—a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to...

210
—a - ‘a- ENERGY ANALYSIS OF CLIMATIC INPUTS TO AGRICULTURE BY DENNIS PETER SWANEY •1 I A THESIS PRESENTED TO THE GRADUATE COUNCIL OF ThE UEIVERSTTY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR ThE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 1978 ‘, 44 4.7

Transcript of —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to...

Page 1: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

—a - ‘a- —________

ENERGY ANALYSIS OF CLIMATIC INPUTS TO AGRICULTURE

BY

DENNIS PETER SWANEY

•1

I

A THESIS PRESENTED TO THE GRADUATE COUNCIL OFThE UEIVERSTTY OF FLORIDA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR ThEDEGREE OF MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

1978

‘, 444.7

Page 2: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

ACKNOWLEDGEMENTS

To my committee members, I am grateful for suggestions and criticism,

Professor H. T. Odum, my supervisory professor, inspiredme to undertake

the study in the first place, and taught me not to fear large—scale research

problems. Professor Richard Fluck initially inspired my interest in

agricultural energetics. Professor Wayne Huber and Professor Flora Wang

read and critiqued some calculations and clarified my understanding of some

climatic processes.

Neil Sipe taught me much of the computer graphics and Bruce Darby

helped with data.

I owe my thanks to John Alexander for his advice and encouragement,

oan Breeze for her ability to smile in the face of revision, and to

my associates for their support and criticism.

Work was supported by Department of Energy contract #EY—76—5—05—4398,

“Energy Bases of the United States,” H. T. Odum, principal investigator.

to .1

all

)4(4

4.

‘i

- Yr

•1’

ii

Page 3: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

ITABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS

LIST OF TABLES v

LIST OF FIGURES

ABSTRACT xiii

INTRODUCTION 3

METhODS 25

Summary of Energy Evaluation Procedures Used 25Methods of Calculation of Climatic Energy Flows 27Mapping of Energy Flows 36

RESULTS 38

Quality Factors 38Maps of United States Climate in Energy Units 43Maps of United States Agricultural Productivity 105

DISCUSSION 119

Comparison of Production Functions with AgriculturalProductivity 130General Effects of the Environment on United StatesAgriculture 132Limitations to Results 133Investment Ratio for U.S. Agriculture 133Summary and Conclusions 134

APPENDIX I CALCULATION OF SOLAR INSOLATION 140

APPENDIX II DERIVATION OF EDDY DIFFUSION COEFFICIENTS 156

APPENDIX III CALCULATION OF PRODUCTION OF TURBULENT KINETIC ENERGY 159

APPENDIX IV AThOSPHERIC HEAT FLUX AND RATE—OF—CHANOF 160

APPENDIX V ATMOSPHERIC RATES—OF—CHANCE OF VAPOR PRESSURE . . . 166

iii

Page 4: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Page

APPENDIX VI FLOW OF CHEMICAL POTENTIAL IN HUMIDITY GRADIENTS 170

APPENDIX VII FREE ENERGY VALUE OF VERTICAL DIFFUSION OF WATER

VAPOR173

APPENDIX VIII FREE ENERGY VALUE OF WATER VAPOR ADVECTION 174

APPENDIX IX FREQUENCY DISTRIBUTIONS OF CLIMATIC VARIABLES 181

REFERENCES194

BIOGRAPHICAL SKETCH198

‘ s

E1

1

iv

Page 5: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

V

Table

LIST OF TABLES

1

2

3

4

Page

Values of quality factors

Energy values of crops used to calculate qualityfactors for agricultural productioi

Mean values of climatic variables for the United States

Values of correlation coefficients befl.zeen productionfunctions and agricultural production variables

39

100

117

131

.‘: t ç 1

.;. . . 1. .:.!

— :

H... .H

Page 6: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

fAST OF Ft CIJRCS

Key to symhols used in energy circuit diagrams(odtim et a 1. 1976) 5

2 Energy circuit model of agricultural interactionsillustrating complexity of the probi em 7

3 a. Aggregated model of agricultural interactions;b. Aggregated model illustrating climatic interactionsonly 10

4 Partial production function No. 1: Sum of heat—equivalentvalues of inputs (J1) as a measure of contribution toagricultural prodtictiviLy (J2) 12

5 Partial production function No. 2: Sum of solar—equivalentvalues of inputs (J1) as a measure of inputs to productivity (J2) 14

6 Partial prodiicti on function No. 3: Sum of solar energyplus solar equivalent values of those inputs greaterthan die local value of solar insolat ion (J1) as a measure

2of inputs to productivity (12) 16

7 Partial production function No. 4: Product of heat—equivalent values of inputs (J1) as a measure of inputto agricultural productivity (J2) 18

8 Partial production function No 5: Percent availableinsolation at surface level as a measure of productivity (j2) 20

9 Incoming—minus—reflected solar Insolation at,tlie groundfor the United Slates, January 1975. (Kc/C/day.) Datavalue extremes are 136.06 Kc/r/day and 3316.39 Kc/m2/day.Absolute value range applying to each level Kc/m2/day ... 45

10 tucoming—miritis—refiected solar insolation at the ground forthe tin I ted States, April , 1975. (Kc/nt’/day . ) Data vu Lueextremes are 890. 20 Kc/m2/duy and 6715.67 Ke/m2/&Iny.Absolute value range apply i iig to cacti leve I Kc/m2/day ... 67

11 incoming—udnus—reflected solar insolation at the ground[or the Un! ted States, .Tu] y, 1975. (Kc/m2/diiy. ) Data valueextremes are I S/ 3.11 Kc/m2/tlay and 8056.98 Kc/m2/dnyAbsolute v;Lltle range apply lug to each level Kc/m2/day . . . 69

vi

Page 7: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Figure

_

12 Incoming—minus—reflected solar insolation at the groundfor the United States, 0ctober 1975. (Kc/m2/day.) 9Datavalue extremes are 359.86 Kc/rr/day and 5018.54 Kc/m/day.Absolute value range applying to each level KcIm2/day 51

13 Average atmospheric boundary layer production of mechanicalturbulence over the United States, January, 1975. (Heat

2equivalents Kc/m2/day.) Data value extremes are 0.0 Kcfm Iday and 3.76 Kc/m2/day Absolute value range applying toeach level Kclm2lday 53

16 Average atmospheric boundary layer production of mechanicalturbulence over the United States, April, 1975. (Heat

2equivalents Kc/m2day.) Data value extremes are 0.0 Kc/m /day and 8.50 KcJm /day Absolute value range applying toeach level Kc/m2/day 55

15 Average atmospheric boundary layer production of mechanicalturbulence over the United States, July, 1975. (Heat

2equivalents Kc/m2/day.) Data value extremes are 0.0 Kc/m /day and 3.70 Kc/m2/day Absolute value range applying toeach level Kc/m2/day 57

16 Average atmospheric boundary layer production of mechanicalturbulence over the United States, October, 1975. (Heatequivalents 1Cc/rn /day.) Data value extremes are 0.0 1Cc/rn /day and 3.58 Kc/m2/day Absolute value range applying toeach level Kc/m2/day 59

17 Rate of change of heat in the atmospheric boundary layerdue to (vertical) convection over the United States,January, 1975. (Heat equivalents Kc/m2/day.) Data valueextremes are —312.60 Kc/m2/day and 27.02 Kc/m2/day.Absolute value range applying to each level Kc!m2/day . 61

18 Rate of change of heat in the atmospheric boundary layerdue to (vertical) convection over the United States,April, 1975. (Heat equivalents Kc/m2/day.) Data valueextremes are —1905.79 Kc/m2/day and 17.09 Kc/m2/day.Absolute value range applying to each level Kc/m2fday . 63

19 Rate of change of heat in the atmospheric boundary layerdue to (vertical) convection over the United States,July, 1975. (Heat equivalents Kc/m2/day.) Data valueextremes are —2890.05 Kc/m2/day and 2.24 Kc/m2/day.Absolute value range applying to each level Kc/m2/day . 65

20 Rate of change of heat in the atmospheric boundary layerdue to (vertical) convection over the United States,October, 1975. (Heat equivalents Kc/m2/day.) Data valueextremes are —1605.78 Kc/m2/day and 10.55 Kc/m2/day.Absolute value range applying to each level Kc/m2/day . . 67

vii

Page 8: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

LLaure Page

21 Rate of change of heat in the atmospheric boundary layerdue to (horizontal) advection over the United States,January, 1975. (Heat equivalents, Kc/m2/day.) Data valueextremes are —9692.02 Kcfm2/day and 11353.82 Kc/m2lday.Absolute value range applying to each level Kc/m2/day . . 69

22 Rate of change of heat in the atmospheric boundary layerdue to (horizontal) advection over the United States,April, 1975. (Heat equivalents, Kc/m2/day.) Data valueextremes are —876.97 Kc/m2/day and 1187.13. Kc/m2/day.Absolute value range applying to each level Kc/m2/day 71

23 Rate of change of heat in the atmospheric boundary layerdue to (horizontal) advection over the United States,July, 1975. (Heat equivalents Kc/m2/day.) Data valueextremes are —4531.14 Kc/m2/day and 11842.31 Kc/m2/day.Absolute value range applying to each level Kc/m2/day . 73

24 Rate of change of heat in the atmospheric boundary layerdue to (horizontal) advecton over the United States,October, 1975. (Heat equivalents, Kc/m2/day.)’ Data valueextremes are —1909.63 Kc/m2/day and 3217.49 Kcfm2/day.Absolute value range applying to each level Kc/m2/day . 75

25 Rate of change of chemical potential of water vapor inthe atmospheric boundary layer due to (vertical) convectionover the United States, January, 1975. (Heat equivalentsKc/m2/day.)2 Data value extremes are 0.04 Kc/nr/day and

a 715.84 Kc/m /day. Absolute value range applying to eachlevel Kc/m2/day 77

26 Rate of change of chemical potential of water vapor inthe atmospheric boundary layer due to (vertical) convectionover the United States, April, 1975. (Heat equivalentsKcIm2/day.) 2ta value extremes are 0.11 I(c/m2/day and1663.70 Kc/m /day. Absolute value range applying to eachlevel Kc/m2/day 79

27 Rate of change of chemical potential of water vapor inthe atmospheric boundary layer due to (vertical) convectionover the United States, July, 1975. (Heat equivalentsKc/m2/day.) Data value extremes are 0.03 Kc/m2/day and12665.96 Kc/m2lday. Absolute value range applying to eachlevel Kc/m2/day 81

28 Rate of change of chemical potential of water vapor inthe atmospheric boundary layer due to (vertical) convectionover the United States, October, 1975. (Heat equivalentsKc/m2/day.) 9ata value extremes are 0.0 Kc/m2/day and1871.82 Kc/m /day. Absolute value range applying to eachlevel Kc/m2/day 83

viii

Page 9: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Page

29 Rate of change of chemical potential of water vapor inthe atmospheric boundary layer due to (horizontal)advection over the United States, January, 1975. (Heatequivalents Kc/m2!day.) Data value extremes are —976.58Kc/m2/day and 948.11 Kc/m2/day. Absolute value rangeapplying to each level Kc/m2lday 85

30 Rate of change of chemical potential of water vapor inthe atmospheric boundary layer due to (horizontal)advection over the United States, April, 1975. (Heatequivalents Kc/m2!day.) Data value extremes are —656.29Kc/m2/day and 1283.01 Kc/m2/day. Absolute va)ue rangeapplying to each level Kc/m2/day 87

31 Rate of change of chemical potential of water vapor inthe atmospheric boundary layer due to (horizontal)advection over the United States, July, 1975. (Heatequivalents Kc/r/day.) Data value extremes are —7323.61Kc/m2/day and 78980.50 Kc/m2/day. Absolute value rangeapplying to each level Kc/m2/day 89

32 Rate of change of chemical potential of water vapor inthe atmospheric boundary layer due to (horizontal)advection over the United States, October, 1975. (Heatequivalents Kc/m2/day.) Data value extremes are —514.80Kc/n2/day and 897.41 Kc/m2/day. Absolute value rangeapplying to each level Kc/m2/day 91

33 Chemical potential of rainfall/runoff for the United States,January, 1975. (Heat equivalents Kcal/m2/day times 100.)Data value extremes are 0.0 Kc/m2/day and 16.06 Kc/m2/day.Absolute value range applying to each level Kc/m2/day . . . . 93

34 Chemical potential of rainfall/runoff for the United States,April, 1975. (Heat equivalents Kcal/m2/day times 100.)Data value extremes are 0.0 Kc/m2/day and 9.52 Kc/m2/day.Absolute value range applying to each level Kc/m2/day . . . . 95

35 Chemical potential of rainfall/runoff for the United States,July, 1975. (Heat equivalents Kcal/m2/day times 100.)Data value extremes are 0.0 Kc/m2/day and 13.60 Kc/m2Jday.Absolute value range applying to each level Kc/m2/day . . . . 97

36 Chemical potential of rainfall/runoff for the United States,October, 1975. (Heat equivalents Kcal/rn/day times 100.)Data value extremes are 0.0 Kc/m2/day and 19.15 Kc/m2/day.Absolute value range applying to each level Kc/m2/day . . . . 99

37 Energy value of corn harvest for the United States, 1975.(heat equivalents Kc/m2/day.) Data value extremes are 0.0Kc/m2/day and 6.94 Kc/m2/day. Absolute value range applyingto each level Kc/m2/day 107

ix

Page 10: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Page

38 Energy value of wheat harvest for the United States, 1975.

(Heat equivalents Kc/m2/day.) Data value extremes are 0.0

Kc/m2/day and 4.33 Kc/m2/day. Absolute value range applying

to each level Kc/m2/day109

39 Energy value of soybean harvest for the United States, 1975.

(Heat equivalents Kc/m2/day.) Data value extremes are 0.0

Kc/m2/day and 0.89 Kc/m2/day. Absolute value range applying

to each level Kc/m2/dayIll

40 Energy value of vegetable harvest for the United States,

1975. (Heat equivalents KcJm2/day.) Data value extremes

are 0.0 Kc/m2lday and 2.23 Kc/m2/day. Absolute value range

applying to each level Kc/m2/day 113

41 Energy value of four sectors of harvest for the United

States, 1975. Area—weighted average (Kc/sq. meter—day)

heat equivalents. Data value extremes are 0.0 Kc/m2/day

and 4.36 Kc/m2/day. Absolute value range applying to

each level Kc/m2/day115

62 Energy value of Partial Production Function Ill for the

United States, 1975. Sum of all climatic inputs. (Heat

equivalents Kc/m2/day.) Data value extremes are 3059.27

9 2Kc/m/day and 19834.69 Kc/m /day. Absolute value range

applying to each level Kc!m2/day 121

43 Energy value of Partial Production Function 112 for the

United States, 1975. Sum of all climatic inputs. (Solar

equivalents KcJm2/day.) Data value extremes are 21927.53

Kc/m2/day and 233069.56 Kc/m2/day. Absolute value range

applying to each level Kc/m2/day 123

44 Energy value of Partial Production Function 113 for the

United States, 1975. Local solar input plus climatic

inputs with values greater than local solar input. (Solar

equivalents Kc/m2/day.) Data value extremes are 20578.46

Kc/m2/day and 232975.06 KcJm2/day. Absolute value range

applying to each level Kc/m2/day 125

45 Energy value of Partial Production Function 114 for the

United States, 1975. Multiplicative interqction of climatic

inputs times .001. (heat equivalents Kc!m’/day.) 2flata value

extremes are 1466.00 Kc/m2/day and 3335643.00 Kc4m /day.

Absolute value range applying to each level Kc/m’/day . . . . 127

46 Energy value of Partial Production Function //5 for the

United States, 1975. Percent insolation need at the surface.

(From surface albedo values of Kung, Bryson, and Lenschow,

1964.) Data value extremes are 76.67 and 87.Q0. Absolute

value range applying to each level percent 129

x

Page 11: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Page

47 Energy signature—heat equivalents. Log (energy) versuslog (quality factor). Straight line represents world—average heat equivalent energy flows. See Table 3 136

48 Energy signature—solar equivalents. Log (energy) versuslog (quality factor). Upper horizontal line representsworld—average solar—equivalent energy flows 138

Al Summer surface albedoes for North America (Kung, Bryson,and Lenschow, 1964)143

AZ Spring and Fall surface albedoes for North America (Kung,Bryson, and Lenschow, 1964) 145

A3 Winter surface ?lbedoes for North America (Kung, Bryson,and Lenschow, 1964) 147

A4 Distribution of eddy diffusion coefficients for the UnitedStates2 January, 1975. Data value extremes are 0.0 m2/s to2.75 m’/s. Absolute value range applying to each level . . . 149

A5 Distribution of eddy diffusion coefficients for the UnitedStates, April, 1975. Data value extremes are 0.01 m2!s and6.07 m2/s. Absolute value range applying to each level . . . 151

A6 Distribution of eddy diffusion coefficients for the UnitedStates, July, 1975. Data value extremes are 0.0 m2/s and5.85 m2/s. Absolute value range applying to each level . . 153

A7 Distribution of eddy diffusion coefficients for the UnitedStates October, 1975. Data value extremes are 0.0 m2/s and4.56 vr’/s. Absolute value range applying to each level . . . 155

A8 Locations of 66 data—gathering stations used in the calculation and mapping of climatic data 176

A9 Locations of 235 data—gathering stations used in the calculation and mapping of climatic variables 178

AlO Frequency distribution of solar insolation, 1975. A) January;B) April; C) July; 0) October 181

All Frequency distribution for mechanical production of turbulence. A) January; B) April; C) July; n) October . . 183

A12 Frequency distribution for vertical component of rate—of—change of heat. A) January; B) April; C) July;0) October

185

A13 Frequency distribution of horizontal component of rate—of—change of heat. A) January; B) April; C) July;1)) October187

xi

Page 12: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

—. — —

flre Page

A14 Frequency distribution for vertical component of rate—of—change of chemical potential of water vapor. A) January;B) April; C) July; D) October 189

AU Frequency distribution for horizontal component of rate—of—change of chemical potential of water vapor. A) January;B) April; C) July; 0) October 191

A16 Frequency distribution for rate—of—change of chemicalpotential of rainfall. A) January; B) April; C) July;0) October 193

xii

Page 13: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Abstract of Thesis Presented to the Graduate Councilof the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Master of Science

ENERGY ANALYSIS OF CLThL&TIC INPUTS TO AGRICULTURE

DENNIS PETER SWANEY

December, 1978

Chairman: H.T. OdumMajor Department: Environmental Engineering

An evaluation was made of the potential energy content of climatic

inputs to productivity in the continental United States using energy

analysis concepts involving embodied energy. Spatial distribution of

energy flows of climatic variables for four months of the year 1975 were

calculated and computer—drawn maps of the variables were prepared using a

computer—graphics package (SYMAP). The climatic variables calculated

include:

1) net solar insolation (incoming minus reflected)

2) rate—of—change of heat in the atmospheric boundary layer due to

advection

3) rate—of—change of heat in the atmospheric boundary layer due to

convection

4) rate—of—change of chemical potential of water vapor in the

atmospheric boundary layer due to advection

5) rate—of—change of chemical potential of water vapor in the

atmospheric boundary layer due to convection

6) rate of mechanical production of turbulent kinetic energy in the

atmospheric boundary layer

xiii

-a

Page 14: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

7) rate—of—change of chemical potential energy from rainfall to

surface water.

Solar quality factors for all variables were calculated from world—

average data, in order to transform all inputs .qnd outputs into energy

equivalents of the same type for purposes of comparison. In solar equi—

valents kilocalories/heat equivalent kilocalories these are: horizontal

heat change — 5.25; vertical heat change — 12.6; change of chemical

potential of water vapor (horizontal and vertical) — 13.7; mechanical pro

duction of turbulence — 56.4.

Average energy values of the inputs and outputs for the United States

Were plotted against their quality factors to obtain an “energy signature”

for agriculture, which was compared to a theoretical world—average energy

signature. Most climatic inputs to the U.S. agriculture were potentially

much larger than those from the economy when expressed in energetic terms.

Energy flows were combined in five production functions and added for

the United States to estimate impact on the economy. The ratio of pur—

chased inputs of agriculture to climatic inputs was calculated in solar

equivalents and shown to be smaller (0.02) than when calculated using solar

insolation only (0.5), since the value of sunlight is being counted more

than once in climatic flows.

Energy values of production for four agricultural’ sectors, as well as

their area—weighted average were also calculated and mapped over the United

States by state for the same year. Overall, the u.s. apparently receives

more climatic energy generated from elsewhere and delivered to the U.S.

than vice versa.

4 ‘fQLtttChairman

xiv

Page 15: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

INTRODUCTION

This thesis investigates the energetic inputs from climate to

agricultural production in the United States. Solar insolation, rainfall,

wind action, temperature and humidity are well—known factors in crop

growth. Energy budgets of crops and forests have been studied inten

sively for many years) but contributions of climatic factors to the output

and economics of agriculture have not been clear because climatic energies

are of different quality. By representing all energy flows in embodied

Calories of sunlight, each energy source can be compared. Production

also depends on energy flow from important stored constituents in soil

and water reservoirs, which are not included in this study.

By mapping the spatial distribution of climatic variables over the

United States (in terms of their heat—equivalent energy flaws) and applying

energy transformation factors (energy quality factors), indices of flows

of potential energy were developed and related to observed agricultural

production. The average embodied climatic energies for the U.S. were then

compared to the economic energies that can be attracted in the forms of

labor, fuel, machinery and fertilizer, by calculating the embodied energy

of their dollar value, and determining the investment ratio of economic

inputs to climatic inputs.

The analysis of the interaction between climatic energy flows and

the agricultural system was described in three conceptual parts:

1. Description and evaluation of relevant climatic energy flows.

2. Summary of production of corn, wheat, soybeans, and vegetables

I

Page 16: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

2

and the sum of those four sectors of United States agricultural

production.

3. Evaluation of the energetic effects of climate on the pro

duction functions of the agricultural system.

The climatic energy values evaluated ware the following:

1. available solar insolation

2. production of turbulent kinetic energy of wind

3. atmospheric rate of change of heat (horizontally and vertically)

4. chemical free—energy change of water vapor flows

5. chemical free—energy change of rain to runoff.

These flows vary spatially over the climatic regions of the United

States, as well as seasonally. For this reason, these energy flows were

evaluated at many locations over the United States for four different months

of the base year, 1975.

Maps of the climatic energy flows for each case were constructed using

the SYMAP (Dougenik and Sheehan, 1975) computer graphics routine, to identify

zones of climatic energy flow.

Similarly, zones of agricultural energy transformation were identified

using SYMAP, by obtaining energy values of the harvests of the following

crops for the year 1975, by state:

1. corn

2. wheat

3. soybeans

4. vegetables

Interactions of the energy variables were originally conceptualized

Using energy circuit models as a basis. An energy circuit model is a

Conceptual model of a system in the Energy Circuit Language of II. T. Odum

Page 17: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

3

(Odum, 1972). Models of this type can be described mathematically as

systems of non—linear, deterministic differential equations which are

often analytically intractable. Explanations of the Energy Circuit

Language symbols appear in Fig. 1. An Energy Circuit Model which reveals

some of the complexity of agricultural systems is shown in Fig. 2. Included

are energetic effects of climatic variables, soil, water, and feedbacks from

human systems.

Input flows from the environment as well as feedback flows from labor

and industry interact to produce a storage of agricultural goods, which,

in turn, are harvested as food. Money flows in the opposite direction of

energy for the economy, but none flows to the atmosphere or the lithosphere

directly. These provide an energy subsidy to the economy because they are

external to the market system.

Figure 2 is an illustration of the energetic interaction between

agriculture, environment and economy. This model was constructed by con

sidering actual mechanisms of energy and mass flow in the environment, as

well as the components of human activities necessary to bring a crop to its

maturity and harvest. A yet more detailed model could be constructed to

include interaction between climatic variables and human inputs (e.g., the

effect of varying weather conditions on mechanical harvest efficiency).

Although quantitatively more precise than the production functions

used in this analysis, a model with the complexity of Fig. 2 is difficult to

evaluate, and even so, only approximates the actual relationships between

the variables shown. The value of such a model is often to provide a con

ceptual basis for developing more simplistic “mini—models,” which can he

evaluated, tested, and computer—simulated. An example of a simplified

model is shown in Fig. 3a.

Page 18: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

_,..tfl

Fig. 1. Key to symbols used in energy circuit diagrams(Odum et al., 1976).

Page 19: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

5

Energy source (forcing function),

( ) source of external cause.

S.———.’

_L.. Heat sink, outflow of used energy.

Energy interaction, one type of energyamplifies energy of a different quality(usually a multiplier).

—-cs—.!* Economic transaction and price function.

-

Storage (state variable).

}Depreciotion

—Circulating energy transformer with

I ) Michaelis—Menton kinetics (diminishingreturns transfer function).

On—off control work (digital actions).

.-J- {j- 1 13)}

and (3) general purpose box for miscel—-r laneous subsystems.

Page 20: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

- -- -- r_..r-- ,-,,—

Fig. 2. Energy circuit model of agricultural interactionsillustrating complexity of the problem.

Page 21: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

7

*t

Page 22: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

8

The model of Fig. 3a has aggregated and simplified several flows in

•-,rder to accentuate the major relationships of the agricultural system.

Most of the original components remain in the model, but some of the

Inaii5 of their interaction have been omitted. Aggregated models are

r;eful in conceptualizing and explaining the “whole—system” features and

Eroperties of systems without a mass of detail.

The variables of climatic energy change were combined according to

five ways of calculating effect on agricultural production. These numerical

:uices are partial production functions since they do not include all the

Lifl factors in production. The indices were correlated with the energy

value of agricultural production (by state) to determine their contribution

to prediction of productivity.

The five partial production functions as represented in energy circuit

language are shown in Figs. 1—3.

1. Summation of climatic flows in heat equivalent energy units

2. Summation of climatic flows in solar equivalent energy units

(i.e., including quality factors for each flow)

3. Summation of climatic flows whose inputs are greater than local

solar insolation (solar equivalent energy units)

6. Product of climatic flows (heat equivalent energy units)

5. Percent solar insolation available at the surface.

The first partial production function is actually equivalent to the

anount of energy used for agricultural production in Fig. 4) plus that

amount which is used and dispersed as heat in the process (J1 in Fig. 4).

If We assume that the unused portion is proportional to that which is used,

th0 the stun of the two (which is most easily measured) should be an index

of production

Page 23: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

______

___

p

Fig. 3a. Aggregated model of agricultural interactions.

b. Aggregated model illustrating climatic interactions only.

Page 24: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I0

AGRICULTURAL

PRODUCTION

NI A N

ECONOMY

(a)

W ND

AGRICULTURAL

PRODUCTION

(b)

Page 25: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Fig. 4. Partial production function No. 1: Sum of heat—equivalent

values of inputs (J1) as a measure of contribution toagricultural productivity (J2).

Page 26: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

12

Ja

JI

Page 27: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Fig. 5. Partial production function No. 2: Sum of solar—equivalentvalues of inputs (J1) as a measure of inputs to productivity(J2).

