements for:

Page 58: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 58/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 58

SDC (3.5)

Page 59: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 59/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 59

SDC A (3.5)

Page 60: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 60/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 60

SDC B (3.5)

Page 61: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 61/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 61

SDC C (3.5)

Page 62: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 62/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 62

SDC D (3.5)

SDC Core Flowchart (3 5)

Page 63: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 63/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 63

SDC Core Flowchart (3.5)

Page 64: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 64/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 64

Table of Contents♦ 1. Introduction

♦ 2. Symbols and Definitions

♦ 3. General Requirements

♦ 4. Analysis and Design Requirements

♦ 5. Analytical Models and Procedures

♦ 6. Foundation and Abutment Design Requirements

♦ 7. Structural Steel Components

♦ 8. Reinforced Concrete Components

♦ Appendix A – Rocking Foundation Rocking Analysis

Page 65: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 65/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 65

Balanced

Stiffness

Recommendation(4.1)

Seismic Analysis Using SAP2000

Page 66: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 66/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 66

Seismic Analysis Using SAP2000

Bridge Modeler 

Missouri Design Example

3-Span P/S I-girder bridge

Page 67: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 67/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 67

Balanced Frame SDC D (4.1.2)

♦ Any Two Bents Within a Frame or Any TwoColumns Within a Bent

Constant Width Frames:

(4.1.2-1)

Variable Width Frames:

(4.1.2-2)

5.0≥e

 j

e

i

5.0≥i

e

 j

 j

e

i

mk mk 

Page 68: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 68/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 68

Balanced Bent (4.1.2)♦ Adjacent Bents Within a Frame or Adjacent

Columns Within a BentConstant Width Frames:

(4.1.2-3)

Variable Width Frames:

(4.1.2-4)

75.0≥e

 j

e

i

75.0≥i

e j

 j

e

i

mk 

mk 

Page 69: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 69/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 69

 Analysis Procedure (4.2)

Page 70: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 70/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 70

Displacement Demands (4.3)♦Horizontal ground motions for SDC B,C, & D

determined independently along two axes andcombined 

♦Displacement modification for other than 5%

damped bridges having energy dissipation atabutments

♦Displacement magnification for short period

short period structures

Combination of Seismic

Page 71: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 71/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 71

Displacement Demands (4.4)♦LOAD CASE 1:

100% Longitudinal Displacement Demands(absolute value), Combined with 30%Transverse Displacement Demands (absolutevalue)

♦LOAD CASE 2: 100% TransverseDisplacement Demands (absolute value),Combined with 30% Longitudinal DisplacementDemands (absolute value)

Page 72: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 72/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 72

Design for SDC B, C, &D (4.7)♦ Conventional – Full ductility structures with a plastic

mechanism having 4.0<uD6.0 for a bridge in SDC D♦ Limited ductility – For structures with a Plastic

mechanism readily accessible for inspection having

uD<4.0 for a bridge in SDC B or C♦ Limited Ductility – For structures having a plastic

mechanism working in concert with a protective

system. The plastic hinge may or may not form. Thisstrategy is intended for SDC C or D

Displacement Capacity

for SDC B and C (4 8 1)

Page 73: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 73/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 73

for SDC B and C (4.8.1)

Displacement Capacity for SDC D (4.8.2)

Page 74: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 74/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 74

p p y ( )

♦ Inelastic Quasi-Static Pushover analysis (IQPA) is requiredto determine realistic displacement capacities as it reachesit’s limit states

♦ IQPA is an incremental linear analysis which captures theoverall nonlinear behavior of the structure and it’s elements

through each limit state♦ The IQPA model includes the redistribution of forces as

each limit state is reached 

♦ Foundation effects may also be included in the model

Member Ductility Requirement for

Page 75: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 75/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 75

SDC D (4.9)

Member Ductility Requirement for

Page 76: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 76/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 76

(4.9-5)

Where:

= plastic displacement demand (in.)

= idealized yield displacement corresponding

to the idealized yield curvature, ,

shown in figure 8.5-1 (in.)

Pile shafts should be treated similar to columns.

SDC D (4.9)

 yiΔ

 pd Δ

 yi

 pd 

 D

Δ

Δ+= 1μ 

 yiφ 

Capacity Design Requirement for

Page 77: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 77/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 77

SDC C & D♦ Capacity protection is required for all members that are

not participating as part of the energy dissipatingsystem

♦ Capacity protected members include:

 – Superstructures – Joints and cap beams

 – Spread footings

 – Pile caps

 – Foundations

Over-strength Capacity Design

Page 78: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 78/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 78

Concepts for SDC C & D Trans. (4.11)

Minimum Support Length

Page 79: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 79/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 79

Requirements (4.12)