Page 28: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

14

PRODUCTION

Page 29: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Fig. 6. Partial production function No. 3: Sum of solar energyplus solar equivalent values of those inputs greater thanthe local value of solar insolation (J1) as a measure ofinputs to productivity

Page 30: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

16

JI

Ja

AL SEDO

Page 31: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Fig. 7. Partial production function No. 6: Product of heat—equivalentvalues of inputs (J1) as a measure of input to agriculturalproductivity (J2).

Page 32: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

st

18r

‘I

F ROD U CT 0 NJa

AL8EDO

Page 33: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

-a

Fig. 8. Partial production function No. 5: Percent availableisolation at surface level (J1) as a measure of productivity

Page 34: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

20

J2

Page 35: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

— _‘Etr.’......

21

A different interpretation of the sum of all inputs evaluated in

heat equivalents could be visualized as the input to a heat engine (a

highly simplistic view) with agricultural production and waste heat as

output. The ratio of agricultural production to the sum of all inputs

(both in heat equivalent energy units) can be considered a Carnot

efficiency for this simple heat—engine model.

The second alternative (summation of inputs in solar equivalents)

weights the inputs of small magnitude higher than those of large magni

tude, recognizing the significance of the role of “high quality” energy

in specialized functions (e.g., turbulence is necessary for fast—response

mixing in plant canopies and must be generated from lower quality energy

sources for this to occur). Yet, the input of turbulent kinetic energy

(heat calories) relative to some other forms is small.

This alternative permits a comparison between the embodied energies

of all inputs (i.e., the total energy necessary to product the inputs)

and the embodied energies of the agricultural productivity, as measured

by the wind.

The third alternative (summation of inputs of greater magnitude in

solar equivalents than solar insolation) assumes that if the energy of

each climatic sector were distributed uniformly over the globe, the value

in each sector would, by definition, be equal to that of solar insolation

(in solar equivalents). If one or more of the climatic sectors inputs

energy greater than this value, it represents a local excess of energy in

the sector above the global average, and is thus, locall.y significant,

i.e., local systems adapted to this source may have advantages over com

Peting systems. Climatic encrgy sectors with values less than the value

Of solar insolation are assumed to be locally less than the global average,

Page 36: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

22

and thus, perhaps less significant. Therefore, this partial production

fijnction alternative includes only those energetic inputs that are deemed

(theoretically) to be locally significant.

The fourth alternative of the five partial production functions

evaluated (products of all inputs) recognizes the mechanism of the

‘liniting factor.” In the previous three production functions, production

varies directly with the magnitudes of the inputs, but falls to zero only

if the magnitudes of all inputs fall to zero. This partial production

function is the simplest of a class of functions whose outputs go to zero

if any one of the inputs goes to zero, a behavior often attributed to many

natural systems.

The fifth and final partial production function to be used is percent

incoming solar insolation available, which is defined as:

F = 100—A

where: F = percent incoming solar insolation available at the surface

A = local surface albedo, expressed as a percent

The basis for including this function as an index of production is the

theory that natural systems adapt to maximize the use of local available

energy. Consequently, a well—adapted system might therefore cause a rela

tively low surface albedo and consequently use a high percentage of the

available solar insolation. Assuming that agriculture in the United States

iS well—adapted to the environment, this function could be a valid index of

productivity at the end of the growing season.

Agricultural productivity data were obtained by state for the year

1975 for four principal growing sectors:

1) corn for grain

2) wheat (all types)

Page 37: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

23

they

3) soybeans

6) vegetables

5) sum of the above four sectors

The first four variables were obtained both as mass of harvest per unit

area (yield) and as a dollar value per unit area (U.S.D.A., 1977). The mass

of harvest was converted to heat equivalents by multiplying by the kilocalorie

content of each sector. Solar equivalents were calculated from economic value

of each sector

The method of analysis used herein, i.e., energy analysis, is a rela

tively new tool in the study of environmental and social systems, although

the energy budget of the atmosphere has been studied by climatologists and

meteorologists for many years (Budyko, 1974; Sellers, 1965; Trewartha,

1968). As long ago as 1735, the interrelationship between plant life and

heat flow was scientifically observed by Reaumur (Thornthwaite and liather,

1954). Several models of the general circulation of atmosphere are in

existence (Smagorinsky, 1963; Arakawa, Katayama, and Mintz, 1968), but

have not been coupled with models of agriculture to investigate their

interaction, possibly because of the incredible level of complexity of the

models. Many studies of the relationships between single meteorological

variables (such as temperature) and response of individual species have

been made (Andrewartha and Birch, 1974); and between climatic variables

and crops (Monteith, 1965; Thornthwaite and Mather, 1954; Thompson, 1974;

Jackson, 1977). Holdridge, in 1947, proposed an index of ecosystem

classification based on rainfall and temperature, thus emphasizing climatic

dependence of vegetation (Holdridge, 1947). The interrelationships between

temperature, relative humidity, evapotranspiration, potential evapotrans—

piration, and productivity have been examined by several authors (Rosenzweig,

Page 38: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

_______-

24

1968; Penman, 1948; Holdridge, 1959; Thornthwaite and Nather, 1957; Van

Bavel, 1966). Simple regression models of net primary productivity with

temperature and rainfall, with maps of their global distribution were

generated by Lieth and Whittaker (1974).R

Energy analyses of agricultural processes were done by Odum (1967,

1970) and Steinhart and Steinhart (1974); Hurst (1974); and Pimentel at al.

(1973); Leach (1976) and Slesser (1973). Energy inputs from the economy

were included but the climatic energy inputs were not calculated and

represented in a comparable way.

Page 39: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

F METHODSt

Energy Circuit Language was used to conceptualize models of climatic

input to production, as discussed in the introduction.

Next, WATFIV (Merchant and Sturgul, 1977) computer programs were

developed to calculate heat equivalent values of climatic energy van—

Ifables and production functions from spatially distributed climatic data.

Energy quality factors for each variable were calculated from world—

average data to obtain solar equivalent energy values. Energy equivalents

of crops were also calculated from state average values of yield. After

the values of each variable had been calculated, another computer package,

SYMAP (Dougenik and Sheehan, 1975), was used to map the distribution of the

calculated energy values over the continental United States.

Finally, SAS (Barr, et al. , 1976) statistical programs were used to

compute the correlation between models of each production function, and

calculated agricultural productivity, as both vary over the continental

United States.

Summary of Energy Evaluation Procedures Used

The energetic value of environmental flows, as well as those of

feedbacks from the human economy, may be assessed in at least two ways:

as the physically measurable value of the energy of the specific flows,

or as the “embodied energy” of the flows. There are reasons for doing

both.

The physically measurable quantity of energy in each flow (heat

calories) is likely to be universally agreed upon, once the flow has been

25

Page 40: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

_! v..: —

IlL,26

clearly specified and precisely measured. However, all inputs to a complex

system can never be estimated directly because of the ranges of scale in the

flows, their temporal range, and the sheer number and complexity of inputs.

Main flows, however, can be estimated so as to evaluate the model in Fig.

3a.

The “embodied energy” of a flow is that amount of energy required to

create the flow from a standard form of energy by way of a stated process

or series of processes. The physically measurable quantity of the energy

of a flow tells us nothing of the amount of energy required to initiate

and support the flow (embodied energy), which is the energy value required

to replace the flow, and hence, important in considering alternate flows.

For example, the embodied energy of an automobile in solar equivalent energy

units is equal to the amount of sunlight consumed in all support processes

needed to construct the automobile. To obtain a true value of the embodied

energy of a flow or storage, we must take the analysis beyond the human

sector to the subsidies of environmental parameters. Ultimately, all pro

cesses on the earth have the sun as a source of energy except for some

geological and radioactive heat sources. (Insofar as the earth was a by—

product of the birth of the sun, even these are of solor origin.) The most

important assumption in this work is that of the method of energy analysis

developed by H. T. Odum, et al. (1977). Following this method, all pro—

cesses are evaluated in terms of the equivalent of the solar energy needed

to produce them globally (often a complex calculation). A solar quality

factor, i.e., the ratio o the solar energy embodied in the production of the

flow to the flow itself, can then be estimated, and flows thus described can

then be used to calculate the embodied energies and solar quality factors of -1.hierarchical flows. For example, the ratio of the annual global rate of

H

Page 41: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

27

solar insolation to the annual global rate of production of kinetic energy

of wind is an energy quality factor for wind. Energy quality factors for

climatic flows used in this thesis were calculated from global data, and

are shown in the results section.

Methods of Calculation of Climatic Energy Flows

In the next step of the analysis, the flows and storages of the Energy

Circuit Model for the system were evaluated from actual data for the year

1975. Raw data on climate variables were obtained in monthly—averaged form

from the Climatological Data and Rawinsonde Data sections of the Climatological

Data for the United States (National Climatic Center, 1975).

Average monthly values of the following data were obtained (for 235

stations of the continental United States——Climatological data — see

Appendix):

1. surface temperature (°C)

2. surface dew point temperature (°C)

3. percent solar insolation

4. rainfall (mm)

5. resultant wind vector velocity and direction (mis)

(for 64 stations of the continental United States — Rawinsonde data — see

Appendix X):

1. vertical gradient of temperature (°C/m)

2. vertical gradient of dew—point temperature (°C/m)

3. vertical gradient of wind velocity (mis)

These data were obtained for four months (ropresenLing seasonal

variations): January, April, July, and October, and stored as data in a

computer. Five climatic energy flows were calculated from this data, using

the methods of Appendices I — IX, and the WATFIV programming language

Page 42: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

t

28

(Merchant and Sturgul, 1977). The climatic energy flows evaluated were

the following:

1. net solar insolation

2. turbulent kinetic energy of wind

3. atmospheric rate—of—change of heat (horizontally and vertically)

4. chemical free—energy change of water vapor (horizontally and

vertically)

5. chemical free—energy change of rain

These flows vary spatially over the climatic regions of the United

States, as well as seasonally.

Solar Insolation

Net solar insolation over the continental U.S. was evaluated for each.

of the four months by equation (1) — (see Appendix I):

Rnet=Rsc•Kp [adsin4)+0.Sbd cos 4) J[ 1—al (1)

where: Rt = solar insolation absorbed at the surface (Kc/m2day)

Rsc = solar constant C = 2.0 Langleys/min)

= % possible sunshine

adt bd = functions of solar declination which vary by month

(see Appendix I)

4) latitude of radiation

a surface albedo

The values of K, percent possible sunshine, are determined by local

atmospheric conditions, and were taken for each location and month from the

tables of climatological data. This value does not Include attenuation of

radiation due to atmospheric scattering and absorption, and thus slightly

overestimated insolation.

Page 43: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

29

Values for albedo were obtained From those calculated for the U.S. in

winter, summer, and transition months in Kung, Bryson and Lenschow (1964).

Turbulent Kinetic Energy

The mechanical production of turbulent energy in the planetary boundary

layer by the vertical gradient of horizontal wind vector is given by

equation (2) (see Appendices II and III).

P = 20.56 ZbPK(BU)2

.

(2)

where: P = rate of production of turbulent kinetic energy (Kc/m2/day)

= 1000 = height of planetary boundary layer

p = density of dry air = 1. 23 Kg/rn3

Km = eddy diffusion coefficient (m2/s)

-

= vertical wind velocity gradient(el)

Eddy diffusion coefficients vary with wind velocity and the thermal

stability of the atmosphere. They were estimated for all locations by the

KEYPS equation (Rosenberg, 1974 and Panofsky, 1963; see Appendix II).

The values of were computed by taking the vector difference between

surface wind and wind near the top of the boundary layer, and dividing by

the difference in height [all values from (Rawinsonde Data) — Climatological

Data for the U.S. — 1975J:

(z2-z1)[(u1 - u2 cos ÷ Cu2 sin

fl)2JU2 (3)

where:

subscript (1) refers to the surface value

subscript (2) refers to upper value

0 = angle of difference between the two wind vectors.

Page 44: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

30

Turbulent eddies in the boundary layer are responsible for mixing the

armosphere in plant canopies with the drier and sometimes cleaner air aloft,

as well as transporting heat, and thus play a significant but perhaps under

rated role in agricultural production.

Atmospheric flow of heat

Vertical flux of heat in the atmosphere was estimated by the equation:

=—8.64 l0 CPK (4)

where: = vertical heat flux due to turbulent diffusion (Kc/m2 day)

C = specific heat of dry air = 0.24 Kc/Kg —

p = density of dry air = 1.23 Kg/m3

K, = eddy diffusion coefficient for heat (m2/s)

= vertical gradient (lapse rate) of potential temperature

= + F) (°K/m)

F = dry adiabatic lapse rate (—.0098 °K/m)

T = ambient atmospheric temperature (°K)

The values of are related to those of Km (see Appendix II) and vary

with atmospheric conditions. They were calculated separately for each

location, as with Km

The gradient of potential temperatures was calculated by taking the

difference in temperature near the top of the boundary layer and the surface,

dividing by the difference in height; and adding the value of F:

(5)

Page 45: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

(All values from “Rawinsonde Data” — Climatological Data — 1975.)

Because most of the rawinsonde data was collected during runs at

1200 OCT (700 EST — early morning), the lapse rate values were

strongly stable, probably due to nocturnal radiational cooling at

the surface. In order to compensate for this, surface values of

the monthly mean maximum temperatures at each location were obtained

from the Climatological Data (corresponding to late afternoon

conditions), heat fluxes were computed using these as T1, and the

average of the two fluxes, early morning and late afternoon, was

determined.

The rate of change of heat in the boundary layer due to vertical heat

flux on a per unit area basis is:

F— H

1 Z3z1b ôZ

where: F1 = rate—of—change of heat in the boundary layer due to

convection (Kc/m2lday)

Zb = height of the boundary layer

j =l000m

Thus, in this analysis, F1 was taken to be numerically equal to J11.

In addition to vertical heat flux, the rate of change of the column of

air ft the boundary layer due to heat advection, i.e. the horizontal

transport of heat by wind, was determined from equation (6):

F2 8.64 104Z5 (6)

where: F2 = rate—of—change of heat in a column of air of the height

of the boundary layer (Kc/m2/day)

31

Page 46: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

32

• Zb = height of boundary layer = 1000 m

C = specific heat of dry air = 0.24 KcIKg °K

p = density of dry air = 1.23 Kg/rn3

-r = horizontal temperature gradient C K/rn)

= horizontal velocity vector (mis)

In order to estimate mean monthly surface temperatures and wind

velocities from each of 235 stations of the continental U.S., as well as

x, y coordinates for each station were obtained, in order to generate a

map of surface isotherms using the SYMAP computer graphics package. A

SYMAP program fit a polynomial equation in x and y (the coordinates of

• the map) to the temperature surface for each month. Correlation co

efficients of the fits were all > 0.85.

The x and y derivatives of the least—squares equations for temperature

were obtained by hand, and the resulting equations for - and the x

and y components of the horizontal temperature gradients were multiplied

• by the x and y components of velocity (by a WATFIV computer program) at

each point:

F = 8.64 lO6Zb c u, + - Uyl (Kcim2/day) (7)

The value of F represents the difference between horizontal heat

fluxes into and out of a unit air column of boundary layer height. Some

of this heat serves to increase local temperature. The remainder flows

vertically, or serves as a local source of energy.

Because the heat content and flux of the local environment is known

to affect metabolism of all life forms, these values were included as

important components of the total climatic input to agriculture.

Page 47: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Chemical Free Energy of Water Vapor

The rate—of—change of Gibbs free energy in the planetary boundary layer

due to vertical and horizontal flux of water vapor was estimated by

equations (8) and (9)(see Appendices V and VI).

For the vertical case:

0 = 2.056 103K [i_ + + 2e()2]

[ 1 ÷ ln 1 (8)

where: K = eddy diffusion coefficient for water vapor (rn2/s)

e = water vapor pressure (rub)

p = density of dry air = 1.23 Kg/rn3

g = gravitational acceleration = 9.8 rn/s2

p = atmospheric pressure (rub)

G = rate of change of Gibbs free energy due to vertical vapor

flux (Kc/m2day)

For the horizontal case:4-

3 e 4- eGw = 2.056 10 . u [ 1 + in (9)

where: G = rate of change of Gibbs free energy due to horizontal

vapor flux (Kc/m2’day)

= horizontal vapor pressure gradient vector (mb/n)

u = velocity vector (mis)

Equation 8 was evaluated using the “Rawinsonde Data” section of

Clirnatological Data — 1975. Vapor pressure was computed from surface and

Upper values of dew—point temperature using the empirical equation of

Andersen (Andersen

e = 7.749 l0 exp I— Td+405:0265

(10)

Where: e vapor pressure (mb)

Td = dew point temperature (°F)

Page 48: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

34

First and second derivatives of e were calculated in a computer

program as:

e—e 2 e—ee 2 l,_ 2 1

— ZfZ1 2— (ZZ)

2

where: subscript 2 refers to upper value

subscript 1 refers to surface value.

The value of the second derivative calculated in this fashion is an

approximation which holds true only for e(z) = constant. To obtain a more

accurate value, at least three levels of values are needed, and, conse

quently, more data and computer storage. For this reason, this simple

approximation was used.

Calculation of p was accomplished by using the hydrostatic approxi—

mation:

P(Z) = 1018 — .01 pgZ (tub) (12)

p = 1.23 Kg/rn3

g=9.8 rn/s

Z = height (m)

The values for the horizontal component of the Gibbs free energy

change were computed analogously to the horizontal components of rate of

change of heat. A least—squares—fit was obtained for the horizontal

variation in x and y for each month, the gradients computed from the least—

squares equation, and multiplied by the velocity components at each point.

The rate of change of Gibbs free energy of water vapor reflects the

ability of air to take up water from the surface. The rate—of—change

has a higher (negative) value for steeper vapor pressure gradients than

for slight ones.

Page 49: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

35

Transpiration and water uptake in plants are also affected by the

water content of the air. Transpiration, like perspiration, functions

better in lower humidities, and is aided by the wind—transport of vapor.

The value of the transport of vapor by the atmosphere can perhaps

best be seen if we consider the case of a closed system. A completely

sealed chamber containing a perspiring human, a transpiring plant, and

water at constant temperature and pressure would eventually reach equilib

rium — i.e., the water in the chamber would become saturated due to

evapotranspiration. At this point, the organisms in the chamber would

either stop transpiring water via this mechanism or supply the energy

needed to overcome saturation. Hence, there is a value implicit in the

atmosphere flushing of water vapor.

Chemical Potential of Rainfall

The Gibbs free energy of rainfall per day was estimated by equation

106_CC ds1

J =dRT[nln—]=dRT[nln IC r w C r w 6w 10—C

where; Jg = average rate of Gibbs free energy in rainfall (Kc/m2 day)

dr = average daily rainfall (mm)

R = universal gas constant = 1.986 l0 Kc/mole—°K

= number of moles/liter of pure water in rainfall

°dsnumber of moles/liter of total dissolved solids in rainfall

T = mean temperature, °K

C = average concentration of pure water in rainwater (ppm)1

13:

2 ds2

(13)

C = average concentration of pure water in runoff water (ppm)w2

Page 50: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

a..

36

Cd = average concentration of total dissolved solids in

rainwater (ppm)9 it

Cd = average concentration of total dissolved solids in2

runoff water (ppm)

Values of dr and T were obtained for 235 stations from Climatological j’I.

data — 1975 The values of concentrations were obtained for rainfall from

annually averaged data for 32 stations over the continental U.S. (Costanza,

1978), and for surface water, from average data from 47 stations (EPA, 1975)

and interpolated between stations. Thus, the variation in this value over

time is a function of the time variation of rainfall only: we assume no

time variation in the concentrations of the chemical species.

Energy Value of Crops

The heat—equivalent energy value of crops was determined from bomb—

calorimetry values for each case (Watt and Merrill, 1974). For vegetables,

as weighted average (by percent edibility) was used (see Table 2).

To obtain solar—equivalent energy values for the variables, their

dollar value per acre harvested was multiplied by a factor of 3.6 l0

solar equivalent ICc/dollar, obtained from a fossil fuel equivalent/dollar

ratio of 18,000 Kc/dollar, multiplied by a value of 2,000 solar equivalent

Me/fossil fuel equivalent Ke (Odum, 1976). hMapping of Energy Flows

Contour maps of the climatic energy inputs as they vary over the U.S.

for each of the four months were prepared using the SYIIAP computer graphics

package. Climatic energy values were input as data, and the computer pro

duced contours of the values by interpolating linearly over the entire

continental u.s. Maps of agricultural productivity by state were also

Page 51: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

37

prepared. This provided a visual correlation between climatic inputs and

agricultural outputs, as well as a grouping of the data appropriate to

further analysis.

Evaluation of Simplified Aggregate Energy Models

For the final part of the analysis, the calculated values of the energy

inputs and outputs were spatially averaged by state to calibrate partial

production models using simplified production functions (Figure 3) that

include the atciospiteric factors evaluated.

The averages for each state were calculated in a computer program in

which the map coordinates data values of each energy flow were read, as well

as the map coordinates of the centroid of each state. The computer program

selected the five closest data coordinates to each state centroid, averaged

the values of the data, and assigned the average value to each state. Thus,

a production function of the averaged variables could be computed for each

state and compared with actual production.

Calculation of the Investment Ratio

The investment ratio (i.e. , ratio of feedback energy flows to primary

energy flows in units of identical energy quality (Odum, 1975) was calcu—

lated for U.S. agriculture as a whole, using the sum of state averaged

values of climatic variables as the primary energy value, and the economic

(dollar) value of agricultural inputs from the economy as the feedback

energy value, by using the fossil fuel/dollar ratio of 18,000 Kc/dollar

and the value of 2,000 solar equivalent 1Cc/fossil—fuel Kc (Odum, 1976).

Thus, each dollar spent by farmers was assumed to return 3.6 lO 1Cc

(solar equivalents) as input from the economy. This value, divided by the

farm area of the U.S. in 1975 (1,084,046,000 acres) gives 8.21 . 106

Kc/m2—year—dollar or 2.25 . 10 Kc/m2—day—dollar.

Page 52: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

RESULTS

In order to calculate solar—equivalent values for each of the variables

studied, quality factors were determined from global averaged data from the

literature of climatology and meteorology, and are tabulated below.

These factors along with the heat equivalent values of each of the

variables (maps of which follow) , were used to calculate various indices of

the climatic effects on production and the agricultural economy. The invest—

sent ratio of United States agriculture as a whole, was calculated from

averages of the climatic variables in solar equivalents, and economic data

on purchased inputs to agriculture in 1975.

Quality Factors

Quality factors were evaluated for seven climatic energy variables

(including the horizontal and vertical components of heat change and vapor

pressure potential change) by determining the ratios of annual solar

radiation for the globe to annual rates of flow (or production) of each

Variable for the globe. Results appear in Table I, with details of the

calculations in the accompanying footnotes.

The factors range from an identity value of 1.0 for sunlight itself,

to 8.3 . lO for the value of chemical potential of rainfall. Thus suggests

an energetic hierarchy in the atmosphere with flows of lower quality driving

the production of flows of higher quality, (e.g., atmospheric heat gradients

drive wind), although feedbacks from high to low quality may also occur, as

in turbulent transport of heat.

38

Page 53: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

r

Table 1

Quality Factors

Number of Fig. 2 Name Quality Factor FootnoteCalories of sun/Calorie

1 Sun 1 Defined

4 Horizontal heat advection 5.25 3

3 Vertical heat exchange 12.6 2

5 Vertical vapor exchange(Gibbs free energy) 13.7 4

6 Horizontal vapor advection(Gibbs free energy) 13.7 4

2 Wind 56.4 1

Fossil fuel 2000 6

Average of 4 crops 2332 7

7 . Rain relative to runoff(Gibbs free energy) 8.31x10 5

1 Rate of production of atmospheric kinetic energy, according to Palmen,

in MonTh, Weather Forecasting as a Problem in Physics 2 in’2 KW for the

19entire atmosphere, or 1.51 . 10 1Cc/yr.

Rate of solar insolation (Odum, 1977)

= 8.5 ,o20 1Cc/yr

- solar insolation 8.5.1020Quality factor . = = 56.4

K.E. production 1.51.1019

2 Global average turbulent sensible—heat transfer, in Trewartha, An

Introduction to Climate, and Budyko, Climate and Life, = l.310 Kc/m2/yr.

14 2Surface area of earth = 5.1667 10 m

Thus, total average turbulent sensible—heat transfer =

6.7l7l0 1Cc/yr.

39

i

Page 54: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

40

solar insolation s.s.io20Quality factor = = = 12.6

turbulent heat transfer6 717• o19

3 Average meridianal advection of heat fron the equator to 40°N latitude

= +11.12.1016 Kc/day. From 40°N latitude to the pole, the flux is of the

same magnitude, but opposite sign.

If we sum the absolute values of the fluxes, we double the total

magnitude. (If we neglect to take the absolute value, the sum equals zero.)

Thus, for the northern hemisphere, the absolute value of heat flux

= 22.24.1016 Kc/day. For a global rate, we double this figure, yielding

total global heat advection = 44.48.1016 ICc/day

or l.6210 Kc/yr.

solar insolation 8.5.1020Quality factor = . = = 5.25

heat advection 1.62.1020

4 Total mass of atmosphere = 5.3l021g

Total mass of water in atmosphere = 1.241019g 1120

average specific humidity= 1.24.1019

= 2.34’103g H20/g air5.310

= turnover time for water in the atmosphere = 11.23 days (Monin)

average vapor pressure e = 1.60 8 p q = 3.39 m b

(P is taken to be a boundary layer average pressure = 900 m b)

average flux of vapor pressure ==

3.49106mb/sec

equation for flow of Gibbs free energy due to vapor—pressure flux =

(Flux) x (1+ln)

= (3.49106mg/s) (-4.58) = 1.59810 mb/s

= 1.598l0 watts/m

Multiplying by the effective height of the atmosphere (10,000 m)(Monin)

= 15.98 watts/rn2

= (15.98) (5.1667.1014) = 8.26.1015 watts = 6.22.1019 Kc/m2/yr

Page 55: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

41

solar insolation 8.5.1020Quality factor = = = 13.7

g 6.22-10

S Global rate—of—change of chemical potential or rainfall to surface water:

[nWRT ln ()] (Kc/yr)

where: = global average rainfall/year = dA

d = annual global average rainfall (cm) = 86.4 (Reichel, 1952)

A = surface area of the earth = 5.101.1018 cm2 (UNR Scientific)

Encyclopedia)

= average number of moles of pure water/liter of rainC

wl

=x .001 = 55.5

= average concentration of pure water in rain (ppm)

106_CdS ppm1

C = average concentration of pure water in surface water (ppm)w2

106_Cd ppm2

t1ds= average number of moles of total dissolved solids in rainwater

Cds1

Hx.00l

ds

CdS= average concentration of total dissolved solids in rainwater

(ppm) = 16.4 (Kern, 1970; and Carroll, 1962)

CdS= average concentration of total dissolved solids in river

water (ppm) = 90 (Livingstone, 1962)

R = universal gas constant = l.986l0 Kc/mole—°K

T = average global surface temperature (°K) = 286’K (Sellers, 1971)

Page 56: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Md = average molecular weight of chemical species of dissolved

42

solids = 42 g (Hem, 1970)

H = molecular weight of water (18 gm)

Plugging all values into the equation, we obtain:

= 1.0225.1015 Kc/yr

The energy quality factor for this value equals the average annual

global solar radiation flux divided by

EQF= solar insolation (CIyr) — 8.5.1020

AG —

(C/yr) 1.023.1015

7 Assuming an average value of 18,000 FFE Kc/dollar in 1975, and a solar

quality factor of 2,000 for fossil fuel (Odum, 1976), then the average

value of solar—equivalent kilocalories/dollar — 3.610.

We multiply this value by the price of a commodity per pound to find

its solar—equivalent value per pound, and divide this value by the actual

bomb—calorimeter heat value to obtain a quality factor.

‘I

sLs’) a$r

6 Odum, 1976

= 8.3l’lO Kc solar radiation/Kc chemical potential.

rr T’7)

y -)€1 J q

t —

• it,,.

h

Page 57: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

43

Distribution of Climatic Energy Values

Figures 9—36 show the spatial and seasonal variation in the seven

climatic inputs evaluated in heat—equivalent Kc/m2/day. As can be seen,

the values show significant variation in both space and time, factors

which must be included when discussing “typical” (average) values of a

parameter for the United States as a whole. Values of solar insolation

ware the largest input, on the average, and values of chemical potential

change in rainfall the smallest (see Table 2) . However, values of the

advective changes in heat and water vapor potential were significantly

higher than solar values in the summer season. In general, values of

the parameters are higher in the South than then North, with the Northwest

having the lowest values. Details of the maps are mentioned below.

Naps of United States Climate in Energy Units

Solar Insolation

Figures 9—12 show the distribution of net solar insolation (Kc/m2—day)

(direct—reflected) at the surface for the United States.

The distribution varies most noticeably with latitude, with the

Southwest generally receiving the greatest amount.

The range over the year is from 136 Kc/m2—day for the Northwest in

January to 8,057 Kcfm2—day for parts of California in July.

IYrulent Kinetic Energy

Figures 13—16 show the distribution of average turbulent kinetic

energy due to the mechanical effects of wind in the planetary boundary

layer of the atmosphere (Kc/m2—day) . The distribution is patchy, with

some of the higher values corresponding to mountainous regions. The

Page 58: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

—C•Ft.

£flcc

rCCcii‘cc

III

‘InH•P..

•U’—ZC)C)qq.o(09S •.IIC—UF%3fr.

ii•ft.3C’,II•-“t

Ii!oiI

f—4’t5111,1111

•I—llIIIiIh1LillIJIIiiNP

IIIIIIII—

•1

IIIIIii‘—CiIIIIIjriC).1

IIIIIIIiiCriCD

IIC)IIII(VH

II

‘+tII—-C)<It

IIt.ttII0,1

Iit•.ttl••D%d

ti——aC—

IIa’J

Ii,•.+•pCDCtIiCDXOIiIIiiiiIIIfri(•••i

P-IC)115III51111CD‘1.11,11111jI:ii0.iC)S

--IiillIItllliii20.CD

1—511111111III,IIIIIIIIP——F’)CII111111liiipoislUllIIIo.iip—a

C)CDC)——

ri

p.p•-.jp

IIIN0LàC

li..a..IlCj

Ii4PP•SIICC)

II2iri

IIII

T:1II‘1)Ix>.xx11C)pIIXXXXIjN..Ft,:).XXXXIl0_i9II)CA)(X‘IIII*’kAXllP3

fl)CC’llOU

Il)flX)Cll

riC)UL5)litflhINti

P-fl

IILItLIIL-°Ckirr:llOP1iiJL’11)11NP

11C£L.II••I_tire

ItrirtIi,NFJH

511Li.S.ii30’(0Ui.tJ.t-buI

III_tiCIi..JCCCIJIIII)t1_iII1141th.2

—:CD :j

11QL’,p_c;pUtJ-

4IIC)C-,tC4)F.)t’3,Jt

uc2utc;()sR I.;ri

FiN‘<CDsill‘30’•

ll9:cX:i_idll.Jx

p_I-

IIW4--9iiWO

Il92X;-.2:l’’

ci

I’119IIC)II9iia-u

I,,‘IIIi

l,,etI,ilut.11.2S4Iiii

HlWtIJll3CD

IIp)IIitC:I,3

li)d)i.i•i-•F—.

Ii,Cns;12.i‘UC)IiP.I.wpJ,.09’

mm’,CUi

IIP

I

Page 59: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

gTA(-lix

1:‘IxXC

xrtrAyfl.Cl.TC.,

jA

ttZir,-cIIbA—1AXX

,1.AX;La>x

tAXA

:z,.CcVI.AC>titiTA•

tUV1,’JXITA-iAiA,CtLIX

);>,q.-cxxwcA.

TI>TWIXXA>1AICl:c03-AAAAA

Lxr..VIA)wXXtAtAD1.•A

TS:-AV311ADCxAACA

%.oar4XAXXAAA

z)crc3-•.I“‘AX:A

crtGt-1!uTlXxxxiAA

CrClCCtVUtTIXXX)CAA01107.tTIjtbStAXAXAXtlrsTaira’:•!C4xc>XX

La14-14-13-1Ct.ATAAAA3tti:rLVSTtAXXACt111littnttAAAAX

fl4-tl.It1tii.t;>,AAXt!Lts4-tL3-.iLI.!4-.t.A>.

1TL1ILLSLirtflhi%I’:XXA

T1lU3)t3-tlaIAAX‘CIIAAA>

filIjaIci’Di.SiTA3-.titL1XAA

VtITirfl.tarL1i’D’uIfl!LIA*A1ICCQI1ttrail-TWar,-,ccrtijtrIll11AXASIA

3-3-111fl3-1I-3-,xxASA*

tIfl1.1Ct.lIXADIAlA*

1;1]t4-3-AkA-0.AAAA4AA*

11AAXXXXAXAA*

S3-IX)IXAAXAXXXA**3-1.1AAAXXXitXXAtAlT3-LXAI$Di1IAXA‘‘Iia’tlAI1iiiC11XXXSHI.tt,ttltTISXX•III

z3-Gis.ttta’aTAAXAA1111Ar-arL3-lCL1A,crcAnAl3-111.11C11,AAAA1IICii

ALIII3-iIi£3-.LTLXA*AIiI:iiIi

I1C11rAXX.AAlICIIIIii

TSiLJAAAA*I,IiIIII4CCCII>XXXtoll•4t

L’-rSLXXXAAlAO,’+‘tJ’CWAXAAtillAt4

L-CIaIAT.cSSIICiIiII—

-rLr3-LIXXAAIIliii1’tl:LaAIAA•IiIiICII*

CAV21tI:*IAllIII’CLLCWJ’IZAXAd,lit

r.ACLICJIXAXASH02trC.r‘Air1AAAAIiII

v:CA%_c:cLASIA.XXXIliii’IAz’AllH

IXIAI1XA)AllAlA.

c2Xi&-4IXAXAXAMA

3233XXXXI’AA

XAXYAA’

XAA*1

A*AIi

AA>A*fttAXA.CAt+lIAA>2*•A.ACA+IIIAA*AA>1XtA+AIl

•A>*ilO*A.A4IIIi.4AlillIAAAlttIllX.%,A..AIAAI+IllAAAAAIIiiII++II4

A>AIllIll.AAIIiiAlii—IIIAA

AAAAii‘t44AIAA

XAAAIiiiIiiitIIAIAAAAIIAiiii4IIAIA.AA*Jilli1IIII•,AASiiIiHtAIAIAIAA‘4III’IiAIIAAA*IIHAIiiii...l1111I*IiIIftAl4+tAAIIA

CAII+444+*IIIIA

AAft44+44IIIII•IiII4+tIIAIIAIA

AlIIII4+IIIIIIIAA

Al114+IIIIIIIliii‘in+AIIIIII

IC+IIIIIIIIliiiliii+IIIIIIAI•iiiiIIIii+4IIIII•111111,44t4AIIA.1PAAIAIIt+*IIII•.IiIAIiIiIItt4III*AAliiI,IIIi+44

ASiiAlHACIit++IAA

*IIftHHII4++IIA

AIIiIIAlAi,+tlIl’AAHAAl4+t4*4AIA

*AAlIIIIIIA•+4IIAHIIIA11iiIIt4III

*3HIiI:AlIIHtIII•AIIAl‘IHAlftII44IAI•AiiIiIAAlII•4tIIA•HAlAl.1HICii4+III•AHIIIiAlIi4++IIII••AlIAHHt44IIIAIATMAAIAAllit.*IAIIsAAlAltt544IIIA

AllII’+.tt+IIA

AlllHttAt4tIi.AIAIIIA4ttItIIAAA

1:11..1AIIAII•AA

IIIItIIAIIIIIA•A

IA—IIIIIAIAA

IIIA4+tIAAAIAAA

IIiit4IIIIA:.’+$IIIAA*A

IAII,-t+IIIIiIit44IAAAAA.

114,411IAAA.AAII112+111AAA.AAA

AlAAAAAll,.tII.1

II*4+411(111’A

,ttt+111111(All

—4,24+1111114tttt+I*Alt’IIIi‘tIlIl4,1111

AlltA-tIIIItt411111

1111III+IIAIAIIII4tt•IIIIAlIIIiii+IAAIIAlIIAlII44IIIIIIAltIIlIt4,1III+114,111111A

IiIAttIIIAIAAA’114tttII11I

++tt.IIIAt+t+II

‘4,111•4+1A

+

IA

•AAA2A

IAAA.tAVA

AlIAAAAAAAAA0

A...

.A.AAAAA

ASAA

A1AIAc•

1111liltIA..A...ASAA

A.,A

A...

A..

AAS

A

11111IllIA11111IllII

4+

t

Page 60: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

t7i.Ej(flX(1,.r,::,.iii!)’S*

•j.’X.t44Vf5tAiiIia*

9.1

•pf..z..aibiq9.v9.4j•.AA•..iaHh.

Ct.JIHf.I.1.lP.SiIii:lit

V•p..:.r.vp,1,tra’rIY)Cx*VxS*aiI+t

t.f,ipt•pI.I•,-I-3J.X(25Ixx>>.>..+t4+

N:4xrstip.Jipx.•IIlp.bIx>.I1.51111...

,:,.:,:.H_at1)••ipIIIppa‘..•iPh..

c:?>.tcJa..aillIh**•a,.’;rpHliii.s..ll.ii,....*.Iplpi,IIIiIIli

trg.za!pcba,,.ktt51110110110

r’:,f,t.xk:1..?Lx...,Ipii,in11111’,

r:4z1.x?,.!,iiililiiIiIp*+

ixP..p•.a...*apilip:phlit

.xau.:lI;ihae.A.*IiiipiPiIip:t+.1-LIEII+IIIi0+’

tZ,.:,.-.2.Xx,liiiliii*•Ipp+•,,,++

.n.,tr.X..;lj>.>.x.IlPIIIIIi•fllit4...t4t

rIIis5iNH,‘x.;.x.IiIiIIIIIiIi•IIIIII>.Iallpillliii?’11+III

I:nr.Nr,c.p.,ccIsj.,>:xaIIp110p1IIppIIiI+t,II

flIt5-iIa.‘I..qJitil.>.‘C‘CaIIIiPPiiIsIiII4tIIr.L.;4Jtbphpic..11t1x>.x*lpPPiPhi++IlII+t+II

Cjt,c..rc;.,c_t:paatx**0hI+++thP44+-4+

raii-ti4Cc’a;i,t..111lixSS—I++III+t.t

10eLd.Ii:t.c;..c!..I111.1‘C.5Ii+•It•+4,pI

J.Q,trtC.it;t’4pJttp_taiilZ1:4’sPill,’p.t+t,t

>>.S>>.aLc._,0C.f!1!j.(i.1.ii>..to11+44*4III

x).‘C‘C‘CVi3.i9.3f..*CI2‘C‘C‘C‘C*IIIpIIIit+4•IIII

x’C>.’C’C>-3tijiIIttalxxX>.I511IFIiIII.,tII’

)c’C>.’I)’xi-IPifiJJ’C’C’C..IFt.111111

‘Cxx‘C‘Cxiiriat11.1.A‘C‘CaSPPIippPpii11tII’’’’

‘C’C’C’C,X)bF37iI3J>’CX.ashHPJIi1111tII•,.

xx’Cxxxxxxa!&1121x>.>-.ppIiiIIlitI

•St‘C>’C’CxICtJS.ix’Cx’C’C5sPillPPp1IIiitII°

a••3xx’CXx>:’C1‘Cx>:Y>.’C’C•.11011111.+III

‘Cs.a.ilsXVA>.x’C>.>‘C’C).’C’C>PH*11IiPPIi114IIIIlI0I;P1HtIIhPPlt55

xx.rs;ls>.:4x,-x’Cx:y...x.l.’CxapihpIitIIIIsx>x’Cxx’C’Cxx’CI:4x.PPI•;,iIiIlIPtI•II

.....p’C’CV’CZ,.Vx*.t:’C.IIllII.II’II’’I’

pillli.>.’C>>rX*>.’C’C.a,I**1111+1111111.•

11111111•>.X’C,.’C).xx’xii.,+IIIIII4IIII

Ill,I’I)o)H>‘Ci.Pxx>’Cx’Cx,:’C1.11.,.II11.1IIIII

ppPp.I‘CX’Cy.11x.1CI.I‘C‘C•iiIi•4+9++t4IIII

..x’Cyx4_,axazrc,><x.piOhl•t4tt+4+,

•1X’CXJPDCPCZtLCCl’C’C’Ciliil“0+t.tt’+4+

‘Cx’Cx’C1tJ!,C.rrz:ti’Cx’CSIPSiiP111+’tttt+*

‘Cxx’CxiCl.:cT’tCtI.xV’C‘liiitIppll,++Ill

philPittPittt+*tipPPIiIll++111111HIP

>.xx‘C‘C‘CxpipI.tCt_I..11iaxI.IiHIIIIp1+4IiIIIiIIIt

‘C‘C‘C‘C‘C‘C.&‘CtIiC.1.pPp11.zi‘CapPPIiIII44IIIIpPPPpII

xxxi,.o’C33J3j.3.1iT.’C.illiPip11.11IPpPIPU*

‘CV4•i*I’CIJIJ•ISlZ’CSPPIPPliIltUUIi..

Uj’Caa.‘Cx133211i;’CS.HIP*S

Vt>.‘C‘C‘Ca2.ai11zaxxa*‘C

IptiIT‘Cii1331,12lix*x.aS*5**‘C

LttiIii2Zip’L’IZ‘C,xxII’C’C

•.a_t.ail-1ZdI.LIIJ.-1’.pp*lIIiIS’C

•-eEJJ1pFI1I1?3:11’Cx.aMIIpta5

‘nrC,2PILIJ,U.tI*’Caa*.111111.I±ccr.pI.:taTLQ,t.tixIIIt

cracilIli,r:jCtP

reflCILlW,;tt,tIStI10IiIifirCCC:j13Ic;!.Ipr;cx*ItillIi

CC:1JIC4.4..1C‘CSSIP1III’Lilt_ccCccixxi4ftIIIIPPII

!,cr:,x.Sill:iiPSPP

5’fl1NCViC.ICCCI‘C•SftI:I;iiiSII

a.aipOilpilltCIIr!;Cr,.J’C’CX.ftlP111111

11Ctic19fl1LIi‘CSHIIIIIIii

a-IpCCCi1131‘C:45*PPIIPPIiIIIIIJgCT11X*AS1IIIIIIIIIIP

IiIiIXXXaSElIIIPPill31U)lipx’C,c*5111111PPPP

‘CXxI**SPP+‘C‘CS•ii++

I•S*PP*+IIISSIIIIt++IiPPii

IIppIitUUIIIIPIIiiIIIIIiIIII

IIIIPPIIIiI

1,

Page 61: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

ITHiiii...’.ii

1.1iiiiIIIIIIii

IIIIIiiUIIIIII’iiIIIIIit

IIIIiiIII

IIIIii

IIIIIii

iiIIIIiiIIUIII•I+Ui

U‘tit

11+5.,ill•J.t—itt)I

ii—*t1-li’iiI-4.4.4.4.IiIi*I•+4.II

IIIIIIHLIHiiII1IIHiiII

iiIIIiIiIIIIHiiIiiiIIiiIi

LiII0IIIIIiIIIIIIiiciitIILIIIIiiiLiUiiItiiItiiiiiliiiiiiHLIiiii

‘•1••LI

iiII•**IIII

II•S.41III

IiI•4•IIHI*II

LiI•IS*IiIiH*14)x1ii14X14iiH$(*xiiii)L3%AX3%IIiik1%7x3%iliiA443*V‘I

AAXHLIL*43%143%iiiT1’3%)3L3%itiiii0.03r0t9

.0£JTLIii.01SiiCIIHLi011)0iiDtItaiT0.00ZiIHii£fl0tiflI!ci.010iiL1LI.0.0ILC.iiII

iiLiDCIiILI)TiIi(JCIi1.4)HU!&!JtIHtJ.iJ‘.4iiiij0fL•JiIiTC:Ti

IC.43ii

4;HHLICL2

IIH2.1

HS.43%QSH.3LULI1

IT.1:;.1ITX3%47;iiLI‘1-3LiiT.c.4LIitii

CDNHH.3I3ZI.3HLiIiLiiiA0LILI&13.0iT4.4tfl.4I

:1&—4IILI

i.%-JIl0ii1SM.4—LI

LIbItII‘ILIII

‘:<—.i—i37;j—1flfl

—rD9S0

“1DiZDII

IarJOQ‘<933’—•-trDiC •4

tCo0I -.a

HDihi

a.p3

la’4zHOOPC(Pc..4ciItci

OC(0jI(OP.za(P

p3(Pwn<o

‘4FlDiU:4F-art*1

C(PH’(P(41HCO

0.307TIHnap,

DO31.4

r-3Cu,

C-Ui00•u-0.<_.,,

-Hci

•1,311Co—.0L.CilP.C

‘C0-

aU—•S-dO

C-hi ‘a—

crt0>

0’-C

3’—

—.317

-Iflfl4LLJZ%%

—‘4Bt7;1’)17

DlC.rt

‘<Co

1€ 1.1*4ci‘0It—3

•-In3.1.33

CC

-(H

‘C

rCCHCC

4,

Page 62: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

ln,in,aXHX)’X121,LXXXX

SCflHitea.ra.AtAxi.$1.AXXAAAaI

:X;r.r,3IiiXAAA•*i

tII,:,ud:t:tcftLc.4Ci.tIlPl.%AMII

P.c,:4.;.::.’::A.:-,t1,l1.Lt.,XX.Slix

t&ut.Lt::Xcit’.1f1LIAX)(XAXXX

m.’.rC1rt:.4>•,rCtri’rfl.LLAXXAXX

xv.

-

a.-z.4:v.wt‘.Cjlut-r.:t’f.;?itlq,t,lO

,,:c:4ASZ::v:rr.Ci.?.d-.Q..c.,itlt)YV.i4t,cjtno

r,c,r,..’Z,.SflLlI’Wj4ccfl,ZCfl.c.flnilticflC

,,,g:x:(::.vr.1ilr,t.;.j,.r.‘.c’v,e,I.Lc.a.rrnAcQcr,.trcc.,UJ,1uiii

Cr,G:x:ct:;X:rtiitt

rr,C,xruc..,.flrrCr.flc.crPlt,,tcCD,r.trbiI1

tv-iurt::xz’tC’rr:c’Arr,.lSLc’,.CIitr.1-tP

o’.nc,,,;c,rr:;.tCac.C1CLI.I£L,LLSit£S

flnCCt,ri”c,cirC3CCri)iaiTrIJ1tiSUiDEt.tO

CCI’IItillI•)LCr.øIjlflX>:tIitS

Vt:’ia1.11f:tCc)Cc-ia.IUiXa.UtiIttTtCjO

CVI1VLilt‘.CU’Ct1IlilT1U0:1SIiIttO

VtitAXAJI‘1£tXCCC1SttLiIiL.LIdLiCttO

rCI1.5•AtI€CCSSi-I45.a1iCCV

11tAA*XX>CtCCCtXliii1’ILZiL’J)CCC

a*1.X’fl.5111.1,1

XAXXAXV‘ISAAX.$lCcCtl..rcttCcCbrCvtCitC

*AXXAXI•.X)aAAIt;C,ciCStUCtQ.tflCtCCJO

,*YXXi4”,AxAX1tv.CtC:-tx1ZZr;r:<:(lttUrC

XXAAXAIaAXXXXX’a*AXZ.I’i

‘.XXAAXX-fl‘X)’l1€:-:C:Ax,cAx;spc;;’

55AA£AAzxxy::-r’riS..::iSC-cjC

farCaiiti.S

tLI1t5jtiEX.i.t)’.’A.!%X’ctd‘‘:x,t:,M:ilF;raOCO

¼;IIiiSI25EXXAXXSA.tiiA;:SA:c:::•iA0tcC

151110lAx,.t*et’S.xxz.,tCC

)CAAAXZIIt.VIXt;lX>.>AX1EI

XAWSCCCLCLP,LLACI)tti.css:,AzS,;vCCtcV

a‘C‘S“Sc’”CC.aUf!JC

AXAAA0CS.L.C!:Cfl’c,n9i.tfuC

isa*AXAtILt.tct:.:qCcecL:czicO

•....,.>s1lr:rEj:Cl.tjt’CLICL2)O

•gI.aa

‘ii:H..•.x,ir,LrSCtTCtr:LALIXXA,rO

•0ii..A:Itc!jf;Scr.c.CriCtL.txXtfl•itiflSm:LttCC%t:LCaiU5C

SUi

XXXISsolCirCCtC.t3cD.t..tLS

XXX1.11111111:.tlCvC,L.LS,1,CCtb)Id.2,1SSui

XXX11111’IIicaiei4itJiiL_.C-,CiL1U.Ii

•mash’tiihAltsr-IllIcttC-lti-SE*iaIt,t4ii•t-5DiAAL.1,TjCCS

:-

CAAAXXICC5:LXXI(A£5

•Imiit_?t1.E’AAIAXXI’4A.tl

•IIIiitt*IIIiIAIXAAA‘CASI•IIiit+ii,XTXAA•AA-bS

Ii.:.,,..tXXIXAXXXLSA

•ii-tt+,Xx,A:SAXDZ’SIIaDA’S•liSZ>.AAXII£0

AtXAXXXX0150

CAAXAAAAA10•1111)IIXAXS’1XXii.on

*IISXXXXXXSIDED0*

aIISmAXAAXXIEDXX

XXXXZ-IDXii‘A1’LS•+

XUitTjOOIDA.1111*•Xx

IASIInAXIX.IIXXX

XIIX

XX

II1

AIDA

Art:alAAXE£.tA

XAAxAAA”A

4

I

Iof?

Page 63: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

-r—--. -°a wF a

iiI

I rNd *

(3LrpagIl

,ItS.tr.i.• ‘— ICrrflhII

1.4 U ‘ 0 ‘- lit

w C IIOI,tflII

00 fl t

OP n::r:)tIt

,,

— r — r L. r rII

,3 .I:SrtEi:• a U,

• 0 iiIt ccu c3 lI;r.

IIU ‘.— II r,nrrr IICflr’J <°

flC

t ‘ cjjoorrn

w o °

IIrr.r,c.2.I‘ 0 H (1) 0 Hd

N fl (I I’

IiTihTlflh)It ii — a a: a Ii

.C r-4

U C ‘PIn

-II h D

1.’ ,, a S 0 3 5 Uo t -

‘4.4 It n I,1aaaHIt Ii33a

t IIo >

ItriO

I IIg,xx.(ICCI IIIX>C.CXICIl

= ,

wxxyxIIrun pix,x.cXII

xxxi

H4 •II IIU O ii . . * v . IIt flN H I H • I I

II. IIC C, flO’ ii. •IflIo tn rJO . • . II

• t’J’b IiI.II)II_i

riri ., ,.‘p

It Ci (3 0.111111II H

0(3’—. .cn IIIIIICIIIIIIIW drl IllillIllillIl

• I pp ii ii ii ii ii•-I a)—.. Ifl IIpt4III;pI

B U II P II H Ii II P1.1It 1.1 ...Pi II ‘P II P II H II

nppIIIIppIIiIoxW p

0W ‘

It H+ 4,, *11

t WI—I •°• II’+t•4II

Ci ‘I

Up—I IIp44.flII

oIt> .1,11

—4 w ‘‘‘“-

4114.4(3

It i—I NIIIIIH3.4(14.) rio u’i;:,’IC •IIpllIIII

Ci tQ •. iiiiiilii’It 4’ (‘II III -.

°o. HIP liltri • >. rn Hillil”

tCIt fl H

(3 It

B B p

o o e u. rJ •

It 4 ci rim He’IIpp

r..3D23, C

• —— C

to3 a

Page 64: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

1l.S.x.ttiiiI.1.7XI4I

i.rt,ccitittQ.tlxii

I,,I.7r..1nfl.L’,.i.hAIIIic1;,..r(.n5q,’ilxii.(icrr•.C13i.C1A•ii

ILIII,.jqlju.,;t.wiltciCp.P,JAAA‘I.,C,C’:ixaIi.Ir1C1‘,11,1xliiii,*.Ifr.•i’•.“.CLIJ>,,%IAA.i,i1t41

wit.ca-tSAXXXIIaitt4Immiii.’Iakbutt

,i,ix:.:iaci>xc.4a•*IIHttt.a.riLt3LZ’)’AX..auiittt

flr.k1rl’:7.tCCIi%)Xxxi•mmlii,,talr.,XDiIx’xxy.*.litna’:‘:iA>AXaa2I*HIiii

pra.’CV“.‘3CAZ•iiitiikIiHiii,I..eL,H,c‘xAaIIiiIiitii**iiii

,:r.i3lC,,:ZI_AxxaIliili.iiiiililiiiliiiliiiHit

tattitisiZC’t.tAXlitiiitiiIiLAX.liiiliiiliii,

r.,:gr.rpm1a..1JiiXXaIIItIiiti++.b:i,is):::A,:t,,ZSliJLaliiiilitiittNnEt7,fl1a713*AaIiiiiiIiIi4t

Iiliiilit,

itAx>’..•ltHlltt,:xx>::X%t2.Cr.2axXA•Ihitillii+

iEt€.V,u—‘r,f

71.1‘1.AA•aIIiiiiIItt

nLC.ItCt2’Lcrt.’,.tnt.txxma.*till,,,

‘‘Ct)’jcc:,::•.x:?,r!’c’s31xxmtiiIIiiIiiimalliiii.