♦ Minimum edge distance

♦ Other movement attributed to prestress shortening,

creep, shrinkage, and thermal expansion or contraction♦ Skew effect

♦ Relative hinge displacement

The calculation for a hinge seat width involves

four components:

Minimum Support Length (4.12)

Page 80: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 80/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 80

SDC A, B, C & D

Minimum Support Length (4.12)

Page 81: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 81/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 81

SDC A,B, C

LRFD - Relative Seismic Displacement

Page 82: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 82/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 82

vs. Period Ratio For SDC D (4.12)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 0.5 1 1.5

Ratio of Tshort/Tlong

   R  a   t   i  o  o   f   D  e  q

   /   D  m  a  x

Curve 1

Curve 2

Curve 3

Curve 4

♦ Deq for a target ductility of 2

shown as Curve 1

♦ Deq for a target ductility of 4shown as Curve 2

♦ Caltrans SDC shown as

Curve 3

♦ Relative hinge displacement

 based on (Trocholak is et.

Al. 1997) shown as Curve 4

Table of Contents

Page 83: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 83/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 83

♦ 1. Introduction

♦ 2. Symbols and Definitions

♦ 3. General Requirements

♦ 4. Analysis and Design Requirements

♦ 5. Analytical Models and Procedures

♦ 6. Foundation and Abutment Design Requirements♦ 7. Structural Steel Components

♦ 8. Reinforced Concrete Components

♦ Appendix A – Rocking Foundation Rocking Analysis

Ductility Demand on a Column or

Page 84: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 84/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 84

Pier is a Function of ♦ Earthquake characteristics, including duration,

frequency content and near-field (or pulse) effects.

♦ Design force level♦ Periods of vibration of the bridge

♦ Shape of the inelastic hysteresis loop of the columns,

and hence effective hysteretic damping♦ Elastic damping coefficient

♦ Contribution of foundation and soil conditions tostructural flexibility

♦ Spread of plasticity (plastic hinge length) in the column

Plastic Moment Capacity SDC B, C

Page 85: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 85/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 85

& D (8.5)♦ Moment-Curvature Analyses

♦ Expected Material Properties♦ Axial Dead Load Forces with Overturning

♦ Curve Idealized as Elastic Perfectly Plastic

♦ Elastic Portion of the Curve Pass through the point ofmarking the first reinforcing bar yield 

♦ Plastic moment capacity determined from equal areas

of idealized and actual

 M    φ −

 M    φ −

Page 86: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 86/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 86

Figure 8.5-1 Moment-Curvature Model

Force Demands on Capacity

P t t d M b

Page 87: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 87/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 87

Protected Members(8.5-1)

where:

= idealized plastic moment capacity of reinforcedconcrete member based upon expected material

 properties (kip-ft)

= overstrength plastic moment capacity (kip-ft)

= overstrength magnifier 1.2 for ASTM A 706 reinforcement1.4 for ASTM A 615 Grade 60 reinforcement

 po mo p M λ =

 p

 po

moλ 

Shear Demand & Capacity (8.6.1)

Page 88: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 88/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 88

♦ SDC B is the lesser of :

 – Force obtained from linear elastic seismic analysis

 – Force, , corresponding to plastic hinging with

overstrength

♦ SDC C and D, is the shear demand force, with the

overstrength moment and corresponding plastic

shear  po

uV 

 poV 

Shear Demand & Capacity (8.6.1)

’t

Page 89: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 89/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 89

(8.6.1-1)

in which

(8.6.1-2)

= 0.85 for shear in reinforced concrete

= nominal shear capacity of member (kip)

= concrete contribution to shear capacity

= reinforcing steel contribution to shear capacity

con’t♦ Shear strength capacity within the plastic hinge is

 based on nominal motion strength properties

n e gV V V = +

s n uV V φ    ≥

sφ 

nV 

cV 

sV 

Concrete Shear Capacity SDC B, C

& D (8 6 2)

Page 90: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 90/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007 90

& D (8.6.2)(8.6.2-1)

(8.6.2-2)

If Pc is compressive then

(8.6.2-3)

Otherwise (i.e., not compression)

(8.6.2-4)

0.8e g A A=

c c eV v A=

0cv   =

0.110.032 {1 }

2 0.047

cuc c

g c

 f Pv f 

 A   f α 

α 

⎧ ⎫′⎧ ⎫⎪ ⎪ ⎪ ⎪′ ′= + ≤⎨ ⎬ ⎨ ⎬′⎪ ⎪   ⎪ ⎪⎩ ⎭   ⎩ ⎭

Concrete Shear Capacity SDC B, C

& D (8 6 2)

Page 91: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 91/103

Western Bridge Engineers’ Seminar 

September 24-26, 200791

& D (8.6.2)For circular columns in compression with spiral or hoop

reinforcing:

(8.6.2-5)

(8.6.2-6)