.3,3:-;wt,.’:-:,.,i:rV.I,11>;XXi.aIiIIIi,z).-w.;,;ç;ti::’.;!.*-t•.j.13lxxx.ml;IIlit>3z3:>i:-.;J••:-‘:-::tIjt.31111AAX*IIiiiii

a‘-reaaZAS’A....r.,CIIIAAXxiaItIIiiii•mIiIIliii

A;;;.%:-Ats?.3:’;21j31xAxxpiititiiWaxy.::.’.:::,c::KA..::.?C!iJ:l1,CxA3.liilliI,

;f_Cç3;3:.7);A.::ti,.xZI11-Ix*xmliiiliiT..1i1LIxxx*.11I.iiIi

‘ii:c;V—it.U13ar.511)xx..iiIIHt

1.1.J’111pXS,Lxxtliiilitva’rq’.!.c.&,LtJc1I3:at11ixxxXalIllii+

1VVI’4313£C,LXItPc.21IXXxx31IIiIIiit

arV.2c.4.pire,.._Lc_.’213T:..137xyX*a‘lilta.t!..ui.c:13!..4t!LtUVVCJLJ,12)XX.*HlitCctatc;;U._U*it.LVCLJ,SxX..ltilta3,fPa,;cc.ttt.rft!;i.f.L1J-J.XXxmillitt

LIa.ClCCt.C..V£513.CSAXXAAII*IiH

3.Slik.l.i.T-,’nri[1133IiixAx31xat1iiiiHS..1.3..1;’1iiCP31Ii11I2.a..xIHIiHiiiiii3t3l12i3I21IAI1X>.xX*.illIiHii

IdSH’.3J1211;’AXXAXXAXIl,i.r.2SSi1J1$AAx>.XAxAXIt

ItillH1tCCC,Q13.a...AAAA>,YAX>:a**111lii

CE..U]’l.JarxA’-xX,.Axxx*1111H11,111I,LC1SaxA>,XXAXAXA*•iii‘litliiip..r,E:La101>A*XAXXAIXPI.nilit

tLVtl’iIii*”A••1111ti.;tCjJ1.liiiXxXZ7,1.VI’111111SAAA•aaaHiiH

Ct.V13’1.1131AAAIIIPIiH1C.F:I‘P4..1SHC31LAAIIIIHIiiiII

2;r-;criaLII£S’qc,aSxAmap.HilltillA,:.t1Sa’L1t.iCYIX>.xtIC1111111

IIHillH11111mQJCSr1x,2IiuIHHHIt

.,1i3311‘t.muI

x.1waxxxitlHHiltxS3-h1*xmIiiIiIIit—

AaxAx*XHtiiiiitAI*HHiillilt

x•.IIIIiIiiitiHH

*II

illliiiI111111111111ml

IIIIIiiIIIliii.lii11111113111111111‘‘1111111111111111114111111111

liii4tttliii

t++tliiiIllIi

tIiIIIll‘II11111+1111+11411i+ttlth1+t+4*IIt4+Itlt+iiI

I,tt*IiIIt+liIi‘‘ruII4+11II

+111ItillItillItillItill’’tiltI

IiIItillItill•IIIitilltt+,tIt—tttt

tt4t’,4t+’tttt

+tt+tt

tt’t+,tttt.4,•44+tt

•++44*t—.

ii+H+tt

t4

+4

44+++4

iit+4tiiIiiiii+4HIiIiiiIiiiiiHIt

IIiiIiIIIi

Ii

3:

P1”

I

++t+4.,4+,,++tt

‘‘.7+ttt+

itiiiiiiiiP

iiii*IiIIiiH

Page 65: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

fl W 1 r w pn ,iIs.l.rn.I

lufi II C2 % jUn ‘Iii p Cl P V

C— ppflfl Z.II’43) ipn.l’l:,p.

— ii 4 U p

fl ‘-C p

ON stjtJVni

U • II

ur’fl I

tOt ‘: ::,:-‘:

°

:p

II IiII II

cl-I t•’ç’ l,.1:,

O $ .- C-I—— •.Ile C C

£-J Q “V ll’.l.r4lIII I 1

I-’IIII & • q . :1

•4 •1 H H -I

00 nrrn,’’i

t’O ci p _, , . ,

o s-j ‘.

C 0 00 I’:. I.”-.

ci‘—4 O

• Ilar.<.,-,

Z ci >, I’1

““‘‘-I.

ot_J%.__ IT) Iii;

p—I 0’— C’-’ !II1 lip0 II I -I I L I

O O ‘,t-l

H TI

C rH ‘l liiI’T 1’Cicici ii p

4=>>o ci

C U P. H.•kc— ‘-“‘ IIXX-CXI

tC 0

ci II x >‘ — I-O 1 II0.0

.1—I >, -U on ‘i.,,..U 00 t to p.11Ir)’ I

ttNCE>, i-..,..

1—4 % —4

II I

1-1 ci 141,11

0 (II C) 1111 4:44

>4 .-

Ci to (- -I-Illi

p--I Ci

I—4 > — II

Cir1ui p H

O o•-4 n0 ii.ci ci —.

0 >, On p..Ii.. 4

Ci ci I...

00 U -.

_4 = H• : :11II•

0.) 0 I ii.0 0 “Cd 141IT11HC. •Mcc tj <0 N • ‘‘Z’ II I ‘‘P I$ . II I I I I ‘I

-Up--I • -II P I I I I

-Ci

ci lie--I n_•

ci 0-. •,..

> Ci 0II,

II

n III

I, c

• -

to --C

--I

Page 66: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

53

I IIII

liii’‘Ill’II’’’

.. ,

‘‘II

4+...4’.’444.4

II 4. 4 .4 4II I, +

II II 4• II II II III t II II II• 4 4 II II

)c X I • IIx XV •T K < K *

K XXX.XXX)’. Kxx xxx *XKYX I *XX,’>’ I

K.... I

*lbj IIa • • ‘4

II II II • I :4 IIIl II II II CI II II+ 4. 4 II II

I I I “40’’ liii

‘‘IIII

I’ IIIllIll

a,,... IIIII’

Ill,ill

• 4.11111• a. .4111.

*1111.II.

II II I

11111411111111

liii, I • .4II + 4

jIIiiliiIIIt 4 +III, +4 44*4•

444+— 1.1111..1?Ili,111111I14.+4.lIlIIt!41Ia.

III II Ill 11111 II II lLj 4 III ‘44 I

•iv.*t..,’IIII,in. .4114K >€cxXXX)IXXX •,:,I’.. hi,.

,<xKKXXij tkKX. 4 . +, , Ixxxx.1nait Cxx. •

ll44 ‘a.‘TflSb’C.Ifl. •‘1414. II

IIxx r,raw. I,iI.”Ja.r. 1!

IAt 1

• 14 4 I xxDtanC4 IUiflI2flr!4. axpi’

+

.4ll4lIllLI,l:.v,l;l1tJq’r4.I4II

114+4.11 llI4Xn..t,a:xXxxIl,I,’.’,iLl.x’r.4.r x’..•,.n II

• . ‘.111 4t.+’IllI.XC.L.’l,,l,l4 144111+I1444,4’IIIIIXK.Il4..4+,t. 4II II+,55IlIl’CX..4I.+,44,

.....IIIiI4+411144tt1t,l +111111 •4.,l-T-rTxIII,44-, III1111111 I+.txrTx,u4++444111114111111111111 I’’II4t*lIII.,t4.ll

I I I I I I I I I I I I I I I 41411.11 III p I I I I I I I I I I 4 . II 4 II II + 1. + — 5 II II

,.IIII+44..+IIIIII 144,111 ‘‘‘IL4.444 IIIIIIIIIII,I+.4,4.4 III I I—+44*.. 111111 111,115 ii Ii

IIIIIIIIII,.IISI+44+lIIIpIbIIIl1XIICl

II 4 4 + II II K Itt II 41 4 .4 4.? £ • + Ifl4.. ..lI,Tagt,Iy4ItI:t<II I..,44.4 4114 pIt’rx, I ill I I III

II II 4 I’ 4 4 NM U TIt’ 14 :0 II 4 — 4. 1. + II IIIL Ij Il 4’ • XX 1 — K ii F! •j n a ii . II • •

p ,, + . ii •, e. a a 4cr H ‘ ‘vu • r.,’.< ,t a O .7ii ,+. I.4c,..:cr.crrba1g, Id

II ii + • it II I K U II :4 y x , . u a ti U ftII,.+.I,XatcntIifflD...,r(p:;n‘I,4144 X I tad• a Lxw y 1

,I,..c11r;KII+411l44.iIiI,.lI4’I,,’’; IIItI>’LI”1LJiI1144.IIII+4+ItI I,’4+LIP114+1111 III a,..I II,, .slrxlO+.IIIIIIIIIIIIIII.1141111**• t I I I I I .4 I I • I I I I + II++IlIII.Il.11 I.,IIIIII+,I44,.r a,,II+..IISK,wTX,,II

I I 4 II • K 1’ t tj I x I •

I III.4qI,Ti0!t•Y3’I—Iii

III i+**14U?

• I I I I • Mi J2XZ aUkil

ii, I i .+xn,Mflx,,1111I I I I I I I III X>’I KlI •I • no

I t...I 41411

III 14+1111111

44.III

4+I,4 IIII II I44 )CX4 XLI 7,I X !1 T ‘Cr* Tne(.X• >‘ Dir •r . II •

II 4 5 I• II LI Ii II II 4. +

I’4,,• II +& K

II II II II+ I, II

I + t II•4+

ii

Page 67: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

ii•.....iI

a

•IIII

IIii

IIII•IIII

IIIIIIII

iiIIIIIIIIIIIIIIIIIIIIIIL

IIIIiIIill(IIIaaHIIIIIIIi

IiIIIIIIIIIIIIIIII

IiIIII4•tI.tII

o.++4-+UIi4•444Ii11-1-4-44,11SI4-4-tJ4-+II

II4-•4-4-4-flIIttt4-4-II

IIt+4-44-IIII4-•++II

HIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIiiIIitIIIIIIIIIiIiiiIiIiIIIi-

IiIiIIIIIiiiIIUiiIIIIIIIIa

iiII1IILiIiIiIIIiIIiiIIIIIiIi

Ii

Iita••IIIiaa•IIIi

IiIIIIII••I1II4.aI•IiH•aa*•IIIIIIHxAXcAIIIIA>1AAXILIIAAAAAIIIIAAAAAIIIiAAtAAillIiAAAAAHitXAXAAIIIIAAAAAiiIiAAAAAiiIIIIii-L.til__LIIIi-D3StHii1.&£ti’II

HIStLiltitII1IL.D.L.tII

Iia-LStJ.HiLrLJ-3IiItStStit1II-

IILt-Li£IIi

iiIi

HP00aaII14000a0IIIIa0anaII

Itn000,IIIiaaaIi-

H0000UIIII01.1ISaIIIi00000IIIi000HaCIIIIHII!-A.2iiz0sIi

IiA:IIIi:1:WaHzi3II-iiS-.4w,a:4IIIt32.2.2.1IIIt.4.2:4‘5H

1S2Q:..*HIIIi

N020IItIIi

iipUtILL0H

I;IH0HiiNHII

Ii314C)LIISiiIiALA9(1.1IIiiPW‘SNiiHI*40.5IIIIII11N0.2II

HII

t1j

*

.20—1CD

MF-1Pt LA

C.CDP’H

L<iD.p

•-Jn

—o•Q>C’S

-c•-tOLACflnZ

OCDHCD

(‘nflCD

“C<-Do

CDPtH‘1

‘-I

nH

CD

oLDtflrj

.jI—

HkZI‘<

1Q

HC.C.

•.OQ1-<flrfl•C,

rt’-fr5•

o0

meon

a”

H<CDa

<HZ

HSD

o0fict•nHSM

170—ScC.CDry

waC-1

00aLA

flr

5rt

I-az.••

C. 170a=I

GIn

•C,CL’S

onCDa

.4

‘CIcc

is)

P1

Page 68: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

55

.14..’’ ii‘.111111

•11 till 1+Ill’ ii III’ “4.11111111 ‘45+•IlIllII4’ 4.

It l4’4II4’IIII4 . I I I 4 4 II II n II

• I I IL II II LI It• I 4. 4 II II II II I

.1+4 IL Ill’’? *• I II II It II I 4 4

I II II II II 4 4 *

4 II II II Li I

Ii Ii II Ii I 4 I

4. II II II II 4.4 + II II II II I

• 4 I 4— II II II II II• 4 I I II II II II LI

II

LI II LI LI+ II LI II

0 I I + 4 II II• • 114.11 II

• II’’+I1.115411

11,11II at

11II,,

I I I I — II

I

l#+#4II

I

+4111tH II I’ III 4 II II II a II II II IIl+II.w.uIIlIII

+11 •x,<c4 11111I+II,2CKT4IlI +IIWXKKI 111111

till

I S.4xxx•TIItl

I’ll

1111*41 .l 1111I I 4. II II IL II II LI II II

+ II II LI IL II Li IIII4IIILIILILLLIII

I S 4 II II II II II ILtI++ILIILIIIU

1+44*4.1111I 1+44+1111I

I 11+4.4.41!

111+4+11112111+4,1111

II++.4L11111I I+51111*II +.Ilii K,

.111114Ii I++IIILti4

4 111.4+112?.lIIlI+4IIII4

I?IIIII+..I4IIIIIIIII+IIII111111

tIIIIIIIIII+LIIllIllIllIllI—

‘.42.——0i IIIlIIII.II 4’

eli

111111

IIIlIIIII.e.’IlilIllIl

I I I I I I11111

III

• IIIt IIIt 4 II It 44 4 4 4 II 4

* : 4 I .1 +• Z XXI • I 4

—I • 4

:<T IT* + II?4’1141

4 K I 4 II II 4 I4 2 4 4 1 II LI II

II II

4 4 4 4 ,L II 4• 4 4 4 4 II LI 4 4* 4 • * LI I? 4 I I

I I• 44’ 11 •ii

IL + I III IIII 4 • 4 II LI ‘ I ILI II 4 1 II LL I *LI II II 1 II 4 + ILI II LI LI II 4 I I4 II II ‘I 4 III II II II 4

. I I III II II II 4. • I III II II II + 4 I III 11 II 4 + I• I I II • 5 4• 4 1 4 4 LI + + +• 4 4 • * II + ‘

‘I • 1 LI II II 4- •LI II 4 II II II + 4II II 4 • • * II II IIII 114’1 S LILI Ij 44444 4 II

II1 II • — K 1’ 1’ x

II 4 T •rt rLI IL K 1 , III K K A ‘< S r2*• * .r n -: ,: aI A .1 0 R ‘ C It4

* K ,4 x aI Y:_;I.Xfl4 K ‘ U 74 .t ‘ L-

4 t:4CI,K C 2 RK 1’ .1 S 1’x1)qrWl-.fl

<It* K .L Vt 2) ‘C SK tC ‘I. t IL .1’ t a1 K J t It It g K K K KC ,‘CKr;LK. I I.4 K K t. K K 4 II II II4 ‘C K K K K K II II • IIII IXXXW II IIII 4 K * I II It + 4

II II 1 4 I II II 4 +• I: II II ‘I II * 4 +41 II IL 5 4. + 4 +

411‘‘11111111111111111...1 I I •flfl

.1 I I

.1 I

.1 I I

.1 I

LI

.L1

I.

[4

I

44

1111111.11

1111+11111

:1

II

4

•44

IIIIll’1111411+4++•IIII II’ 1 •‘ 4 4.

II — + —LI II II ‘

II II IILI II4 II4,

KS 4XX.

II..11111111III?I’llI’llIIII...

1114‘II.‘+1‘4’I4+11+4114 +I4445

II 4 4 4

+ IL 4 4I P II IIK K II II‘C * I 1K K 4 II‘<Xl.tzI 2*45<444

Xxx’

ALT’K.,,.”,

K‘I tC t ‘I1111:1

1$ U

Kii.’:

Page 69: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I.

1.

P21hI.

oft

haUi

a‘<rl

—oftof—4a

1<

•i_nit8C

>En0-—’dEnZ

CithI’itft‘ta

<Co

F-acCzC(ZF-’W

(trjI-IZ’<

Z0-4OftDo;‘;‘<

fl(D%—

rt

VE’S0-4—

‘CC.CH-0)C,Zt<Coft.ft

ititF-.o0

(Zr,

hanEDCDftcC2.ftfti-42

ft—.

(1nO’

MSitftC

C-En•ir:0.‘<nc•F-4

EDO2

on-ftC

0

no-..rS

F’-)it2’CD.ft0)‘cc

20)H’ZnCD-ft

01

U,-Ui-it00)

itftEn

En-<

.rc-,ccrLi

IIit

II’••’•IIIIIII

Ii.’..•ii00IIa

ii.’..•iiNo••U0

IIIIIIIIIII

iiIIIIIIIIIIII

11000‘IIirJlIII!IIIIIIII•tu0111111100IiIIIIIIIIIIIIIIIIIIIIIIIIII+•-•t4II

IIt.-tttII00

IIa.IIt+..-,IIOoIII’4••UII+74II

IIIIIIUIIIIIIII

IIIIIIIiIiIIIIIiIIII111IIllIpIllIlilUCOIIippI*IIII0SI

IlilIjIplillIlIC’HO00

piiiii111111II

IIUIIIIIIIIII

Ii.I.111

IIIIIIIIIIIIIIIIIIIIIIII—o IiIIUIIIIIIICoIIIII15000UI..IIU

III....IIIIIIII)CXX)<>1IIItxXX)’IIIi*?—)<II

——IIx?Ijx>l

dxxX)iINOIIx>AIIOtaIIXxAXc1IIX)c)<XIIItit

pI‘LIIIi£:.‘It

IIa22:II——

II.b&jIIna111}IIU.NIctZ14:100‘I:1SIlizIiIIIIaSItititH0LIILOnIt

PP00LII)0IIIIII0LI00II

pPILnSt.aItPPOXaI)0flhiO’PlualaUflit00IIUILCLICUIItauaMuppIIIIIIS5¼¼¼IiII¼5¼¼IIIICSI50IIH.CItSIt——115Ifl5II115CIRPIII2’ISLI00

iiISS‘ItII¼¼tCIIIIII

x:.2IiA4IIII1‘.1i2IIp4:;:;:4JIINI

IIIW)10W.UIIIi:I:4‘41IIUIII‘-41AY.II00pp:.IaWpIILI-IIIIPPflWflCIIIIIIIth.ILi

2,IIIt1I.4s.IINO

-Pull•HUflnUII’IoffIpWI:II4.JlI0IIiP..IiIII’IIii11UI4MIIIIII

—a

Page 70: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

57

a3Xk aT ( TI

4 • IInKaT4I 4

g • x ic I ‘I V x II• • II • x TV TI• * XTTPXII

aTZ44r.flII •1 Is 24. I V TI I I

0 CV X II 4 4.

&R$TEacV fl4.4.• U I II —

S U x 1 TIU S ‘C V II

U U x • IT

U axb TIa ‘C V II P

x. II 1

xx.e t

2 * Xc XXV LI I, 19 X —

— U U 7x a U S V t S 1

X X4’’’iT V

WIOUS• V V S T S X C IT IT 1

•. V V U 19 aT 1 1V V ‘ 1 9.:

19 C9 5 4 W C aT ff I

Icr r: r- n II r t Cfl , 4 4c,: ‘ 4 U 19

P 1 CT 9 IV Y : 7 19 19t 19 is Ii ! 19 is Pr — It S

Ic Li sri’ i I: tsr F’Z 24V ,q r S vw;’ It

js cc . 5: UIc TI I! t t S V 4 4 — V It 4.

•s n’ VI S VrsflU F

tPT’CXX>.YXTI2 .UVn•. 114 V V XXXII In

• V V V TI V I H V V ‘C t< 1 1 1

* I I E II •• V • * V ‘C ‘C ‘C TC,VVVIlflhIV.+V XXX• V V * 111111 II.. lxxx*..g:IiIIll.. Vt.

V 111111 II V VVXXXI ..1I11 II II lIVeXXX.. Ill III II :1111‘CXXX. *1111 + ‘III HXXXI .1,114. 44.4lP

XXXX*tIl14.I I*XlV.TI4II I•V..MhI+l I’ II’11i14Q4’IQV ‘I 114

11*I si I 114

4111111 •V . 1141111111 —. V III

11111111 •* I 11+11111111 II I11111111 II Iill liii Il IIII 1111 II 4 4

1111 liii ‘4 4 4.111,

till liii I’ 4 IIlI

I’ll 11,1 Ii’ 4. 1111111111 III +4 4 111111

11111 I’ll +4 4 111111I.’ II liii +4 + 111111• V P p I I I I I + 4 IT II II II

liii I• 4 44.4

liii

1+ + •.4

S.. VIII II + ‘4.4Ill II 4. III

III

t..

V

V

VV4V

4

+4.4.+

II+

+

V

•V V V -

. .11111111111 I I• ‘I I I I I I I‘41 I I I I I I‘‘-‘I 11111111 III-4’*IIlIllI,,III I — I I I I I I I I III M’44 I I I I I ITI II I I I I I III II II I’ 4. 4 I I I I I4 IIIIIITIII4.5I I I I I• II Ii II II II 4. + I p I I P

I I I IIF 4 I —

1111’rx,tx’Ct V IT. • I I III rxX’C... i’I I II’r9.Z>CxX* IIIT.TTITTt’ 14..4

aT I t U IT ‘C V II II 4 4.

1’ n 19 U — V C TI II 4. 4. —

C1ftCflt’I 1I’ •

I II •II

rr.rrTIcV 11.1 IVII III’C* II...,Il

TI?

C.’C1mx.. -1+1.,.’Cd?T’CV HII• I I , —

F.4T4V4X*4 III — V

flXTXx4 T •I I I• I IT

II?11111

55 9 45 IT “IF I I

n *S:FOITT.. F-V V III’V It I. 12 :.•flTdlIVH

19k’ ST IT 14 V ‘CIII 111

CT t!F9Tr’C .1111:I ‘I 11 19 W v II II II I’

iT 11111111kid, 19 Usa V II II —WXxi’I 131 ‘4.4, I• I XX ‘C I £II4a4•II II • V I I I II IV II II I; II V II TI 4 4 + 4

II II I, F’ II II II • 4 • 4

II Ii II 1 4 4 4 4 4 4

114? ‘.4II’.p4’

• 4 444 +44 H III+ 41’

4+

4 4’ —4 II ‘I lIP Il44+44 4 + • II II II IT II II 4. 44. 4 4 4 II 11 II I’ II II II II II 4+ + 411 II II TI II V I: ‘I II 1 II II• 4 IT 1 II II II II I I’ll Ii II II II111111 TI 111111111 III,, TI IIII TI II II II II II II II II II II II II

1 II II II II TI II II II • +TI II II 111111 II 4 4 4 4 4‘I II II TI II II 4 I I P 4‘I II II TI 4 4 4 I I I I III II II II I I III ‘I II 4 I I‘‘‘+1H4I

II

I..—.II..VI I• I——.4

444.4

44.4.

II,.1114II IIIII IIII IIIII

11111111

I I

II 4 + I III II + I III II 4 I I• 4. I

III..III...

I I +IIX,!TII 1141114

Ix 5-11:4 I Xl CX I’

• V. C 2- V 1 ‘S I’ fl UIT I’ I’ H T: 19 fl 23

IT fl 5 1:2 1, FT N‘ x. V “ 2’ IT (1 4-* nu V 3< r ft 2,:3< J 1119 VIII III X 9: 1; U‘I V V t IL• II C V I-I• IT 11T 2• II l i• ClII II 3< V (2 U• II I 9!

I I•4.4•4444

IIHIIII

4.4.

+444

443

V.

V

V

V

Page 71: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I..114..lll+

.01144+111+4,

.1Itt+ttII4IIIIIIII

II..IIIIII.IiIISI..iii4...i

II.liii*XX>.4

I.’$liIb.X>.XiC.ItslI.,*>.xx)4x.

tiltsI:0*144

Ill..I’IIIIIi.•l.III44IIIi044SI444XXI4

II—tI;I]I•I404I40)’XXII

ItiIIi•4IIXX.40

II*liii4•xc)CSI4IIXXXIC

1.4111flXXXX’4IXXXXII

IIttilXX$>.X*>.XXX)<XC

I‘++IXxXX>.>.cX>xXXUXX‘4+4411Ixxtx>.<>.XXxXtill

4+11.i.tt2JQ’.XXXXXXX401111II4•$IITaX>:XXXX0*111*+

IiIII>:ar.1a•iXXX>CI•4IIt4*

II.XXow,c:..vltXxX.*.lI.+.I..x34.1.L>OlTtXXX4..Ill.III**XQfl1tOfliXX.1bllliti11

ill.XS:.:‘‘c:c’c#.LAX•441111+IjIIllI04XXIIIIlit,

IIIIIiIIX4ci>:Cli:>.)cII4IIIi++t

lllllIlII:IxJk.l.CI)y4...lIlI,l..+

IIIill’’IIIIdxi2.:L14X>.i411111liii.+

.iio++•SXZ,LL:t3jXX•S•IllIII!IIIliii

,Ipt.,:I4>.&JJIXXX4*01101111111111’

liltIIIIIIX>.>>.XX•III;iplltII,,;’,

Ill•‘TtIIO)X1XX..taIlI1li.tt.tlIli

*4IiIIt÷tii£>.>X>:t44IIII4.4P4—44

44,111II.pIiliiX*I,Iil.tII,+

114444IIlit,Ii11*5XX*ICIll1it1+lie’

IIII4444iiIIIiIiIIII‘Iiiii+iiIiIIIi

1+IIISII0iiIIIIIIII*tI4I**.IIIIIiIIIIIiIIIIII

IiiiIII**IiIi•+•IIiill,.iiiIIIFIIII.•x+4III

1+,11141*IIIIT++IIIIIllIiIiIIiIl.XSLFFDXAII4

II44*41111+.’—ttstt+tli*,ux0zoiaI.+

*4*lIltt+llI4’44,4,ti,.J::SXnL.+

0IiII++tIIIIIIIIII4ttiiit4’,;P14

Ullll,tIIIlIIIlIIlIl.t.lUhH4Ll*+..IIIlIIII.JlIII.li,cZSXXIlt,tll*111111’IIiiIX.zSXIIl

1111111IItil.X2PD.4Ill

111111111Is..’IilI.*ii.i;)c*WtII•.,,.Q.S1x.11+

III1IIII1II..Ill+II.,.i)CTX*IIIIII.IiIx3XX.II

1111Ii

III

till•taIItt1111XXX>.>.liiiIlFd00.*XXIIIlIl,I1+lliiIIq,IIIIIII,.tIIIItttlIIIlIll,..t+

Iit.+III.OIIIIIII+ttIII*.pII1111111

II.

III111111liii,:IillIlIt,ll1.

11,11111I.Illtil

4X

•0•I44*404I4II4•

IIIiiItiiII

I

IIIII4I+II

I.

••l

IltttII+4II

I+tIII,

1

ii.’

ill,IN

4+1ttIIIttIII

1+1*11+_IiittlIIII4‘IOIIII•IISIII••4I

011IItIo0IIIII•0IIIiII°0

•4IIII••

o*II4I•IIIII+IIIIIIIII+III

iiIIII++IIIIIIIIII4+++IIIiIIII4t+4+I

+•tt++_++4+4+++.++II+tt4.t+IIIII+ttI111111111I’ll111111111.1111.,...tI

I——II.,..

.0

.1

.1

Iti.tlIII

—+0

IiII44

•*II4

44II•4>.XII

;0;*0II+

I.

40

•40404

40454*IIIIIIIiIIIIIIPt

t4+IllIll

44

6c

Page 72: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

C.4

AZ

CC vi—J

iiHI..

I”0flP

1..r.•i..—.j.a.riUrtlo

‘iii111.hiiiI’P2Ui

it1<ri0I.IiP,z• II

PnP)•‘I,‘II

II...—.SI—CDII..’•iIUtO

II.....”_Jc_40•Phi

IIIIII1HCIIIIII’J

pPCDP

IIIINIIUIJIN0’<riIIIIIIIIUhlIllil>4

9 ‘Co

-.‘00—’..Jfl

IItttUpu,lIttt+*iI•a Hiit4-4-.4-IIiItJ.eII’p

II—ri

til—0 II+—I-4-II

fttttttIICOP3COiiIICrtt

IIIIIIiiHiiIII—’‘

IIiiii1triaIIiiIIIIIIIIIrt.0I—I

IpHuhoohlO.DI-litIIiiIIii

fr40IIIIIIII‘IU-

nuuup

IIUIIIIICICIiiCD U‘IlI.s*WII••J••II‘I•..a

•__nCOP2iI.....iiPil.Iji..Ih’Z‘<

QQfl II•I•SShiIItkhtiiCD—I—-’Ii•*IEICJ——EPiiI•*.•HPIII‘t

tC.rIUAX>cxxIiHPiIXAXAii——t<L<

IIXAAAAiic,LIIS”•

il*AAAAii1IXXXAAII,——1IAXXX*uQ UXA*A4Up U4iaDD.ctiI

‘‘

iitoLotDIICDP3<——a

IID-C-Otii<SIiiS-itDiI

°‘PriiICD,tZII.•HF-”

HOnI&OUtZiICDapII.noAso;IIHHhICDCD’iIOS7QQ3.IF—’X Ocaqjih,,.ioaaati

:‘criC UaaoaZ.i“

CD

iia-3ana.i

‘IaaaaaCi\jflfl

‘Iaaa.32IIiIaanaUW

%c-v

IIflOpHiiI•t%lhIP3SjCIit.’iICDZII4-tq3IIII*I0II**.3*UC.)CCIiiii.q.,4hIt’‘1ii

0D UdC.’CcIICD 14W.4.2

ii4143SIMN

IIC4C_C,)SJhIHt1-.3-.J,,ihICi1411114iiCtII4W.34i,IIMN

I’hi1414s1;

Page 73: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

61

IFIt

II II ti4

4 4 II II II 4 +4 III’ 114+ 4I. II II II++,4

+4444+I•4441

+444+1 I 1++,+,,#il+ 1 K+44,4,44 +114 K KIIIIIlIill+.IIlIII ax xmu,c

II II II II II II II II a 44j TFI. Fjs S XxII II 4 * 4 , Y.<j.D Ft FL K . S

.4 . 0 *xkxXTCFtII’K* Ij •

X K K TI C4 5 K U fl * K < K I • II II 4 4 I S IK K E c[. K ‘4 U U K K £ 4 K x X a • ii II 4 -4 I I I

aCPtIUUt”4,1ItIXX 5. 11U41tiE Ft I U 1? * t K K FL IF S K 4 II Fl + + 4.*flU54.4%44KJ:rFj1X4 111114n0’t*tKF.tr* IF’.rrtFtFya I

lfl1 l...lllFI)4IIlI++1 p1114+

..[.IlII+4

I_I 4+!lao xxrpt,I’aLr I I I I

II III’III’ iiii’. •a.iI*xrT-trt 11111

p • + + + I’ ii * x t t ii 1< i I I I I I IIlli.+4.lIiI.X.t.P’l’I.tXl liIpi+iI

4+4+441 • .X3,SFPSTKK. 11,11 I’’A.,+4,Ipp4444lI0SXraF’pjp’XC4Il4&’4.44.41.4.44 IF

It IIIIIlllII40x0ctt14FEi’’ttiUKX4lI..Il4S4++ll4.II II II II II ii 1 Fl 4 0 K K-S :1 -P K S I K I’ II II II II II II II IIIIlIlII,llIlp...xx,<xcr1..aat..l?lIIlIplllIlpIl

1111110 llI,llll..IXXC,CXtE—.Y:UUF4.1IIlIlIIIll0hIIII Iltlllw+4!...*XXXZF*4UZi’tFUt,C4IlIIIllIlll1411111111 44 5 I4w0*4 <xx, r%K.r K I Ill, II •44 I I

pp1iII**54*$I04l4w14lTtU*5K+flfl+44I ..

IIIlll14ISCbI4*4 al..l-lIllKccan*t,COJII+.4l •.•,.DFUFT,IX0llll+ I-.

• * gxxxxx XKW <XI 4 114.4 .4!

1.!

FtVTtjlrXxKxX4.Xxx0’ .5040447 141441 I +444 I.t..,tlr*,CVKKXKK.<04 1111111111111..,, ii • I +

<.wa>UrTxXKKXXI 5111111 4’1.. oil I In. OOWftKXKKK,C<XI It Fill II45 0 I I I I I .

11111

• a,xtJoriK44IxXXT1lI+4’ll+4lIlIIIIIIUtk(Tc.tK4*Ia4llllllI4•.IIIIIIIS.lIUa*ØOFSKOIIIIIIII+ ‘III .0,1111..

bUtux*.lllIll Ill ,a..li...aSFtaFtaKo4llIl.gtcUacaI.IIIlCtC4Ot.,ll+I

taIlnaUnKall 1+11.,.oXCTxIlIlll IHWa’An.S-K*IlllIllI •S,7ala’4 11l.....fl r ‘p t g x 0 4 II II Fl + I I a I I . . a I I I II I I I I I;flT.IItXKXW4llIllI+l allK K K K K K 4 4 II II It 4 4 I I I I I • I I IxXxXXXI*.illlII+++IlIIlll

SKKKKXK!11111l0+44++’IIl IiI 0 • II II II II +44 + + + 5 + I I I• * a I * * 4 0 II II II II 4 + + 4 + 4 + + I p I I I I 0 I

IIIIII.tI..IIIllIIlllI+IllllIlIIl+4I IIII,0..II II II ii ii • • • II II II II II II II II II + I I I

4 4 + II II II II S I I I II II II It II I I 4 4 4 II 4 4 I I+,,,IIptlIll.IIIFIIIII4IEIOIIIIISII I.

.+4.+4lIflhlll4101.IIOIXKIIIIII5.4.4.111111 •xxX:.<I 441+1

.4+L++lIlIIIII*I.Ial*IXK<t0F14IIIIIIIIIIIIWI.*4.II.*4II+I..I.

4 + — 4. 4 II II .1 II II II II II 7 0 b 0 5 1 0 f I I . I S

II II II II It II II ‘I F; II II 4 I 4 1 1 Il + I I . a I

14.444411111111111111111111111111 01111 ‘+11 . ai4.4411.lI+4+++lllIItlllIlIlltt++IIl 511.

II •t4lI+ .444+ +411111111114+ IIIIII II 1143.. II IS. +4444 +4 41111

+4111144 III i+44+’-’I III114411,11 p++s.SsSp III++II,11II4..’4*5111

111111 114 H11111+

Page 74: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

IIIIII.....III’•fl

IIII....aiiII4——•ItIIII

—:IINIIIIIItIIIIIIitLIIItIliIIIII4IiiIIIIrj$IIIIIIIIIIIIIIIIt

LIIIIIII

IIIIIIIIIIIIIIt+-9-9IIIt+++t-9IIIIt•—-9-9IIII4•-9++IIII19Li-9+III9•tIII-9-9t+•IIII•4-9-9IIH•+-9,.U.IIIII.IIItIIIIIIIIIIIIIIIItIIII1IIIII:IIUI’IIItIIIIIIUIIPII‘IItIII:tIIUIIIIIIHIiIIIIItUIIIILIItiII4IIIIIIIIItIIU•jaaIIItaI*a*Ii

IIIIIIIIIaaI-aaIII,IUt*t‘IIt*•0aaItIt*a**EIIII4I*aaI:41a*aItIIIIIIItx>4>4IIII>4xIIItAX)cXIIIIA>CAAIIIWC’III.:>4>4AII>4.*xii4’AA*>4>44!IIA>4.41>4AUaII-‘Ir.tOit:0UII£3T3toIt

I-t.0itIIIILtaLpoIIIIS:30:tIiItI1110£IIit.3ii.tIIII2JL;Twn-It

.3103£.011tidinnanaIln000aH

II”I)0030ItIIt0‘,oaII‘IU0L0UIILaC03aCiIIItILS0300t.IICiaaCIIIICaaPtoUPt5tfl1.42‘CItILa7,-.1iit1z10c..:SIiII:,U4xZII::3CIIti:U!3:4LIPp3;33t:-:‘IIIItS>:SICItIi

PPNtUtIPbfl‘I031*II

IIisUq=pIIP3.4J3..34II

IIUI)II‘IIIii34U.405II

a.0:4tsU1p34II

IIII231NItULI

1:1I-.

I-i

II

—flPIIiZ 3..tLflf—iPS •.—aan

03-aOa 0f,JL.n-‘--4

C-“-JH.

——‘<an ‘p.’•

0PS —4

BrtO.

P-aaIIPSøP

‘<al4tfl“ivPSa—

C-P-IrtH.

14——‘-z

IIOHn‘D’00.

—ito7c_fl

‘0-PS a.—I’r

BM.’.C

—.=U:C-a“dPSPS03

•F,o.at-i.a.

•Q•f-J.Cn<0CPSC——p

Itcap.ann

NP1*

oil

C

FI

F, (M1PSC-C.PSC

It’

0OnIII:tna Q.IJI

PS‘1pn ‘I

oc—a

to It—u

-

11<

asp<onaU:H’f”0

ItiP1Ito

Itor-SF_ICo

I.’3.-.

OI.

SIAIt

It.

4.1

lit

Page 75: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

‘aF’.,.P1dM

tma

Jji•oJ31LjI

-T1ljlTj4X3-xxxxxC

x•*CCII

•IC1II1II*CI’+•t—

4IIIII•tP4I*‘pIIq-4I*itIi—I‘•

•*IIII*liltIIiiiit

IiII—+iiIi*IIIIii+IIPittIlittiIIIi‘1I

IIIIt44.544

CIIIIIIt’I.IxxI*IIIlittIIII.1i)x%*I*Ill.,tttDiLKN•*IIiiIIIiiIi

Xflbr2)KNaoC’U:iitxxxatxx,.13Qg-sU)UN111ibOZ.UQ1:2rJlJ’1tU•I

X)13c’tOii&jj3ioUS

0z413z.i::xnOx.2D-’.:-...ot

t1alr.,:,1;,::,’C.3.zIft.X::.;Zx

iiNnra3:K13aitttI:I,rag,tincnnictir,,.rc.’t.’

i.a.?.Limar.“Ii,.r;C,at—NLiC,’I-LiIaILiISI’ZRIVIiS

UB11ii..311Kiiia:itLU1IlitItn.Jl,i;Onp•s.nz;tiPC4•4‘UPT.S.IlLI.Kri.aI.II4113..5;“1UIshilt.trtttIt

Or,,Dd.-,tt,iSVZflCI,IsC’TISTit‘2arNKII14Pc$1i.‘3)!Ii):4.rInFtitWtIitIt;:,.ZRKr.)Tr;nI!Il>.inaION

onoi1aaUU)i:4itSiKIt31.3S

UP1413oaSxxan1.atNNZnUtT1’2ItI1Li13N13U3K3it.U;;alKs.1cJItLINNNI)K2ULaat

53Nr:1::a.)ct:a.3UC0

rXsillITtItN.5t.‘J

31315sI.9l,fli.i14NI:‘aUNi.YKN

t1411.11.tMN

fl.xucaZnhJUUn-.413r0

xxx14:‘x:4

UNNit:4:c14

HNnC)cC15:-ta.lx

Fa,iUNN1x•IiI.ii.xx.3.4Ntx.IIiiii*xN

C4.....4g.tK4IIIlpPaxliiflfl0pH011.1NII.IITIUCIN1’.1100ST0

p45•XItYUIiIIiIIIIxILit00aFta•III44+UIICNNU,t‘.C’0LaClxx.at,xx3:’.,:aLa:4

><IIItii—4÷tUI‘NJ’Laox0:::44N.IiiIIIIItII?xx1.1-*I•iIiiIltt+tillIxc.(1’uu.,t?%.t13%

IIIi1IIitiiIIIiIIIi.N>411’.11.13’tit.zHNIt

514CCIhxxl’r’rOk:.—N;.1L’t+‘-.1a..,xxxxx3,]n(.vW>,I’Bp.fl1+it,.13xxxxqt2nn’:-.Li;4lIiiIxxaSmcigr15r.1313UI+II2xXIt3’3110HZRTOit.flaI1Itt’exxJ,t.’t.a’1o.nCLfl1,11

I+411C1)43InnxO13N;CLiS’’fllI+,IIICKJ’UZI(SLiLaI.C5121

ItII11*xxTOLaHOI,’1)5I.ttilIIINSOOxiSzx1,’r.,’l’IUnI,ttili,lN3CU*123rs;aCnsi13saItitlIPNipoI,Cit

•—+—I,*N3:;w:I:sZRr:t.l:s4II11+tII53jUK:;tic:pa’n1.P¶SI•5II1IIIHtrataNNFlY13xx.•

O‘tISTI(S.‘>4r.04;1.uara,1i14U::R,.0flU013r.kLiN

‘US’’,5.c2:..z>.nt4,:r,.nn:.I.,znItLaat:p24:—.N.141LjVtt!14P13a:S.1N:4:53<NV.iir.nflit.1.’Oh

a.i.s1P133<.’1).1901.i’i;lt.a,.’iaS:fl.ttklh!’.na...zN::fla:n1’LM,.a,:LI.1UlzIli4Lia,%,.vC,I4C’y..5TU131Z.rlJhnLiLl!LiKKn:lnLI303it45Ut:sat1)I4.atC’LiUII1.1.’LiOk31nsaPtcUNtUtSISp13I’IICg.5TUNNa:i.IILiLiSraT3it..1sjtinnCII14IC5,FtUsqIi414Iia;I’I’130$IiEU.5U.;INKr.H.1Ltis.U

nttr5IflltnuI-’:,.’I.rnnnailIIttu;)1t,tnhiwLiIt0PItII0IIitr’a,fl£3.’iiCRrn1:czartn13LaW1*itI5Ut’m

0ItIt,FtJ*510BTICL‘JUVL1Lt:13flBflflIHITLL’ISfl1.IiITIIit.ta.1)Pa&IIU115)

hi.12JU0UU.’tillIiItHU,‘xr.rlImSITUas13N‘a:’,.”Ii30U‘S:‘iiitHZ:.CII4.l4a‘1:4IIUii15I‘4‘HIt1313N4:413I15

ISatxU4TH::ttarN:4,:..

!45.-)N:133’•Vr,H13NNIt:<K•LsdI.ta’NN:4ClfiU

aata4,KN:4p7.pt3C4“1‘P0NNZY

ZR3jj31fiLa13:;N:43:taI¼00NUUl.’flNit14%NC’OXCTIIUULI2fl1.0’.1<UiI13%

Ufl*12FOUUL1T’T’S1LXxcKSVLJ,KX

NObTcI5fl45’Ui’UKISK£4HZRKUN5:2tCU

*t:xtt1H

flN1314

=ITit

1’C,it

I.k121;C

nrSLSM1$a’Ta

I:I3:2UI.UrK1331UiiIII’.

eli

£9

Page 76: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

tLp.—

-t -cAZ

4-;cco

zLfrI‘0

IIiiIIN

4I...aIIoiqI-aZII.1(tci

00‘-0CDIl-I,oi

H-I411,

Cfr1.— W—IUiri 11CD0

Donc’

:-‘:::;? N•1IiU9riaDIIr’z0aN

oIN

IIIIIIIH°I10.ODC.)C_4(V ohillIll03CCa IlIlNIhO

.flHrt IIIIUUId111111111

I-i.fr-kIIIIIII

111111111II

•Iltt+—11———‘-or?ut,+.+II_jO0+111p0qcnmii.t4...Ii0Iittl.I.,hll1144.4.4+11I.SLnll4.4•tII1%ir%9 II4.‘4+.II—_

=0s.IIt4+•II0.acnII‘lullII1111

——1<IIHIIIIHIIII.SIluhllIllIlIl3DOn IIIIIIIIIIIIII.3n0H

-:6 IIHUJ’IIUII

1111UIIIIIII._.[.

cn

IIIIIIIIi)

II,Iifr1fr-CII•***II——CaII•tiIINDflCi

•.Il’p3CDriD’hl*41eMIlD3Cl)II

IiIIS4110 Ifir)frI

IIC aa•II(VS‘< IIIIIll)’)(XXXIII.Ilx)4.x%’%lIonIl))<>’XEIOP

IlX>’XXXIIC’..iIlX.x)4XlIllX)<>OtIIIriIlX)’XX*lI-t0NIItIl.LZ.JiflIIllaiLL.3Ch%3‘<ci

111.-.ar-1-DiIDIlh1liL-flliZ.31 II13.-1311

•ccri—IltC3DIlPD’ Ilaz.L1,3lll.i3IIISSZIUII

0C iiaJi0’3J1iafr 0.I

IloooallIIaaoonIioj.0<IInp,jaIlzri0iiaC::aII••1CiooI.a*IINpflu(V‘

Il0OflflIIaCDCViiaaaIIci00IonaallCDflci

IIIIfii-kII*b4.iIII00 Wtt*4.blIrip‘4flC Ileb**HllP3OCt hIU.15*ll•o Iz.,3411

..9 IIta**IIOio...j[V cE—.._

lIt&.411IIII0llQ4SIl‘hi

lIwt.aIIru•

p14.lI.4iIIrJ..•1.

X,hI..IINo

IIJ)it:::.,P.OII4t.IIIl.4t4fl2ClIlIIII

Page 77: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

nD)CII2:.CqIIII’’,

A:.4LI+III4II;c12...X4’l44—’,.IIltIiX

:-t4’..’imaJ’x,.III•

311’,4411I€.1’.E0•.L4•

tI’’.+111.•xLuut9.1:c0LAIIIIIIIIiiIIAA4

ANflaatA4•IIIIIIIIIIIiiUnaa22S0VAA*IllIIIIIi..sX*1anSXXX

*atOi:(>’IftIIIiiII*44t:b444t.)5IXAXIII•IIYDTflq4Ittq:4

•tM)IXAAff1•**.xAXIcaaa4abQAXzr.)’XIIAAX*IOXXXZHtILflMt4t0

a..3A)XA4XXXA0tItaA3ItXlix’)4XXXXxXXaaANU3tU**44SLSA4IIIIAX)IAX)1aXXflAlLi*iSA

453xX•Idlir*)I

LOlAI*UlIHhiIIIIXxXtI)XA)eXI.•XXXAXW11111111liii.•IXXAX’Hft.I,41*•4)c)c

IIInUnluauIII,ie4tAXA•..UIIlI.’IIIX4IIIIIII444t4IIIIIIIIIIIUII1iiIIHt

•IIIIIII•+IIIIHt•*•I1IIIIIiIIIIIIiiiiII•*

I

tIIIIIIII4IIIII—+4+IIIIII4I•1

+IIH*I411fl+.+.+tiII*I*.***IIlItt+IIII4IIXXXX

IIIf**11111111111‘XXAXXIII•XXX*III111,111CXXXtPIT

IIIIIII•II.1111*;c,:XAXft*.XAXIC.tSIL.DtIIH1•t++.I4ttIIIAAXXXXXAAAAilIl.tVaO

Z*XAtiUHIL1IUtIXXItIEt.tttSLtAOXaOflI*4I,x4qIC.UwflJLjQSXS’iXnOufl

0OLttZXX*111*.XXtI40X*0X0.U0n#OUN(‘aAC‘DI’XXA:sXX4I&tntoa4.•aSaa•4

axXnaXrti3<XxxtXXI0*4k4,tb.4444%•btAIX1LPAXA,.XXttatt•3*44%

4441be0Y.CMAXx..IAin04aa45*,4.atIXext,XtItOn:144.aaaSatt4’raVIAAXXIAtVCa4’4’aattaaaa’t<ULIXXX*tAXloOtsaaottIa4anAMLULXX.X4XXXCalaSa.

tOAP.tAXXXAAXAtVa**Ia*atOoLLXAXXAVX.LrittV’ia’AiJoaflt

4pIXAA‘CAIIaaa£1aattfla’CAXXAAX.CjI1iIi020fIU.CItI0Aflt3aa.Sl:xAkAx1a’lg:O*o%1L.rtU*flSa

•IXXIV1::.VAOO4UOtSVU%aa.•IXXIV4LLOt.AIUUXaa.

;ZIlI,IIf,ti&1t3fl0(i55514A¾45-‘2Z14tXS0r00a’aCr,tI*XflU,.c54’

24AAA&aa0AaaaPaAAATiAa34AYCXXJU4a:,aC.nUOsaoXXUC4•

a‘aiPataa400.03044503443

A4a44C’IsU‘a04A50aa4SU4OaaI’On=Uaa4tS4t4

Xt*taC3*t,.>4MOnfl4’(*ooQoaaLaaaa1>>4’30*ACA0aa0aaUaaSôaaaw4tatA*aXIJian.i00aAC0ta4

z’aS1IL1aAsXC4

xXSa4’..rID.at.IO4.aaaaa#5a4

Stat•tafl3SfL20.1444k

?taataaLaLI.L.VX005444.b43Ot.50I11.Laadata

OXDUZLI0a’OU,Un.*

a3aaa‘S.1,.:SC0.z4’an.aUSUA4aIA-•AALi:LI‘T4’7’000UUaU

at::sa,*0”a:-a.!0060flU44U•4X.3•0#41‘5A‘t00.a4’0*444..A:czSoa..a0fUMOaSdcSka•alAst.qt.TL.O0a6CnataA3

UAq.aXC3fl5QaSttoSSaZZ4taaaa3aaa544

355%t3Staata55at:4SX44aSat443qIttUS

452‘Az

U2

‘AaILaLI5;2aa

ILSI4f40

S’A44

ta.

ii44

4ILla

a3;3%:C2aa:1A2

4445.5‘C44

:12—S%>42:44

4544344432.443:14.aa.aaakattk

•45440.4.4

&544be’

.4k

2U‘A

.44’.’

2t34a444

34124

aa

c9

Page 78: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

“ftgi. r,2

arc, rnun• n p r ,,u fiUt UZIttIT

0L•ftHI’Cl

UU

wflwfltH I’ fl Ii pt!uflflLItUW LI

atItKfl U

Ut U ti F’

14 nH34pa

UtftIi—n

C b

Clp I;fl L LI

HId I’ N U nt 141! ‘39

ft N II Li riI, C it I’ ptt•.”,m

t t 1’.4 ft;ift PIP 5’ ‘4 lfl $ I: Cl 1’ pP P Cl St Ufir g V I: K LI

Cl I:p c* It P lit• LI1 I. Cl 1’ 1:1K I Cl I: :2 II FtP C! k L III! LIU F p •:l: rC I! U K U Cl LiRU Ftfr H Cl I’ i 1 HCl IL Li K:, L2?(n Ii U ‘ IC I 13U H ‘fly It C II1tf ft U 31 14

P It N Cl Nut:, :, C: yZH it U F’ Fl Ci it 5:ft p h F e pF, IC U N Cl HF.ft U tf Cf H 12 1’I: L3 I’ U tIt H I: N Il

V NiLl a i tU Cl flu It l C ‘ UU Cl It 1! 1: n 14 Ft IIIII: V r Ft I: Cl! ittern I: IL L• K ii

fin I: it “ t: ;, n NC LI,: l 1 Cl r r Cl Clflu I: ‘‘ It ;: • I: ‘1 ClI; Ii r 1 N Li LI

gil: It Its’ Un;, ;, NCl it Il :1 1, K !I D fl

fiStft:l (II:’. fl::1; It Cl c,t ‘‘ ;_tys

CII I $1 II 1 II lIZ

r ‘I ClK I’ Cl Ft tilt?: Tin Cl

• C I, It Cl t “p.K II It 1; It Li

14 F. it tI tiflU IC it

MM

NIC M p ftp 9fl1fl12 14Cl ni,U ftc, tr.tirnir U F.t tI II,: Cl Cl Cl LIIpt H ‘t FInC Cl U N lW .1 Ii I! 2, u K Fl y 14 Cl ci flU i nC. i ti

ft 2, Cl Cl N p. it unit tin r, ti

hit r I Cl f lipUft 141 •i 34t ‘I

ft I! Cliii C 14 U Cl It 1 LI .: , fl P N a t

C p ti It I Ii ‘II’ !I U r .3 I. r .t fl W U CltItt;flflKN14IFT,,tWL11.’ Cl

c

RH Ft Cl W 1 KU 11 Cl U.414 ,Il ‘ti F r. I: CII

tI ;i rI:,l fl’t .1 fl K C p :IU.t 1,LtL: ;: a ci t. Fir p

liP :2 U CL’ Hit It r L Ft ii’t IC ‘1> ii fl .3., ISP P LI

aKLI.ClUin!r:::4

a

OP it ‘I P tI H t’L$3 t N N Xli Itt’ ‘IU II i Ci It 14 P It : X::r Z K N U 14:,

F’Hfl UN It C p fi 1’ ‘1’ it C I 2: X ‘&tx Fit.?’

fin IINClQII F ,IUPUCl c02,:K:<nV 1411 ci, e L: I.’ Cli:,. Li:’.., ‘j’,! K

r :10 I K C l P F! II , Il C . It X KZ. 2::ltItU!%.KHCiILMtISLitrKl * I$1N

It P ‘1K Mr fl!C it N 14 It is T -ci . . CI; tI It i — Pr t, LI Cl H?: N U it I 4 t C K

,$lqr.iH-’ysrr1ci ,x,-1,—u

)C’.Ttc’’lItfl

;r.’t?I,li,frr’’,st.