(8.6.2-7)4 sps  Ae

sD=

0.3 3.67 30.15

so

 f α μ ′≤ + − ≤

0.35s s yh f e f = ≤

Concrete Shear Capacity SDC B, C

& D (8 6 2)

Page 92: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 92/103

Western Bridge Engineers’ Seminar 

September 24-26, 200792

& D (8.6.2)For rectangular columns in compression with ties:

(8.6.2-8)

(8.6.2-9)

(8.6.2-10)vw

 Ae

bs

=

0.3 3.67 30.15

w D

 f α μ ′≤ + − ≤

2 0.35w w yh f e f = ≤

Column Shear Requirement (8.10)

SDC D

Page 93: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 93/103

Western Bridge Engineers’ Seminar 

September 24-26, 200793

SDC D

Integral Joint Shear Requirement (8.13)

SDC C and D

Page 94: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 94/103

Western Bridge Engineers’ Seminar 

September 24-26, 200794

SDC C,and D

Non-Integral Joint Shear Requirement

(8 13) SDC C and D

Page 95: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 95/103

Western Bridge Engineers’ Seminar 

September 24-26, 200795

(8.13) SDC C,and D

Presentation Topics

♦Background AASHTO LRFD Guide Specifications

Page 96: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 96/103

Western Bridge Engineers’ Seminar 

September 24-26, 200796

♦Background-AASHTO LRFD Guide Specifications

♦Excerpts selected from the Guide Specifications

♦AASHTO T-3 Committee recent activitiessupporting adoption as a Guide Specification

♦Current status

♦Planned activities post-adoption

♦Conclusions

AASHTO Website

Page 97: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 97/103

Western Bridge Engineers’ Seminar 

September 24-26, 200797

 AASHTO Website

Presentation Topics

♦Background AASHTO LRFD Guide Specifications

Page 98: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 98/103

Western Bridge Engineers’ Seminar 

September 24-26, 200798

♦Background-AASHTO LRFD Guide Specifications

♦Excerpts selected from the Guide Specifications

♦AASHTO T-3 Committee recent activitiessupporting adoption as a Guide Specification

♦Current status

♦Planned activities post-adoption

♦Conclusions

Current Status

Page 99: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 99/103

Western Bridge Engineers’ Seminar 

September 24-26, 200799

♦ Completed in accordance with the AASHTO T-3Committee Recommendations

♦ Reviewed by a Technical Group and modified to meettheir state requirements

♦ Formatted to AASHTO specifications

♦ Scheduled five one-day FHWA introduction andoverview course

♦ Reviewer comments and recommendations weretabulated, reviewed and implemented or placed on a

 priority list (“parking lot”) for future consideration

Outline for FHWA One-Day Overview of

 AASHTO-2007 LRFD Guide SpecificationsDurationDescriptionModule

Page 100: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 100/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007100

15Wrap-up and Summary

45LRFD Guide Spec.-Reinforced Concrete Components10

30LRFD Guide Spec.-Concrete Substructure Type 1A [SLB]9

60LRFD Guide Spec.-Concrete Substructure Type 1A [SLB]8

45LRFD – Guide Specifications-Demand Analysis [SLB]745LRFD Guide Specifications-Introduction [SLB]6

30Seismic Hazard [SLB]5

30Bridge Modeling & Analysis [SLB]4

45Structural Dynamics3

15Description of Story Line Bridge [SLB]2

45Introduction1

DurationDescriptionModule

Scheduled One-Day Seminars

Page 101: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 101/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007101

♦Montana DOT…………...9/20/07

♦Washington DOT……....10/26/07♦Oregon DOT…………...11/14/07

♦Tennessee DOT………....1/10/08

♦Idaho DOT……………....1/31/08

Planned Activities-Post Adoption

Page 102: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 102/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007102

♦Development of an FHWA funded trainingmanual and course geared toward practicingengineer

♦Review of the geotechnical issues addressed in

the comments and recommendations♦Address tabulated comments andrecommendations placed in a “parking lot” as

funding becomes available

Section 5.3

Conclusions

Page 103: Aashto Seismic Design Guidelines

8/20/2019 Aashto Seismic Design Guidelines

http://slidepdf.com/reader/full/aashto-seismic-design-guidelines 103/103

Western Bridge Engineers’ Seminar 

September 24-26, 2007103

♦ Adopted as a Guide Specifications

♦ Developed a specification that is user friendly and implemental

into production design♦ Logical progression from the current AASHTO force-basedseismic design criteria to a displacement-based criteria

♦ Technical reviewers were focused on making adjustments to bridge the gap between the seismic design approaches to easethe implementation of the displacement-based approach

♦ Computer software is available to assist the designer, Computers& Structures Inc. (CSI) is enhancing SAP 2000 to be used withthe new 2007 Guide Specifications

♦ Lets do it !!!!!!!!