U Pit II t 41 It K I’ r ‘It r 4 ‘L K F ‘tj t UK it Cl £ reU,,r.’t: 3ytApS2n jrTan:;:.t5ws::::tN,tz

ii Id N ii t ClX Nfl “ TI. d U N It Cl K N Si

p1:1 21 p:tKt £ ‘ill U K flu :i’: F. itt:C. fill $1 :; ,c,t:: U t t <U U It It ?‘l I’ U L’n

Li K>; 2t ;.t 14*0 Kr S x K < U Xl C n U Li

K X . CII r its it * x :< It U K I: n p A Cl14 N K ‘it Z T a) tm it -4 Cl K Cl U : N1214 aKxK*XKXXi.XxUiUflM*CoiNt’ xx.,k,<it.. Il*4ClXXj.LOZI

I XYII II I

OCTP 11 U

4 IItrapI: 1

2114 Or1:54 V ClZ Cl H P5a Cl ly P

II 14 14 P•!‘H d I’Cl F• 14 U

a1 2t IS

C Cl LI PLI P 34 11U i !. ClKr:;

nflUI. P 4’II r ii I,H it Xi Cft fl 11 IIK ft N NIt p N £

‘IIt

I t*x 4 2 2 Cc * C 44 II

K Zn IT it K I Xl I I I ‘I ii II II II II iittiP.ua)C.KClx*xs .1211111+41 IIroflnCTt* xXxXP II 11111+.,

F:xCWts(1.TTJ1JXxX4 24 4III.+l p

Xfl14flOtin.NtZNXXt 411111141

tflC14CKiiITXxl i’ll” U I14.11,1+4

x:Nn:-,xntixtt.TpKxK’:J .WiII1 +Clx 14 It COi ,<X K it K • I • II

it ut a ti or is xx .t K It XXI

21 2 Cl :t N. Cl K IC P 0 5 U I K K K x ‘4 1< K x U It

2: Cl t: 5: Cl N K C U e I itt K K it K ‘<lIt is it:2 N Cl U It (IN is 1. 1st X K X -: it t Ti

3< 2:5:,:,. it .i it I a 1 1 K K it x 3, It 1 iiK F a 01 a 2 1 1 3 1’ t’ I I P it 0

NNKWUCT’I1t’tlitt-r’iiWO*nICO r.i acriilSr ITO 3W itOK

0 it V 1 U UI LIlt, a p r pp

zi,Oni.Ztt CI1un:CrLIUF :5

F: N K 6 1 K Cl:: K rid :4 t t

nfl Cl,-:’: II It “K U it .1 UP IIp.,. 4 1 r p(fl HI’)? al-I Jilt

I, c’ ‘I Cl ‘a U III; it n Pt 1411I)

fl ii U P1 C U

67

U VU 34it II 1 V p

Cl K 111< H,:K K ?. 2 2 3

F;P7.

Page 79: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

69

p

I ‘C

a ‘C U

t a. ‘C * a w

.tratZTUe ICt 0 IC

qrT’TUDU t.XC U El

nIC TElCt*I+4

III..

u2arxICxIC-.CICIC., • ,.lz.,r2• ‘Gill

a..onl

a a.t....,..,...xtn:;atAx,,ll p

xli liii’ ii.+iiKxTU,.E4 on

•i,,,,i,..ii,i.’tatrA.ICuhi p

*11 ii i+,4..liICnt’!flaYKl a

IC. ,.HI,.Si-4.lC*SZfl’Cniil

ii sq ii IC Ct:1.4

P i •iP Ill IC II II II a 4, • IX d axx’ it II 4

p 4 1 p 4 4 P 4 Ii II 1 ii 4 4 4 II P p )CP t K 1 :1

i..n •ilflCliII4

I 41ps*ph.pplIlEI,IIIll4##IILIIIIK

p x ..nII’iii.4Iil..-++,411.

4’4141 111114411 44544 ‘lx

F

•XX ICXX.CICICI $4 111114‘I •.Ilx r

I WICICICICICICIC )<x F Cl “Jill P 444s I 4II

xxxxxxICxxxxx C 141111JI’ III, “II + I I I ‘I

xxICxxxxxxxIC’C •l4s(.•Pt” I; I I IllICIt

‘CxxxxxxxICXxxl KS •4 * PIP I P

IC XXXXICICICICICYX’C. I •44 ,xxICz II,,

xxx%a1zxICxxxxx,xICxxneICXIxxraIC

xxaElra-aztaICx*XXXICXICICICYICIC)Crtx

xxx‘CX XZEl’1, Ia’ta z:txx’Cxx’Cx ICICIC xxx x ICtrta

x x IC 1 Z I I i t Cr T IC ‘C g xx x IC IC IC IC IC IC IC IC IC t ‘C t

xxx trlntttcrn-VDXICICICXICICXIC (XX’ ICXElZICX

xICx.r,tsatatX?.,3a-,tx.ICICZICICICxx ICICXXXXICICx I

IC IC IC r t ‘Ci; a’ a a e t 1 7 1 1 1 IC IC ‘4 xx ‘C IC ‘C j >. xx x j I

xxxzrattrlcttta,ta1wEr21ZxIC2 ,JptcpXxXICW III

xxa’ .TDS’tTT-ia’ ILl rti2t ‘C-It TarT r3Y’CIC*K Ii Jl;J

xX$a)2El(lZrIflttrZ1t1rJI1TTttI’CICXCIIUJItIl

ICxrtTZT1tTZOitCfltI’JElart 1 ‘C ilt<4 11P4

x a P L tr ‘r I a, a a c ‘C: r I 1 r ax a t j) IC I p II 1 +

xx1TJJ,rCtaaaacAJanLttr1fletaaU1’X’44HIIi

at IP’oaaa w, ‘Cal’

IC IC IC ICS ,‘ -r t a a a a a a’ ‘‘I ‘C ‘C V fl 1XI (I Cd ‘ fl C ‘CI IC ‘C

)CXICXE TITTICCICIE a at VIP tOO I’XtC

x4ICxa’,flTttWaaflflflaLL’CD1’7,t.OO’CZ2’t?4SIt

• . XXICICC-fiI7: v it. jEPD I ;‘ itt rts a at a 1st-ita

..‘CscICx.L,,ttiraiIra’rt.tcI-ts’Crala’.Uvia’$cP

•.,,xxxxICatrrrctJ)7I3trSrrIrsn-ZrT’vWII

Kl IC XXXXXXxICxVXXIC> vXjrItTa’Ttt ttt

,,.,xICxICxxxxx4xICxxxxxrtxzT.r.rsLEn

• • C KICIC C’CICxXICXXXXxxICX<tT C tiltICIC

• IC K K IC IC IC IC IC IC )C IC IC K IC IC I ‘C IC IC X IC L 7 -r t x x IC IC

ICXXKXXXICKXXICKICXXP S IC’(xg,:xxq’Xxx’Cx

ICxxxxx XXgKICICX’C It I Id IC ICICICICICICIC <xxx

XXICZ’CICXICICXICIC pa •4 I • • I ICICIC ICICICICIC IC’ IC

• S xCX I p. xxxs * . I •tIa4 ‘xxx, * I 4,

• IllS•4S• PS ‘Ct III* I P

• I K K I I P I 1 •4 I C I I 4 4 IlPIPS I I I p I I ii *

• 4 I I 4 I I K S • • P • * P 4 5 4 4 1 4 I 4 * 4 5 p I I 4 I) ‘I

• 4 IC •Sti*i)4*p4n*lIplJ

4 44 4 4 •..‘04,’54’ 4

II 1

• K P I p I 1 4 4 I I K K K PIll 15114*11 p I P II

In •P,KpIdI.’.il*44pa

.i.

.KKP

I

I4’

IK

4IPIPp4•1t4* 1141114 (4101$

III,P.KK P

K

••

K P*ISIIISIIP.KPl.KPfl$I44111

I

I4 K I K 45411

S

Page 80: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

CC.4I.—

OQ

C.t’3[.3

I,N

4.NIU

I,•4-

•-Ii..—-.Uc_.?•

IILfl41Nil)li’O1’CD..H3

fl.iiIiIIIIIUt<‘..

IIIIIKI

—UIIlI,lI0?CD

•nIII,iii3-4.iIltjIIII.CDZ,iIIIIIU1

.11IIIIU_I_•CD

—IIIIIIIiIniiIIIIIIF--’>0ii4—

•UII‘III•HZ’it,t.ttlIN0—‘HIDiIttt-.elIt’‘_a’.ciiiIt_.tII’40

••‘“‘PH

,It+t.til_Ufl ii+t,.tlI•l..I

II•1-7tII‘III’UI

a:?1IiIiIIIII’)r7

—IIIIIIiIIii••—z_:1UiiiiIIU,IN0m‘11101111k,!lijC)fl

IibII0HUU—.40NI1111111U,•CD1.7

liii11111110’144r-’BIII’Ill4,.IIfl0jililUN?lII0.WHII’II•I••III(.

IIt4•N.II0CCDIIl*N2*Ill.-..I

•:IMU’< Isau’sIllu’

a.•I••rtCDCD.....‘ai

IIIiCD0’00

UN,C)I,CII*XA*AUI—’(fl0IIXXAXANC•

IIXAAAX1I’UCDCDbXX).AXiIO’CI•1IIAA

••AAII.—

IIfl‘<iIx*A4XiI•Ci.xANAIIP0iIAXXflIIoPiIIXAAXII•—_0<

IiIICD-a iiUZ:00II,iDtflOOI?CDCDrl

II0SIDLIILZ.JIID::bUIIQ0

•CD.,KILL-iLLU-4—lI&0t0U

-L<It

nottocu-opH.IILHODDIII0300-tI,ZLDZOICD0U‘I;fliIaaaaflflfl1‘

UflnaUAII,QicnoaIIU.IC0.iqaaalI-JOCDHoCa01o-_

IIiiaaaI?•0nN

CD0IiaoaoQU—0

F—’aCDXC) Ii1

IIaCDHi,5::37II04HCD

IIao9U,.*£IiItCD.

11:1:4£JOCDU?ctJ%,iUN

-_CD

BCDCDUHNiHC?‘INUUflaHCDH

—CD-0U1430I0

441‘o:i’I-a•4C4O’I4

IIN1S30—4•C) NN44fl’I4FJ

iiUC?0CD

Page 81: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

IIiiIIII•IiIIiiIIaI

Illl111.1111iiliiiiiI’*iiiiI.iiI:IiiiiiiiiiiI:.*

liiiiiIitIiIiI’IiiiIii..*aiiiiiiiiiiiiiiiiiiI.aC

•aaII1iiIIII:I’IIIk0

*01*•NNNN)’NN*N•0010

X*XN).)CX>NX*NNI0II*

X)’NA>*>XXokNXXItI.

XXX.”LIS1.31NxXXXNX•I00

XXXI1.Z1I;3NwXXXXXX•01NNX11-r1333.3NNXX>NN.NII

XXX21Ctl?1ci22.cflXNXXX>0XNXT2trn3J3INSXXXXNNXX3,3.t11L.A03331*NNNNNNXNN.U2t.’1LtI311>.XX*YXXXXUNOOtiCUDIJ3X,AXN*ZNXNXNNN1P01S.NAAXXNNNNYNN.t’nttJI7)‘*NXYx*X.XXN

KSw:‘tNA32NNN>NXXXANYN>NOI*0aaa’*1*j•

LeS.tfl.1aIJ>.NANXNNXXII•I*•Ia

£A0.Sic’caS.13S.N>1NNNIII00*IIIiIIII:-:I:-x(‘A‘43.3j3QNYN’Iliii’1111111111tc.:4N7,..,:XCto3J1DNXIilltillIIIIll

twnIx,&:1:cncaQIN00IL*144++40IlIIIIIANnWt:ht..3XX0III,4+t44t4IIitIiItasz,LIlr3I;2..1.N,L>XCIIII.—ill.t0+IIiiIItj.2a.flhl,1r2.bfl1X*lIUt4lllil+4illllll

IIIitqttIllIA0.0.x;Jl:flrrr,x’toil,,+IIIIItt,,+illNJSAU);I:..iL.:.L;.nLOilIIIIII,,+4tit

>ipz.z;,0..:.rr:nN.IIIIIItt4+4+4+

XXLflz,;t::nt;:SiXil,Iijill+4+++t+tW>.3l.’N..1flpij;yti.I11111+44t+ttt,:LJ’4o:c:::.;c1No)t111111+44+4444+

01NL0A1XAIXI1,1IIIIItt++tt4++

I,.XXILV..flO.UX,‘+4Il£lilt+.*.-t,+4U•.xNila.IZN,,+IIt•l144+4+4+47+II.*INXTILX>U.1110.01Itttlltt++’-+Ii•000(ANANJIIII1IGOOIl++tll+.+4t1•**0*4XXLS.>II+III00III+1111+.4+I**I**4>J113’tII+IIIIII+4+lIlt,+I1**44Il’uANNIIUtIIIII+tIiot+i

IIIoa,*oIll.111144IIIIIiil+t4III1111,4t**XXXlitIII+•Il111111Ii+++

oitiiitIIIiN33a2*iiIIIt4IIIIIIIIII4llo.IIllIln,N.al.IX&rIiI,llIliIltllIIlI•*‘UIIIIIIiNS.t’NN•4III+IiII0*4IIIIIII’lilt.•x3wrnc.TNllttt,111104*0UI

IIlIll.,.xlrrr:liPS.0llllllll*O*•0*‘IIIiIt,NrL’4eX*,.I*I*

tlIllIl.lN1rSinINtXXN0

*4111111eXit.,.i5’4r3£u.XNNNXX*411ItIIUtl1,ILLOIA>.flrIJJ3.JJXNO**

lilt?IIIto*13SitPArn.tu2)ai1crNKilltIll•X1aOrrANAUNORNAnixIilllIoaNitZnzUrnDNUAXSZflfl*0Ix1Cr.03L)LA3UNZnNA•*NIA3‘4’40’10.Nc-UNA

•.xkrLnI;X;aca••Xain0.cnrcDAAoat:”;:-x•.xcrInnnp>r:;A8

I*1*•NXZISI12t_X&3XX

0*i.0*10*

0100*LrIaatJA”NNNanann

‘00*Qi3.IcIIcciIS.LANXurNUflUAa

&aza,cii>nX’nnUiaS.i2SJ,IUNZaAJ.DL

3)NNT:bIJ-SI.tXiIa.r-a23)xx

XXX

a,CNN*I

S.IXXI**

aII

a

0***114***0II••*pI.II100•..•a•it.

N0

3c>

N0I*b**pU1***Oh*

•*I

I.

II,,*0*000aI•oak.

I.SiAIXNN*X

NYXXXNKXXX)N*XXXXXXX

XNNXXN*XXXXYNXXXXXXX444I

“U,;

3)1*4XW3aNNa

•XX*oNII•N

IIIiVN++4II00

44+7IIII0

4444IIIIIII4t4IIII*

IIII++++IIItIIII+7+IIII

I++444II+4++4II

+4.IIIIt4tIIII

4+IIII•++II

44II44II++II+4II+tIII+II

0IIII*II,0*1+014

Itl4I.It‘4

+IIIIIi

IIII0‘I*0

jil

**1

0*0*I..’I,

*lxxx*

•lxxx00*00

TL

Page 82: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Lfl

£2Sr

iiLI

tt

itII—

ItII

IiItIIIIIitIIIIiiIiIIIIIitiiIIIIItIIii.IIII

IIIIItitIIIII

IIIIIItUIIIIIiiIIIIIIt4—4II

Ii•*44II

II4•P4

Ii4

II44L..4tPit

Ii44ii•4.•+’

Ii44444IIIilt,t——IpIIIIIiIIIIIIIIIIitIfIi1IIIIIIitiiLiIIII1IIitiiiiitititiiiiLIIiPiiitIt

iiUitiiiioIIILiiLIiiItititIiIiIIUiiIIIIiiiiIILIaIIitIi••4••LIIIIaiiit*I41IIiiia*I•*ititIIfltIIiIL•IaI*IIIiILiiIIIIaiiIiIIIIIiiitLiILXX:4‘4itILXX‘4)4UIi:4‘44‘4IIII>4:4:4AIIIiXX:4>4itUXXX’4II

IIXX.A(‘4II

IiAX).X*LI

IIX>4:4‘4IIIIiiitit.01Itii.0.0.01.0Iiii.0.0:.0.0iiii.0.0.0t4jIiii1.0.111itii0.1.t0IIit.0.0.010ii

itLU.0£ILUIIIi.0.021.0ii

ILIIaaauait

iiaaaaUit

itflCC0=LI

iiaaaaait

IiaaaxitIICI0aUaiiaaaaaitIiaaI,LI0U

iiaaaaILit:J?1JJitIi,5::.:ctt

.09w.tiia21ititZitii:.‘.12‘iSii

S2;q:2UZ:4flitU,.I2:U)ii

ii

Iia02ULIttiiauUCI’Ii

iii:1CIIiiII‘4I:1LIit

itbLI-itttit

itULIUIIUit

itUULILILIit

iiU—It‘I

ItuaUP4it

it

NP

I109P)

rtftOP

1,fl0

01frh

‘<nfl

lilar:,i-i01

o-cnoq

flmI-C.U0

Io:tcn-

it’.,I-(J0’HHn

0

oui9—I

$1NN)9

o01=

p00

coca>10•0

tiMu-cc1an

Q<rl11.0fr-0) Ii

nit—,CD90

no11C

i4019

COO)‘ill1It

%__

*1

—:Ni0’‘-.H9

CD’<CD°t’I

, ON110CIon,C

‘<Oz

9at

CLItrio

‘10C1

iNri-i

9i-In

NIPam

Ut0)

‘-.It0n

—o431r1—I_rIO

Patip0)U..)Ii

‘<fr-SO(20i

Hit.>P1

I,2it

•1

ci

is

4tj

Hat

N)t.3

Page 83: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

4I,.‘I,

Ill,Ill’‘IIIll•li

2211

IIU.‘‘fill

•Iliii’’

2C•Iliii

24’..—ttt4•44

*,t.II

t*4t

‘liii,(1+11+II,t4II

iiP4IIIi

a.

cxXI

Xl‘4*2a.*II2*

3*t

*3

‘a,

laxa*>(

IIa

44’ti

•t...4

———.4—.,

+

+

t42...t.+

•+j.4*,4

‘44’’*t

.4+44+++

—4•+4.4++*

444—4447

‘‘4++4*4

4444+44,44+

t

4

44.tt•t+

LIt*t4+—4

plI,illIt+t44

Nili;1jt*++

IIIII;IIII‘•‘+

iiiiiiIIIiII4•4

IIiIIlIiiillII’t

1IIL1IIIIII1H—t

Ii‘PIIIIIiIiIi

iiIIiiIIIIIi4

IIILIiiiiiILIipII

IIILiiHitIIIiIIii

IIIIIIIIIIIi

iiitIiIIIIiiIiii

HiiiiI’iiIi

IIppppIIIIIIIiII

IIIINIiIiIiIiIiII

iiItIIPPIiIIIIIIii

IIiiIIIIiiiiiiiiii

iiIiiiII2taIiIi

IIppii‘2*..II

IIiiii0004Ii

•PPIISa2IS2

—iiii*2*I*

•IiII042IS0

t4IIaaattS

I‘2iiP2SSS

i..ppii4*•a

tPPII

I34’tIP*

IIItIiII44*t*

•Ip+‘p*SI<a0

IP‘tip*AXXX

I°‘ItIII

tIII42*X>cX

p411..”1

••iiii115••.IP,.•*IS*4<

It%XXX)C

•.XXXXXX

a•xx4<XXX4<

XcX4<

•IS2Xx:).Xxz

Iii*x,cxrt33

aII2*4<4<

•**4xXR21fltC

XXxXItQ,Z.t*C

XX4<IaZflflflu

SO4n222

SR:csiZ2

33Z1J

.4

•——IiII•4•

4*4+.

‘‘.4,t+t+4

4+44+

t4t—+

,t*t—‘4+

.44+

‘44+++44+4t44+

.4+4.4

4.

+44+

+4

4

**++++44+

4

4

4*4t

1’

tt

4

4+4444+++44++44*4t

4*4

U

K

4,

••4+4—+4+4+4

t+4+t+4t

—t4,.,..,

t*t.ttq.

4

+4,,,.,,

4q’t+t4’.

4*44,444

4tt+44+t

4*4+’’’+

t4+44*t

*‘+4*44+

*4’44.,tl

+t+4.tt+

44’+4

+4*t+4t

tt4*,4—4

44444t+t

4t.tq4.

4+t+44t+

—t*•t4.t

•44+4*—

44t—t+t

•ttt.tp

*tt4t4*

*4+tt—,

IiII+*‘+•‘

Iiiiii+t

iiI;PppPH•4

pIIIiPPIII’

ppppiiIiHIiIi

II‘pIiIiHIiII

IiIiIiPPII

PPPPiiIIIIIiIi

IiPpppIiIi

IiiiPpIi‘p

ppppiiIIIpIi

*iPPiIiiPppH

•2HPPH

•..*PP40t

4*5.42

•a050

•2**at

I*

•4,

4

44tqt

+4+4,44,+4’4

4—,.

4+4.--—4*44

444’

4t*44•4

—++4.4+,44++

4—4.tttt.

ttt+•4’4++4+

444.0,,4+4.

t.*+,4+q444t

—,.•4ILI’iiPIiIt+

•4.pIiPpppiiIiPPILPP

•,‘PPILIiPPiiPPP

41’’IiIiI,PpIIPpIIPppp

•4.4•PPPIIPPiiIiP.

I+a•PPpPP4PpPIP:I:P.Pp

+,4ILPLiI’IIItIIILPP

I——‘4PPPPPpIiI:P’Pp

ttPP44PPIIitiiPPPpII

PPP1ItppIipp‘p

‘.11111,PPPLLUPIPII

PPP4IIP.pp.14PPPPPPPP

PIIPPPpitIIPPIiPPIL

PiNIIPPPPP411IIPPPillII

liiiIIPPIPPPPPPLILIPILIIII

4PP*I*PPIiPp:1PPPPU41

IIiiaaIIPPPPPPPIi(PPP

PPII**IIILPPPPliiiNIIII

ppIIIIiPpIIpppppPPPIi

PILIIIPPPPNPPPPIIPPIIIL

P1(PPP(pIIIIPPPINIiIi

IiP4IiIIPP14PPPIllIIII

PPiiSPIippPPIiP,+

•0*IIIPPIiP1’.,’’

*Sa•PPIIppII•III

**I4IIPP4+IIII

•ISHIIPtIIIPI

•5.1111*4IIIIII

••11PpPPIIPII

*111111—IIIPIII

PIP•+t,IIIIII

PPI.4‘4—IIIIPI

PPIL—IIPIPP

Pit,1,’t+I*+44

LiII44+4*+t44•+

•pPtPpPPpPpIippPPIIpII

*•.taa*pppppP‘p*•IPIIa

xx.a.a’aapi..

,aXX)CSsO(1*aaA

piPiXX<*XX*4*5511

+4+11XXXXX...xpafra

1+4+11XXXX’4X***ta

III+.pp*XXx2lap

SAl’AX>.Ax:’SII

•2.IAx;.xIIS

,:x?c,c44<

XxX

4<X

XX

EL

Page 84: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

LA

tCC]rLA

TC

C’ccC’

H‘pp

lip

Ii•’—’.II‘pII

I—pp

IIUjIIIIIiitIIIIIiiIiIIIIIIIIIIIIIIII(aIIi

IIIIIiIIIIIIIIIIIIII

IIIIIIIIIIttt4IIIIt4.44PIiHt4.pI.4IIIipp+4.4IIp4.I_ttII

II4t44IIIIttp.4.11lit•t.—llo+++4pU

IIHIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIHIIIIIIIIIIIIIiIIIIIIIIIIII?IIIIII,IiIIIIiiIIClIIIIIIIIIIIIIIIIIIHIIIIIIIIIIiiIIIIIIIIIIIIIIIIIII4.IIIIIaII•*iiIIII•I•IIII2IIIII

IIIL]IIIi’II

III4.4.I*IIIII*SI*IIIIIIIIIII

UXXX)(XIIII‘C(X)C)CII

1>X4)UXIIIIXCICII‘IcIC‘CKIICIKKA‘CKIIIiK‘C*XXIIII‘C‘CAICICIIIIC*‘CKKIIIIH

II3LIt0IIII.01CZ0iiIII-ttIBHII0‘4.0£IIII2LI1J‘Iii.tamr:0IIIICiiLC0IIII330:0.0IIIIHIIUISU0aHII0flaaIIIIa00ciaHIIiU3asIIIICUaaIIIIaaaaaaIIaUaiaIIIIaUaaIIIIa5aaaiiIIII134A3IIiii22‘4IIii:,4:9,a:caII314:3:1IIIIs—i:4

IIIIcItiiIi3:17::1II333J3IIIIICItaBaaIIIIa1,fl2IIItfl3Uj‘II

II2qIaII3d22II

IIU21‘13II.130-$2II04rIJ(IIi

I’Ra.1aUIIIIU

II

WIDo.73

DC’—Li

OZD’clflEnIttoft

—..CD-0CD

I—‘<nfl

I.riD

-(0

paC04CDIt

WI—Jrt

‘.oItwII[1

30o3.

—‘-4z

IrQ’-Jrt

a

.4‘.4J

>In0fl.LAcoftH-.0rl

flH.fl0<

i,a’CIS-.-0

—cno_

r

z000‘-0,It

roa

-lCD-Cip

.5

“<SCD

zn000

nn

•J34.f0*1

.‘-I0

I—’CDn

Nrapa

pjt—fl

-

—CCDS

•100.4

‘0CDo1‘a•n0’a’c.a

11

‘1

00

to

I)

-j

Page 85: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I!IiIIIIIIIIIIIIIiIIIIIiIIII

IIIIIIIIIIitIiIIIi•IIIIiIIIINIiII*III:IIirliii’’11,1111Ii1:110IiIII

IIIiNIiIIIIIIIiI,IiIIIIIIIiIIIiII‘33

IiIINNIiiiIiIiIIIIIIIiIII’IIIIIIHItII34IIIiIIIiNI•NIIHiiIINiiN3IIIIIiNIiIIIIIiiI:IiIiNNIIIIIiiiIa3*3IIN43III

•lilillillIlli1.2...•3IiIiIIIIIiIt33344*33IIIIIIIIItIiIi*

iiI:IiIi11.33432113*311IIIiIIItIIItIIIaI*24IiI,IiiilIliii3.l.*3•..Il.I,pIlr:I,ll.l...*34

IIIIPIIIiIIIiIi*I.4*LtIIIUIIIIIiIIII44*4.3IIHIIIIIIII43IiiiiIII43**.

3IIIIUiiiiiiNIIIIiiII3*32433IIHIiIIIIN42PIINII3IIIi033II*4IiIIIIIIIIN33I133*3*441•0IIIIIiIiK344I

iiIiHIiItit330aI3•II33’U4K4*IIIIiiIIIIsK4I•I4In34**3X2<*XX‘311111111liii’’I’lliii,’.*.334a34*33*xxXxXNiliNNNHOUuNINNII4423*33433XXXXXXIIIIIIHIIIiIiIIIiIIIIIIHNIi*•43231I43XXXXX2<

.XXX)KXHIIIINItItitNiiIIiiIIiiIiII4**4I*XXXIIIiIIIINItiiIIIiiiiiNIiii.a••***i••II*IIIIIII.NNiiItIiIII’III:I:•I434I*34*IIII43*

11IiIiiI:IIIIHIiIiIIN0C33*C0iiIIIiIIiiIiIIIII,IiIIIINI*IINIIIiIHIiIiIIII

IiItLIHNIIiiIiNI,iiNIItIIiiHiiIiIHiiII11NNIIIIIiIiIIii1IiIK34HNIiiiiiI:III;iiHIiHiiNItItNII44•341•IIIIIIHIiIINNIiItHII

NNIIIIIIIiI**.4.I*I’aI)*W.3IiIIIiIIIIIIIiIiIiNIiItIIIIItII434IKS33333IIiIiNIIIIHIIIiIIIIIiIIIiH4K34>34Ii..•4tC*I*31IiIiNIiIiIiIiIIiiiiN

IIIt43.43I>32NNIIIiIiitIIIIIINIIIINt,IINI*14II444143I44*04IIHNIIiI:I3433

IIIiIII,IINN.I3*KI£-

pIIIs3I4*ItIIitIIIIIiNNIICIHIIIIIIH*444I03•Ii4*4H44I

L*2.33103.34>3>23314*3II11111111NitiiitH*34xXX>3X><>3III*44I*40

IiipflhllttiisuilltttiI*..K..>3XXXXXWXZ’AX*X4333111111NIiiNHi:1314IHI*XXXA>tX>;,.X*XXXXXX2<4*44

1:111:131111HIII*00.*X*>XXxX>3XX*XX*XXXXXXXXItNNNItIiNI1IIXX*XXX,XXXYX*XXXX<AX*XX

IiNIiNNIiIiII*3*33>3*yX*XXXXX>31WIII.XXXX>3XIiIiI:IIIiIi43XXXXXXXXluilti£11asXX>3>3

111111111.112*11,t2<X>3XXXXXXXI33I&l-Ztij>3XXXIiNIiIIHII>3>3*>3>3XX*231.a.1I&S14.3.IX>3>3

111111111)133*.xxXXxXXsX>3a:Iia.2.IxxxNItItIIIsn4>3*y(I-•1.ISs,aiiL3:xXX

HII344*3*4IZXXXQIIIS&.12231XXiiNIINNIi*43433444*43>323231itSIIIii2<NN1111311113*1*11j*IKfl*XxIs,,t;-1X

N11111.11111111*I1111N:Hi:.x23>3IJSIiNiti;1iiIiHNiiINIIHIiHHit23*12.10X001>3HIIIIIIII1INNH1IIINISHHN.il.a)xI’whP>3OCW>331111311111111111411liiIIlIl—SH3I>.)(3Tfltt<O.IaX

UIIIlIIliIlIiiINNIltt,.alii:.23X3122flZCXIIIiP3IiI’III,It3Ittt*..tIII.XXItil:1IIIIIIIIII:i.Htt+NIiii*XX1u22I11111111NItHHN’stNNN*IxXmJIflI’CX3111111‘INUHHittHHN3I>3XI1nnI12<i,IIIItI:UINNWIi1111iiitI4XXII100XXIIll,iNNIIIIl:IIIIUiIil4.>3X(ttS.00fl*XI1N1111IiIII11111111NIi*2XX33tjtxi*’nfl>3

IINilN1311111111*NN3*XXAILIO=CXHiiIIIIIitt4*tIINII2<>3IL1SUNIlNItIiItNt..NUIIX$.itJ,IHX

4IIIIitHNIIHHItI:HItI>3>323jutX0U++IIIIItIIIiIIItIIII:3N**xx1nU

+*SSItitIiIIIiitIIItIIHII:1I>>311NO0*Ut+t4+411NhHIHINIiiNNIHX2<lZtcKt*P>3

SSt•++.IINIIIIIINItIiIII>ZIC’.2<Un>3iiIIIIItIiItiiHIII3•2<XII>3flC2<

+5•tHItIiIIIIIIIINIIII4>3.11oC0S*ttIINItIIiiNItiiI.ii—tIIow*n

IIIiIIIIIiiiNiiiiIIIIKXX‘I1*CX1111HIllHU*0XYLfl*n22

IINItIIiiNa>3S.P>3#.1.luItHUIIUII*.>3>3ItC55>3

nh.12<1102<24IIIIXX>3IX

>3DXX.114*1123*Nt4X21Ch1

22+tiXn2fl024+IXn3th

•loxCX

Page 86: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

S

r,:tWzflI V fl r I: C Str,CPIirr r.t..’

ku_c

I lipIL p; I

• lwh•llflhI11 C b .4 II• U

a,? V r- r.7; p.‘p k S. p: r. U

C0 34 V 2 r

C) C) II&K0P’4&lP

—III. I. r. — ii

‘—1 -—ci

S.) >C) II II

>_i U)Il*tI.ttIl

• Li P0 LiIIsStlI

• P—I U —o

Li Li_C flbSSSkll

-t > CN N

o 0 • II 3’ •-.0 C) ——

Li II,C’tnU

U U • jIrPcCt;l

,-i t-. pS-i WCNC) =

C. U II flit It ii

o • Ipv,U Ia.,

• E Lfl.t N IIrt2L;I

cc.- g0

_C r—U ;.-, U II

5.-i -VLi

C LiC 11VX3.’4X11

$4 Lio ) Li c-a IIXXX’WlI

C— t II

Li c—. IIXXXX,<ii

> ,XXXXu

WE ii

U LJ-__ 1141110

C) Li U4.) U4 NrA

• LiII

• ‘44• -I.’.:”

— c 0 -VLi l-4—-._ 511i’nIIuIl

LiCN,_,

ptpnuniin

Li III dillill

C)).) U) U I—I.‘ p

o $ C) MflIPVIIIII!

0.0) $4&- çnnuic.i;l

> U C) II Vir4 CM>Li- C) C)U C rin II&-.+,4II

r4 C 0) 00

E •r-4 • IP 2 t,+ 4

U) 4-it—I U Cfl

U C) C) r...-.411Ii

po C4_i U

ULiC) c

C ,pI III

C r4 “—I .i I p I I I II

Li cP),->, —

• U .r—IC_i rI . II I I I I I

U ci 0. Il N

u—I 5.-it Li• ow-—

-I

>c._l C) “S...”

‘-E tiC ccII

Li — Li •.

LiOUci o—4-i ::

1U ‘I

U,

CS

tic

Page 87: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

‘1

-;-,---III’,’

•••-.l...-IlIIII.I11l1111111111I_Ill

111111111111114.1+11*

1-IIItIIIIIIIIII•.ItIIIIIII.

IIIIIIIIIIIIII4IItIIIINIIIItI++

I-

•..,.IIlIiltll’llt+•

9--Il+.,4+,4.+t.+’iIIlIIliI+

-II,tIIiillIit.+t,

1,+ttt++flhiUII’t,t+

11111I11I11144t4.t11111111111

•..c,;+iI*Ill:it44t+IIIillIIIIq,+t++,

•I••‘II4III!**IIII+I,IIIIIIIIII+444++•4

II1_l44*K**l4IIlIllIllllilltI*t++t4.

L,,I.,I•iiiiIIpIiii11III

IpI+IllIli**lIIilIIlliIllIIlIlIIlI

IIII++IIiiIIIIIiIIII4iiIIIiIIIIIIII+•+++

pII,,llIHipl,,+*...iIUIIIiliIillIIttt

II11104.4t’UIIINHIII11011

DantIltt,+41+11111,•4.11111

KUZIiIcX4+ti.I*I1114+111111N•**

I44.r4fl*•1yXTfljX4lIt+11114*‘XXtIA

iitt.ilix.11t&it.UttIIII+IIIII4XXXxx

r1.P.IvUOP_Ii.ut;lU‘1+till’,x>.XXX

:1nz2.Ai,13-.r:r:r,o*b2II:I-.’t’HVI..XD4XX

r;iuk.grr.’J,,i-lli*IXxXX411111IIIXX.

III11111.6*

LLiNUiI’M1tqOXIIII.4I.1111*111*

ri-

1111*11E

HI1rtflYitMK;t;•IXn),_.iaiL,3),.3fl*XIl111111*41

IL11!n1IIHiU1JLqhto,;.L:,,IhzMJ,4II11011II

V+tli111111

SI2iiIIX:i-4lU1rIL1n1z+tttt111111

OIl.IIlila1%t;taIHI41rI2C’t+t.tII

-

>1ItI!I,flflPjtrkL*.irt,t.t+tt4‘kI.‘14t)&tIIIIII.:-:.-‘tiIa.2.t*t+III44

ttIifl3P12ClriNIiIIIII4II213121Ii.I)4I’tIIIII44--

IIA.a22K2:r,r04j•IIIIIII•IiAIA*U4ttIIIIIII.

iirtJIIIi&iI,ig-,0fl,—i...t,.Ilfr>.llllilIIl+ttIIhull

p..,-.1—,++.;l•q.,+IIIII4I

rI:;:l:IlN,r.Zr.IIIlI:IIIl41111111111I

r.I5;-L,rdN.l,IIuIIIIIit.,ttI,—IIlllIlIIIII

ri:rr,:-Iprii.....L,i••IIIIIIIIIIII.ll—..tTIll

2LlnI2?_n2*J1xI

*4pHI)tSIS)<xXxAAA4II14+’t+IIIIIIIi

flXIIIliI*XXXXt1t.IilItt..tl.IIIIIII

CAItCr;?_IIIIIiyCMI)X*IIIIII+4IIIII•

XxL,.rrflhlIc,cos,,tIIIlillIIt.ILIIII..

flL.aIir,r.lI.L’un1ucnJ:x.lI111111?.Ii’II

c,:a._Ia.n.:aI2.:ru:*l:.,aAuIlIlIIIt,111111*11li,+111111

xtun,u,2tInUcjrouflI.HxNIllIIll+IIIIhIL

IIlrr,.s:fl.ltLI.nH,*)aXIIhItI+IIIlII

*ttrIbIIi1,.eIHg:nHuIXLx.*.IlIltIIIllII

hI1I.r:I1*4t:Hi..1tA1IliltI

It.H1I;tj.dwI:•iIyIr:Ni1L1Ll.XX4*eH+II

II.

XitrIIuL,I3W112c2tz4tHI1PX

INk::tQr20H.4caU4x.H

tIlLtX*H.XtArj4’%ttILJ’It3

UCtFaCIIII26HS124.La,I.12.HC

r-Hnrn..1,0ke

Ii3jLW.XX.IAXXX.XXI*4IXAXXX

II121—XAxXX’,c*NLII’IIIINII*

•.AXAXA4*11.,,lIIIlI4I**t

>.>:xxx**111111’1111111111Ii1II11

liiiIIIIttt+II4+4

I*liii411111+.’,IIIIt’tII

SI-•ItttIIII+tIII

11111111

il-i.

II1111111+I

liii

.1II

I:-

.

LI

Page 88: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I-’•

0’iiI’II

•IIII

CDIi..-l’I,

CD

H0frfl

II111111IN

0 uIIlI‘UiiIIIIIII

3

IIIINIIIIIIIIIIIII

CtIIIIIIIIIIIiIIIIii•0

Urtu.+t•tftiit•••ii0II++tt,IIIIIICD lI+•_It‘II

S II,t*ttIfri. IIt’Pt11

IlttP’tIICD 4t*I•ttIIH IIII

ii1IIIIIIIIIIIiIIIIiIIIIIIfllIhlIUhIH0UIIIIIIIIIri

i111111111lI10IIIIIIIIIIHIII”II111111n.111111UllIIII—IIHIiIIIIII‘CDUIIIIIt•IIIIII...tellC IIe.‘I•III.,IIII*IIIIIi..’,’.*11IIk7*in

CD :1*ICI•III IIt.t.IIIa II•I1.11‘1 II

II*AAA)clIII)H<)c.4>43II.cAx.*iIDillcxIX>4ItIl>4xxxiI01>414>4)4*1111

II>4>4XACIIlIxC%AxIlfl>4*.AA11iiII

C.Z.LZDIIK.Dt30Dil.

0-a IIS03-tU

CD ll.3CDLZ’IC1 3.7St.0IiS 1.tD.t,VIIC :500£11

NII>CoIl0000n”0-tlIriafloohl——Co0-ilQ.i0ahlc.,.—0CDCOlIYaaoaOhI1Q’H.3i-I

CCIij1Qo,flI••r?H.0lIu0.)aalI:c’CDC il0’.s’iQlIStUDi0- I1Z,iQ3dhl

CHO IIIIII:1.’i.!,rjII

z——C(10— Ll:i,.31lIu

CD(‘CD II4.JflhIN-.iIl‘4Q

143Il?,44j5.l

flWA:i,ICDIICDti-C

—aiia.’4a3——CD0-flSi’14IltflCD

t‘<0- U.JWaMJLI1J4H•C .1N3‘4:1flII•.‘<‘‘(0 IId.I%I1hIfri.1*1,1.111IIoiISb.i,Il

_o IIII

*00——

LE

-rtnaCCDj’c,rtCt

awnjICDfi.4—0<“‘.

z’•CD0HCD

HCHCDCD

U—u>roCD0 ;JI%

j.a>C

pqrj<0CDC0

SnSan

t’3CflH,U‘.

0ou0-CD00”PInI.—‘p.

at4Ca•1

HHa

:3.CD

—-CSO

—I,0-CDCD0-

‘-C30’(20110’Dir

CD0_n

CD a’),

a’.0,

a•

—InCfr

H‘43.

CD—HaIDto-a

-

—.3CD

‘-C S•

‘NNO’

CDDia

Page 89: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

ItIXQ

I•.111*.ItIl(2;oo

Xe.H,IlIttt

XX’II,Il)tl#4OiLxXRS

>XX•11111Iiii1’•XX%>XO4OX)t*1*.*I

,cxxvxXrI.)xxS310Q)flttXXX1*1

Xxxxx)K)tN3ii?%c,%t:nnrL1.x,cXII.•

SCLi3IQXWillIx)XI•••0

nSr.110=A.I))4,)?)0t&X.ttL1IX<)*IaIIt’..

*0%C’CI)ckPVCl—l)1’’OXxi””.E

TIZtX.1

ouCCo0C0,C’I.t4J*XIIiII1IIiIt

WCU*0Pflt*’lQflflOZkX’UCE1A)(tiItIIItt111111

aYxotU.CI!(LLOVXflflItx*l14101*hI

tL_ittDt1)fl4OiSX.llI.”.’

,CJZCIUtIL1VSI1ILIrICItntrxx.ll

st0aX‘Ct11’t13’.1‘PIt13)S‘I‘CIii•

lSI1X’CXXYXXrflJYA)ZL,IXX1.140114

“IxxXX‘CCt‘CCt‘CXC‘CXVCtX‘C‘C•ii+I

:CC3xoSx’CX,X’C.X*x’CXx)<XX’Ctill,I*.1111.1

L&Ct1JIX’CXIItXX’C’CXCtC)tin++IIt•,I14

I*0*IIollilitli

‘CU).’1CtICCIII

*

*.I.11+1IIII.IIIlit

cClwt..)tTCtCtb4IllliI***0*iit

>:rrxooat,t,•liliilICl*.IIii*I

Dx1%C0AxxtJJlts>.•IiIliliiIiiiXIlilt

WtjC._iL,,n,Il,X,lthuIlitlInlil

‘C’CJ)1Li._1Z._XX.IllIhIi4Iu1iliIt0l1hit

‘CXXXXIITCLLZi’C)c,.,lIihliliIlEiu’i’l.*Utl

IIiilit,1‘IhIrII.**lItl•t4Sotl

*ld2lt*I**•tfrlCll,iIik?ttlliitillljlli

.ll,lIihihia.l•,IllIluhili.t,ti,lujijlu,il

ihlihiiliIuihilt..*hlhilLIlhItq.tllhiIlhllitI

iit•titIiIiIIIIIIIiiiIiIIIittaIiItIiIi44I

4++41tIIitIIIIIiIiI,IiII•,v.ttIiIiIi

It,IiIIIIIIitiiItititICtt*’tSl1IitI

IIttliIIltIII,lhllIiiiuiltI

IIiIiIlIltillhIhiIIiIl*t.t,t...ttI

..1,4lhItt,.IIhIlt.,111111

I.’+711*i.httiIiIiT4IIlIi)

...I,.il*..•lIii.taII

•IIl.hilii,11114.1

litIhIlhitII

Ituhih,ilh,.Il

I4IIIIi’IiiithI

It.th,1*OtI

.1.1Itt,•.I**llt

•lI.,bIia.XA.I.iI+IIII*•

oI,.itiI.’’CX.u’+.hII

•I..Iiti..i’CyXXt•iit,.I

t+itiu1Il).X).’Xttthltt,I4

hitill•Ii.)t’CYOX’C*lt+tI

*liii•I•‘CXX**t.11‘Itt

Xr.11..*XX.X>.XXX*I.1,11,I

CtXX‘C>,)’.)CXXXXXhI+

‘C.tIfluttIXX,’CXXXXXAIlllit

3’C*11111111Ihl)c)tAz15X)cIllIIit

r’C.,,tittl.I’CA1172’CY.*iiiI.-

e,.t,qUIXICICCIXX•IlllitI

fltfltXlit•IIIIII>t’II’AtXX*IIlitI

I..ltIVJ’aXJX’C,•Iliittl.

flhlICIit0I.

nre.tn•lt*X’C’S*A,ttlIthitIII

,ilX’CCt’C.t410,11..tIll

•t.*I*itI’iiIiIIiut-Iltttttt

114*111•tiulhtlilliiitt+t

Iitlhiiltlltitlullltlhili

II•ItliIiiiillIliiIIllIIt

IIIIIiiiII11IIIIII

-

IiIiItiiIihiPIi

•I,

IiIIIIIIIIiiIiIiiiIiitIIIi4’+4.t

tttt+++

t•.t

61

Page 90: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

iiII

•‘I

IP•t••*lIII

I.1I’‘III.....IIPp.....IIiiPPPPK

IIpppppIIIPIpI

pIIIIIIIIII(Upp

pPIPPIiIIPIIPIIIIIIpI

pIppIIPPP1II++t+tIt

IIt44tIIIj44t+tIpIP+4Li4tIIIIt•t•4II4++44CIII44+tt1II4+‘4I.II

PPIIIIIIIIIPIIPPiiIIppIIIIIIIIiiIIppPtIIItiiIpPPPLIIIIIIPII0‘1‘ILIPtPIIilii•1IIPPPIIIIII.1IIPIipIIIIPPIPP1tIIIISIIIIIi

IIK•KIIIIIIIIIIIIPP

It

IIIKKIPIII*•KIII

III

IIxAAX)<PPPAICKAPPIIxAKIIIIAAKA.1PPAA.IIIIAAA*IIIIAAKAPPIiAKAKAIIPPAKAS

II00LPPpiaii.C.0.0IIPP0DP.0IIIICC£ItPPIPLL..L£11II1)0I.2IIIiF’.Ii£iiDPPii13PDP.liLIS£CLSLIIItII

It0aanPtIto00,0ppP0LiCsIIPACsCsonPP

II0p.0.414II

II00000Iippuubirs

II00‘00II

II500CsPLI

PPI—b*II

LI•**.1

PP•**KPiII

IIK10K.1lItliellipIIKKKKKIIIIIKKKqIIIIKK•14IIIIIII:32N‘.3PII.1:1:.II3Lil‘1PP

p,As4II

II‘3L.4.1LiNilI,‘jLi3‘cII

LI.:13NIIPp‘3t4:1II1wXIPIIII

C1fl00II

YIwILlUIP

NICsL.aCSI4NII

Dippp:10‘III

P‘P.3LIr4’,‘p

II‘I.:.:.1gpp‘4II

rr

a

0

n

eqCD

0frfl

nZI

a

0

0riCD

F,

PSH

0hIS1

F,a

03

0F”

I—Z

—CD 00

——F,

0030HF,CO

rtCDZCD.flCD

00Cr100<Hl’

03<000HO)

ci—a’CtCD0

ZC—;flZ MrsciCO0- .4>Z03

0000

thJØ)VHC.CD

PSi-P0400‘Q00

CD00CL)

0

La

0>CC)0i

CsIII0

a<0303<0HID

C1On

Hlman

anHH“1‘-“

aPE00000CMZSCtoo’it

—i-i0C-ari03i-a,<00

•Z0c.l0

74ani-I0

—SrrNCapCLIC.

03=

taM

ZnC-PS

UN00l’..ZrtL’O

.5•CE‘Do.’.

0.iDoOH00

9. 00

--C-PLO0’—j‘<Ui

0-C

EA:

0

vi

H’

LI000

00ULI

aLa

0000

00tat9

cc’

°r,

o0

NC)

PS

‘-P

II

I,

03rt

PS

Page 91: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

.I.1ST,UU4O

II.•iqxn,:q;4ks.sSa

I.,t,:4xkax:l:r,12n.‘•‘‘‘‘‘‘>40>4>:IJi>41>4•II•+•5._It,,..J:s:,:4z.tnt)<X•t

II.I:*wa,<flUZXkbIWLI.XX’tII•4*IIC*-rab2:,:01rd;4x2nCt>4>4•

0tE.

U:.4SianiPI!ifl.:4t,1qflPQn*LL

IiU3.t:,at.4N‘If40A2:2:4•nan4>4>40o1,.:,3plt:a..:u:.iqu04(a4AA2k•kg*nnaAn:Ikj’tii.:5it’rl10%0)4NW.0:452ZaflO>400nHhHH4,,,,.q;.—u:4:::42tano-tIII

•aanT3iIlI11>4N.an4106XXX

St:xXi..JSiU0i4.:..Qg%>4nQ>4>4on53JX4XsI•

•S2A:4-’>4,4014a.a.£tSLWXX*j.**

252s2A:44:a4n’C>4jI.vtD:L4JSZIXXX*IX>X4>:.424h%02>410.0U1’:U41rLI>4>4>4*‘I

,iiS.

aotLizaC:a2tiXXXI•IIIIUIiII•UIIIIIIII

a*aaaa:•:A:.aU>4->4>47,tIMIPTX>4>49IIIIIUitIi&t>4ana$%.4:!;S_laIiM..tXXX41JiJtUIILXX*Sinlililo

I.IJ,LS.tX’.Mliii11111)11

,xX:rr:tJLar:n,1a:,nI.:,.?c:Ct,*XA•l1jo1aX4’.CXxaSIS’*

“L,t’4Ud..2j5.U;i1t’.1iX>4.’AIaflgao10>4>4*0.5e0-flL:IUnr..I%Ii.1fl1I£X>4Ax.o...nMtst1x..xIIS**

‘P4aanal,M10Uz::*J,jnn,t4a.CX15b1204IIL4ixXXX>cXXO.’ItI,lc,lIt1ItkPCX*rn>4nOLLa)tx>4>4)c>4x0UU.1:1.4,Iin*X4XOUtX3LuiiuiXXX6*XXflniJal4.4flS4ttUi0.0IIol.txxxXXXx:.n<.114aaan2OXXii.0.011>4XXX>4XX

>45.1r.fl4:1>4..>U.P1xXXx>4>4x>XX>4>4>4>4>4X>4:.flU.’Ilt.0I-tiO’Ji.tXkAx.*IS••5*SS

IS*Sb•I***.X:CtnnQnaap[3[4’X>4AS1*15*1*5*5t

ixDL,[.Ian0I1.1l’XXtSS•I*l*s***IlIII1>4>4111-OnUITLPI>4>4>4>45551550IiIllUN

•>4.1P02-D.11.t14>4x>4>4..••I’IiH‘L3’2,t-0011X‘I>4>4>4>45IIII

II.X>4XX.IiJ,rn.flatt.COhZY(XX*0*11liii+

,XXX>4XS13.LIIDJ0r4.ltXX•I,‘(HI,1111+XXXXXXX,aIIt.t;t.i.b>4tL.tA‘iiIII(INXXX>4>4>4>41.s.risasyr”orxSiiIIIIIIIIxxXXx<.bVb>Jx>4IZi1UD>45*

XxxxP-t.ta.rtl>4x>.X>4ra.t*5*

a.XX>4>4II04110>x*:>4410.0611111.—£XAIS-‘‘Caa

tIX)XXXCT.F>45’>4**>4‘*Ir

Tt>4IX>4Xt.tPI)XX..,<oaaa

>4

,+•t’iI>4>4>4>4>4>44>4**4>4>4C•III,*.XXX1..>4)C0..I

,ItiI..I.s.S5>4>4>4>4

A15IiIi.1I:isiii...*XXXI*.Iii:tIIIi+,I.,*XXIIt

III+I•I(IIi*4UIi

•I•iiIItt*IIItt+—*IiItIIIIIii—I•I+•IIIIII

X1+111111*litlilil

ItIIt4

19

Page 92: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

NII

INH

•II

IILIILIII.IIIIIIIHiiIIIIIII111111114

I‘aIIIII.

IIIIIIIiiIIIIIIIIIIIIIIIIIIIIILIiiIIii,t•t*II

I.+•tI’II‘I••tHIIIIII•—U•HIIIIII•lN+II

IINNNeNIIIIIIIIIIIIIIIIIIII

IIIIUIIa314IIIILIHII

I’HII‘IIIII14‘IIIIIIIIIUI

IIIIIIIi114IIIIIIIIIIKU

IIIIIIIIIIIIIIIIIIIIIIIIIIIIUN141I••.IIIINNN*IIIII•IIIIIIU..I•IUII3IS.••iiI.II*N•IIIIIIIIN14IiiIII•INIIII.IINIIIiiaUA•AXXXLIII)C)(XXAIIIISAXXAIIhAXXAXH-

uxas*iiCiiXXXUII:4:4:4*:4IICA:45AIIIIASSAXLIIIIIII:0tSUaL.03tIiiIsSt.0-tIII000tLIIILI4.44.L4IIII£.0)C0II

II.0-t00IIIItILILIIit.0t44IIILLLII00*10aLIIIaOCoCIIHaCaaaLIIIa’3aaaIIII003aaIIII00014flIIIIII001fl

ICfl33UH

LI04C.1aIILIIII44.4:41II

II‘Iti14.1IIII-c,:2.11IIII1‘14J.)‘4IIII110:4•,IIII:Z.4•AIiiII3:4lIIII:4.4:1iihIfl4tI.i0IIHiiuMUi.IIa.1I:4aLIIIHHUtILIIIULALILILI14HU1ULII

II144IIH:414II

IILI‘413d1LILILILI4IIHaU.3MLI

NiHat

I’-,0z

C—

00nItC,..(tPJrt(D

0

z’p,1frlfr-3p3

F—’CH’(1aa‘—

CEL3-it’mrtnzD-4H’>oat

‘a.

50—,San

LJtflH-0LW“

_.-pPr*S

-<0

rlH’C

C,‘0

‘4tH

a44—

LItA

‘-<0-C

DiUPZn

0.014Eno,

H’Cfla

—1“1H’-CC

—coop’

00“,.rlH5.

I%j——C,

Dl‘-4CD—‘U

--DiC,

1’209“nOCOsCDt

C1

a_onP1’)C

Cp3<0H’C3CC—0(00-

:3-aI-jfl.1wt

OPat0°c_s

—‘4

‘0•0’-z0-

—,‘<c_ICI.

0’

at‘—C,

rL’

CC

AS

C:

Sc

I

11

II

Page 93: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

‘‘‘Ia.aI.-.aa

44ITIItII

aIIIiIiiia’•II•LIIIa

a1+.,:aII•lIa,a.XxX2<W

Ia.2<2<2<2<2<2<)

II•aSI4Ia•>:rjrq11’•P2<2<

II4TII2<2<-,tLTXXII4I,p5>:!11•t1J•IPX4

*SIIIIIIIIS‘4)IL1r.1.1•tIIA2<*

XXtS4k5A2<JJJLLX2<S

aau:2<x•A2<X2<VrLLtllrXxX’S

Iflhli,’),X)4x1’tIL’4X’4AS

t1y2<2<2<2<2<‘42<2<2<>:a2<xa•I.

Onx>:)a‘42<XXXXXXX2<55*

Cti5-2<2<2<2<2<2<2<2<WA><A•45**

Oo1IL1DXYXXX2<XXXS

:v3.-T.II;I2<A‘42<‘4KSIII

4.,tt’izr-i’AX2<2<2<•II•44•IIIIII

‘3,3.ti-IttA2<2<2<>:-.4alaIiII

ttptI’i>:2<):XX>55III’IIII1sttr-:)XXXXIa.*a,lIHilIaIa

1ItI2<2<x2<XX2<1aS•SSIIIIIIaI’

2<2<2<>-2<2<2<2<XS**ISHIIII

2<2<.2<2<2<2<2<2<2<‘4.2<2<5*•*4bH‘IIIII+>*X>.AX.SX*XX2<X$aSS*a*III’lot,

•lII1H++

12<2<2<2.2<:2<2<2<2<2<2<2<.ISt*II111111t’-*t

IXXS572<>2<2<55a540HLttt’*t

12<2<Stale.2<2<a1.4511111I:tttt+tt

12<2<41eSlt>a..IIIII:Saletti**I*IIaI’-.aIIlttt

:1.5’apsaI.It’ll)5*1*5*,I,a.aIaIIIIl

fl:yi1l.XXA.Xp.•*1111+IIIIaII4’4’’42<,LrL.trx2<a....aalu.t.laIala’

OPliOrCr.OAt,Lj.12<>:a.111111:Ia-,,t.4i-a

r.)O,.oWL.),,apa..’,S-I,•HHIIH,•44*t+411

t>34’:,X:44’12<aII4+)H.I>;r.:%’>.twIH+aa...tillpa.4

nynHSSIIIItipIIH,+a’2<Q47T::4a-Xa-.II.IaIa,IlIaiIe+a°

2<.OL.3<I.1XaIIa.11111+a

lIalaIaaIl+Ia

.144L.btlXiiaaIt++a

II

at..,.I

2<2<3a’Ij)XHtaII•Ia++tII’2<2<1(TIjS1:2<..‘4p,+Ia.•aII...aI

•2<XA:?LJLX>AaItIa..aal-rtt+aal..X2.n-a3-r:XX.IIt+a...IIt+,+.-aa

SlXX,t.3:iXXA*lllI+II’*II+’t.III

au

l.aIII**.AxX>:4,.aIIa,

**.ae*lllllpallp4-Ha’...*IiaIlIUaalIIlI.Iltl’.aI

TaIIH...t4IIITSIi4I.l.4S.wsi.,aua.—,i,II,l,—a.,aaaIIiiIi+

i-taI...a.to

‘a...

aaSI’,11,4114

IIIIallaa,

xaaIaaiiixaa....a,

axllt*.aa—a.a..a’1,.IDZ%’xIl+Ia+,al,II+

i-lIsa,,III,041.,all.

+l,I-Xall,lilt

atto+all.i-Ialt

II‘S.

•li-ti

SISit

S.’

aa

.S

IIII+IIII4IIIIa,.I

1•ILaa+a

ITII.h,a111.1•ITIItllaa+I*aSla

•a,Ii+I*a’II+I•aIItt

SIITlt+•IIIItI

I,•—ITITI4•aIIII+Ia•.IIa,+aITI44IIa.++IIaI

Ii+aaI*Sa

I

I,...,4+1Iaaa.S4+

41

I

aaI.aIa..

a.

+++4+

+4.1,talIII’

II.

a

aS..II

9

J

S

a

Page 94: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I.Ii: 1-

II Ho -. I ‘itr, en. r4-3

t’.’ IPkfr’F!’WHc— UrIrtnii

aIM o ,.2 t 0. ii t C Ii F

C’4 I-C IIfltCflhi

C HtI•gnwii HC — tiC ‘I t r ii K II

>,uc I.

CtZ M_ rr ,,:r:r.Il

0 —c r&!S,.r2flrr.crfl

nL’ rs.’rI’Iil_.

HHC—I C

,fl U _‘ ,ic,nnaaII

,— iitnnaoiiU Ql,—4 .. I:onrCQI;.4 0 on i’n=cman

3- 4_i (12 ‘—‘0 IIrflOWC M.D n I:cCOH

Cl <.II0000ChI

0’ II II

o•

8 ,C’

• rip— I—

Ct fl .!p- IIUtII

C) —n I,rIzI.C ‘ E ,irtromZtcU ••-_ i,(1cII

— U I’ IT(>(XxXI’

H ne IIXXXXXIICt r— rr1 IT ,<XxXXII

I—i —1 • Ir,(,c,cxwIIIl

o • IX*1C’<XII

0. Ct — IIYX,cXIiii nXxx ii

> C, I,xx,<xxII- oxxx>KIt

I-i ii:C ° ii....i,Ct ,n 4

It Cii • II • • P 44 IIt L>, b4 .‘ut..i

Cii 0_ IIN I II p 1 * • * II

o t-.. i II4PIJIIICc’) 111411 II

I4.IE II IIt ‘i—I —.. II Ii II II IT II Ii

•,-i eo

Q) Q) H II jqIj II I;

.J.t C’ IllIlIlIlillIl

or,cv II Ill II II II

jjl;iii;uIj

— >,—4 ci a, vii ii • • • +

1,jPt> It 4 II’.1’*Ij00 % c... I’444’4II

Cr-I — 4

.r ‘II+4q.’IjiiJ

020 Ct—. Q’I7 •j4,444p

,Cr-4 U fl H4,,—.Ij

U LI O70 II

2

II

o > cit .— > —c II I I I I I I’

_i _- ill’ Lto i— -‘2H itCpa) “11111”

. rowE ‘V ?I:IHHU 4-i ( II I I I I I fl .• -

I’ PI .11

ON> C _

U L1 1

WI-Act •. I Ii

U b ‘CC I IIr-c

‘‘ ::::::•lII

II II

C’ “IC•4 —I

9to z- I

—4 1’4

- :1

Page 95: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

ILi

I

[I

LIIAAAAAx

thi,.,>I1X>’XAX

.‘I,”

.4111i1t)YAXX>.AAAAAAXXXX

•_.iiii’I,.wAtA>A..)xxI

VIII’rXA•

11:1111,liiIhiI.i,KvA.I.s

-III’III,iiI’IIIIYAA)I.PeIWXAAAAAAAA

I$I.o,Il.:x.:XAX’,.t

Is>XAX’..,xXt.Xx>:AAX>AX

p.:’i..AA)i.,>*RjIlX>AAXAAXXXAXX

plaIt

4i•A)XXXXXAA>>flAx)IXAA

CiL.tjXAXl.A>AXXXAAXAXXA>XA>4AXXXX*X

onat..XX

MISt.*AXIX)XAAAXXAXXXAAAAXA‘XX

WL1)’x>’•,..XAXXAXXX>,XXXXX

fl*L;ZXAIIIIXAXXXXXXAXXXXXAXXXXX

IItAAAAAAAAAAA>(>CXXAAAAXA

AAAXIIIIAAAXXXI‘CAXXXX)CXXX

XXIIICR.Ills.**I.X**IllI.XAXAAX

•.I,,:IIltIillIRIJIN11*1••*RIIXAXI

HtIlIlIllIllIlIlIlL1*1*1It•*p411*11**1

liiIIliiilIst4.1,11IIIIpII*IIIIIAII*II*

.11111111.lilllIIIiII**t.I*IIII

+IIIlI,ll(U*I*II*I*I****1II*

Ill.44+4t*t•4tt2II,l11I111111**llIlIlllIIIIIIIlIIIU

liii

•,++IlIlI

IttlIlIIl(.

4tII•IIttt*IIIIII4’IiIIIIIIIIIIiiIIIIIIIiIIIIIIIIIIIIIi

,_II4.Ill.rtt.l,IlllIlIIlIIlliIlt*4’*4IllIillIllIIllII

•I,-IltttIll!lIIIIilIllIItl++$.+tIlIIlIllllIlIlIl

4IIIIII4tIIIIIIIIIILIII.tt44tt+IIIIiiIIIIIIIiII

1,441...II.4IIILIIIIILII:Il,+’,*tt+IIIIIIIlillIIIII

*i,lItII’GlIs.IIII,I’llI:l’Ij.q—t+++iiIlIillItIIilfl

21111•IIII4,lIIIII‘iiwoit•t11111111111111111111

.:l.4.t>X.IlIa..II+sl,IIIIIIHI,,.lIl1I14*.IIIIIIIIIIIIIIII.II

t11:111,1,1.1111lIflhll3IIIllIflllh:IIlliipp

II.AtI11SAIIII,44*IIIIIil•1111IIIIIIiIIIIIIIIIIIIIiIIIIIIII*

iZfl.jiJA**IIII4IIILllIiII*..IlllIlllllllllIlIlll,lll**II

1LAP11,11111111pI.IIIIIIIllIIIIIHtI111111***I

SJAR*IIIIIIIIIIII,l.pIhlI**AtlIlllIllIlIllIlII,RIII$

XXI.111,11111112.2>AXll*Il*III*ItIII

IILIIIIIIII(IVI*IAA)•AIIAAIIIAIIAIIII*tPI

lIlI,IlIIIlI*•$.XXXXX*I

•ttilIIIllII,)XAAXIIII•I

+1*1111112..•AYAX4IIPIP1111IIII11114.1IS

4ItHIAXAFLA1*1111111111111111111

+tIIIII1p4SIX‘CAAAIIIII*IIIIIHIIitIIIi*

+**)XAX’CX..AXXXASlII*.illIilIlHIIlII

*11ilX5IP2JAX.cAAAAXIIII111111111IlI*

•IiIIUz:..u%:.AA.AxxAA*Ii••iiHiiiiiii*

IIIIIlun<-I,aVAXXXXXXIISIIllIIIIIIIIIIIIA

IIILI)(flOanajj—t‘CXXXIIIIIIIIIIII*A

II*A-S.OUOU4Jt.ISAAAAIII1111111III‘IXII*IX

**SI1I.LtIt.LIXA>CItlIIIIfl

•x1.s.1tILIAAIIIIIIIIiIIHIi*W

AA151AAA1415A‘CIIIIIIIIIIIIIIIIII•‘CID

XAXXXX.XAXSXA>.1,11‘XIIIltt+IIH*

AXAXIIn.*AAAXAPII1IIIIII4+tttll*

ILAXIII1III•II*IIIiIIIi++*4+

•W.OLXAIIItttIIIIIII11111111144*

•fluxlIlt11,1,111hullitt

flflVAill.t.tIIIIISillIiItt

IDnnrxIIl++..u’linhllIIIl’.4+

U3flfltX,I.t*ttl.1LIIILIIIIIXIIIII

nu,znnacIII,.IllI’I’pt,11111

•p.fl7T3zØt•xIll*,tlIllI’IlIlIl+*+lIIII

•*lI+t_2IIIIIIIIII,ttlliIIII

•Isu,aflflIts511IIhi’IIt¶•+4IIII

•,tstttg,tttIIlIIItttttt+IIII’liiiIll

ttItI11111I11111lilt.

•t1111111114+.

+III11111Itttt

•IilIt*ttil

•Iitt*IIUUt+t11111111ttIIIIIIftlit4+I

II1*11+411

HiiIIIII4+I

1111+40+

1IIL99

Page 96: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I

IbiCC

•.<hi.

S,]CCrccIMCC

IIIIII...—II

h”’’IIII111..II.OtA•Iian0n

IS

it.rtF-.,.C’o04NO

I_fliiiiCDiiIIIIIpi—i11.111111IIna,z’ittillijiN.i—Pitillilint.4I)NIlhtta

aIIii.•anpaaItlilil”4_Ia’uiiiIit..a

aa40ItIiIIICDtIIIII..tttUaa

II—t•••IiI7flCDii+tt,,-Ii-—CDII..+..Ila.o—.Paa‘IIllc212$tj

Iitt+ttIi•ahzrtF’.Iit..+t•tIILIII.%.OflIi..-.ttII0Ila’ICPIIttt+

IIp4>CDF-’UI(‘<IIIIIIIIHIIII•

0IIIiIIII0II•r0ItIIItCiIIIi0Nliii1111111111

I,IIIIIIIIIIIIOaaIIIIIiIIIIII..

d IIIi11iiIiIIIIDLIT

iii1IiIIoI’IIHIiaIIii—.F”PHIISflfr’HewtiwtIi-JO

u..•..IIlik..’.Itp-naCD..I-TI

HIL_ipII*•tfl*1111i-sO<rtiii..*0•PaPIII*ES.HI_a>pnc—vitSSi’*tit‘LAaa:,.,.I.IITI

IIXwX)CXIIF.4IIac*XX?CUiiX)C?(XXIiIITi-

•IAa4zx:I0—itx’cD’XXII-4LJt._I00xxc.)ctlH•hi.TI

IIXA*AxIlrC.S0F—’I(xX)(iIDafr’•—.

•Ixxx)’AUItIIIiWDLCD.DflCD‘nflIIDDItlI

•i..CIJLCtLII•IL$$UiCDII.DtLtIIIIO’0LIIflCCU—-.1—pIltrIltIla’nIVDi,uLiIraN,

IIDDtlIiiNO

IiL:ttII,,

iIaaUQflhIpz‘0

IIQCafltIfi

,->aIIICaOaIIIsso’C’(PTI

lamaaII-.0F-IaOQaII•0CCDHaonaII—:-jFF”IISItOOUIIiNCC0IIaaaaIII-?p0“IIahi’CIIIflhIC0II225II

—4a’It5%:t7)U—opII:g.,5t2:IICU

F”Cl)IIo%ç)rAIIi..I

II1X:atArII

IA•J1°_ao,iitJ3jJillflF”

Isz.A:sIIfl

0iIsD1.JIICDIi,JsII——D—I

IItaa.AUN’-.(DCD.I4.4CIQQ0)a’II.:ziiaiiLA3<Cua1IDIt-a‘o•aua-ID,IaIIootIImA:IIHIHII••Haa4aJIIt4aI,iiI

_-

Page 97: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

a

yr

?&

If

C

+4

t..t.+

.4.,‘.4,

tt’t’

+qttq

II*•*—

IIIIIi4

IIIIIIII

IiIiI’ItIiiiIiIiIIIiHIIIIii

IIIIIi‘IIiIIIiiiitiiii

IIiiIiiiI’iiIIII

4II11IIIIHIIIiI:

*,,IiIIII1IIIi

•4a4IIIiIiIIII

.4+—IIiiIIitIIii

•4tIIIIIIII4+IIIIIIII

•44.4ItI’IIiiiiIiiiII

*4*44.4‘III’Ii

‘...t’,’’II

III+4t4.,IIiIIii

III1I4t4,,’,JIII

IIIIIII4444ttII

IIItt—11.4IIII

IIIq.,tt,.tII

I$t++I*t+t4

IIii.,+44.4.4

III•t+t’t4

IIttt4+’*I(+44.444-

It.tt.,ltIaI+t.III11144,411

•I1144,4’,‘‘II,4.tt4

4.

lit,.,,ooIl:.,,.

.1111‘.4+

•IIIII’.•liii’.1111114.iiililt‘‘—I’ll,•.444t+Ii

1.4IIIiIiII1I

IiIiII11AL1,IIIIIi•:tI

IIIIiiII••I.aIiII•&pAJ,I

+411IIHtAXI’I

+4.4+ItItI•*AAI4*4.411AIitI

II,+tt2LZ1111+taG-

lilt

4.4.

44.

+4.—,—

4..,..

,t’t.

t4

a,44*

•-y44.

44+*

7+’,.

III:+t

IIIIII4IIIII’44

IiItIIIIIII’ItItIIIIIiIIII:iIIItIIII

IIIIitiiIi

III;IIIIIIIIIiiII

IIitiiII

I,iiIiIiIiItIIIiIiIiiiiiiiItiiii

‘ItiiiiII

1IiItItI’IIIi.1II

IiI,iiIIIIItIIiiIIitII

IiIi.44

•—ii•—

—itIIii•1IIiiIi•IIIIIIii

itiiIIIi

I4‘I’ii

+—IIIiIi•tIIit‘I•4IIit4

•IIII•I

4iItI

ItItIII

iiIII

11114*

a4III

IIIIII

*II>.

IItIA

AAXAAANA

LLiI:131

c•.a

ann£08

a110

pItCAN::12:

AAiXbf

a.-,

•44.4+4+4

4

+••

+4+++444

44++4.4’4t..t+t.+44t+t*4

•47tt4t+4’+•+,t+

4+1+4.4+4

+4t’4+t+

4+—.44t444t

•4—+‘

44t.•

497.4+.t4t44,4+

.4+44.4+4

+47’,,—.

+4t4ttt.

+4t,t.t

ii

III,

t,.t++4+——

.4—Ii44

IiitIIIiIi+IIiiiiIiIIIIIIiiIi

IiII

iiII

•II•IiIi

NU0NAiaA

N:::;Si:1.8

21——aM0bAt0C

IiS:-1C.AZ*SZIa

54Aa21’0IIt.o0aIttiI.anSIlL

Azt1.L1IL

“I,

At

t

4;- lIt

4.

‘‘4,

—.4

4,4+—

‘‘‘.4

7ttt.4

‘444+

4...•‘.4.4.4+4-4+

4+4

44*

.4’‘+44’,4+4+.4,7+.4+‘44+.4

4+4.4

44

4

4

4,—.—,

—•444t

4.

4

•44,44,-..t.4

+tq4qtt+4’’+4+

•+tttstttt

4t,-,4-i.*+’44+

•+‘+t4tt+t4

4.t*+.4+4,.

qt,t,t.44+4

44—.tt.+,.t

4tt+4

‘—‘4...4,.,

II•I*.444+t14

iiI-it

iiIiII4•—t.4

itiiIIIItIiitiiiiI,III:4+4—+’tt

ItI’tt’t

IIItItt4—‘+4.—

ItII•t•44IIii.—t.Iliii.

‘144tI‘III,

,..-,IIIIiII4,llliliii4+11111111

..IIiIilgltill’’’

144111111+

I,•.+IIIIIIi4a•IIIIIII

II4-44IIIIII4

iiIIt4IIiIitii•,III,.

iitIt.I111,4

•III4+III—4I4IiII•III4t4

IIItIt•.4t44‘II

Pliiiitt.+4ItIt

•44•ItI!ii

*III*It

44*

X,(,•I.*11

XA>AXAXx.

%AXANAX>XAxxI4

AAA’AAAAAAAAA

:I.1ztrtzAX

I.I111.II8313.111ZIitSI12101’;LGUCW0ytic?fl0AL

i_5t•L’anAznW

U5III.ft08ASiACMpcsMaoI08*

•858000fl8zi88

*A

ii*

£8

Page 98: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

QIC

2rLii

III.

IIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIII

IIII

o+t+.II4.4.t4.

II4.+t4.

II4.4.L—?

IIp•+tII..4.

II4.tt4.

IIt•4.

0IIIIIIIIIIIIII‘IIiIIIIIIIIIIIIIIIIIIIIiiIIIIpIIIILILILIII

IIIILIIIIIIILIIIIIIIIIIIII‘IU

II

II

II

LI£It

IILID

Itit

II0LIUIIaU

a

Xe

cc‘C

ONOWZ”DLILJf_iQfl

rtI1ac’p,ap.PIDNC

ao•-n

H4rtrtIDaiiCaH4aSk-aft00

p.DDCO—-ia-tSan

toc-tnIfr.Z

ft..joapaLiaj

H’•LiiCID

<paa’a

-

I-an•10

rtQ

00’

SP

-‘-PI-a.

ftC.C

32hlcnart

papa%.Jrtn

aIt0Lri

oC

U’CVo

IDH——‘P

‘-.LflPIt

3,‘-Cpa

•nrtZRrto

.paci,C-ic-tVU,p.

Daft I—.OrICCHflHIDftc

,C.

<fraQPaItiCHPC

n“1‘<pan

P——

ftIi<—.a

3’ft_n

‘d’<ft.H•C

‘CItIP

00to6’c-I

3,

p1H’

00

LiiH

•II

•II

IIIIIIIIIIIILaoIIIIii

IIIIn—QIIi’

+114.11,

t,Io+II,•II

..

+11‘II

•II

LIiiIIIIIIIIIIIIIIIIIiIIIIIIIIIIIIU

0,•44.1*11LaN

II•I*411

*..NO**•pI.II

II••*4*111

II•4*.III

XXXYXII‘I

XXXX$LIXXxXXILSIU

X)4:4xIIaxXXxII?CXXXII’<

3WL.ZLIIl.flito’tEDillDZD,LiiLI

ttarnllDflLtCI,.tD1IIPU

3ITII

an£1011UflotIloflLioII

ancoallunZOUIIannoall•anOvallananollaUaa

‘0’0

Ut”lt-LJU..JIIi)I2II•

t4ZZt4iI

opWZFL:

PflLJBLI‘1-I

0,4P0140011

00•USU01CnWIaIIIILtDIiiiUn.I

S-

Ti

Page 99: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Ii ItII Ii Ii I

Ii Ii Ii II ii 4. a

Ii ii Ii Ii II 4. 4ii ii II Ii 4 4 *

*441

*aI

aa

t n to

‘ii Ii.111111

• — I’ Ii S f ,< r = 7 Ua, ii 4

• • —Ii II’ xTLzI I 4.4.111 x,tt

I 1 •‘ • ii ii • IC

I I I + II 4 ‘C

I 0 I I I 4 Ii * ICo * 0 0 I • + Ii

411I,

cr104114

IIIII

.,etiIl. +0’141 ‘164+

bill? I+’+• .111 444.4

.411’+• •14 +4.44.4

• I p . 4 Ii III I II II II II a iiI I .1

4. 4 Il I • if I Ii I I4 .4 Ii * I I * I * 1

ii II I 0 4 4 0 IC IC ‘CII I I ‘CXX ‘C ‘C

i II 4 4 IC ‘C ‘C ‘C t I III 4 — ti LI’ II -

C; e : 1,4 I .1 03 3: k

I 1’ 4 1.1’ Of t: fl

‘CT ti U

IT 0 ‘C ‘C t C’II II * ‘C ‘C ‘C 1’ T 2.— II 0 I * ‘C— 4 ii ‘ 4.4 4 II II *

I II II III 4 Ii Ii

I — ‘I ‘I

0**.4‘‘5

1’’ 51’i+411+’

II’

89

I

*4I1I’ II

40*111

*444.4 4*4,40*44th liii Il LIIll 4..*.’iiI,I II

I1111I1111111I111I Lii P11116+

II II II IL II LI LI 114 4.. ‘JiLL II, +4 4+

*444++’44444+4644

+4+4 4

I t++’’4 44 •.+44.4 .4

• I I4.’’ 4+4.4466+

I ii l+4’ 4443.4

llIi’iil111+11,11IIilI*itii?tIItirII’iItII,IiIiIiiliIlii

•0 .OoqiLiiiiLii. .oeo0.r, .111111 —

•o*•o_* 0 *0*’10 ii

DIII 04*00? cocci I 001

II

40 0 •4’4’iiii*•

.. so’eiIII.a°a.—..ifcfl...* till? 042

iii0100 ...iliI

.6a.coIiItI I liii

tillI

illijililIl

..,40.n,c.4*e*c,...,,e•,,c•I• itiii’4’#54sarI 1(111-44’4”

.1,1?

a ltii.4.IlII411.I

liii l*.’iibaIl iIIit4uit 1,1IX

liii, .!i*..* XC

,.0.,..o..0 cliii -4ihl*.*V.C

,010c.II,i++IIiII,*X.t

liIiI4.LIIllI*X...0,.n.,...eLip+I:L,*’C’C

iiI?156?1h111gui

i I I Li IL1*1+4._I

cii??IiIiIiiIuI

uluLuLluiIi,illIiihull1 IllI,iIIi ii

a liii ill lii’’

I.,.,,.,00.e.,liIIui++4ciliIuIl

a oota*e.c1 .11111 I’’,I lIlt?i*iI.i+.&44’IiiIII11111

lll,I’.Ililil

IIIIIIILIIII

I.,.—,00,.00000000,00 (liii,,Ill??,

..,.•.,,,,.,,,,. III?,•e.r,t ,,Ii. 1114

iihi

I

1:1 q

Page 100: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

IInrr

a’--c

——nCrrCC

•CrC)

NII.).II

I.

II‘JUIIH—er-.

CcOn

D)rtft IS-LiOfl•l’•

C<N0Ich,

iJilIlillCtIlIllili.II“hllIlliNP.0WJIIIIIIInu—ZI—’0llIIrJIII.rULJ

aIIIIIIIp.<lilililil

_‘anoItuhlillilCtr’fi.IIIIIIIaa0IIIItttttn

an 11.117Wnfl IIIN

aLit’tIIN0citII99

+11—“F2ItH’lItt,+.PG‘—.0011.44+’”CI<I

HOU1aHIIIIIIIIIIUII1—iljIIIIIIiIIIIII•‘0IIIIIIIIIIIlI•,—t

p1,11111IIIL10IIp.’IIIiiII0citItIIItIIIIIIII•liii111111IIIO.—IIULI‘IUIIII0PiiUUHIIU0IIII‘—H-0p11*5.0S

•U—‘—a.C

ii.,*•*Iiatna-.r,

lI*.uI..II—•0CitaII•‘‘-elrit

Ua*...lItiC0pI•aa*ii,,-,

ItS•S*IIaaIIIIiIxXxX)IIIOXXXXXIIIInxax’cII

co IIIItJ.J—int IIX*>AC‘I

IIx,,xxII..-nCnXxx:<xIIIIIxx,pXIINOH

•ai-’IIII7r10IIr,ltnDIrhh•0flh,DDDLIIfl

fr0IlDD.flhld1-JI’JLOCDit-.IItiN%

its-trod0

Iittfl.OLhl-.JIM•IISTDLLIIPNIltDr.Zih•c IIiiIIaaU00IIlIOqaUuIIlIOaflaOII0..P.IIaan.sll40CDIiOniOaIIptaCflri•-j

IIDan’(iaII•*CHIIaaxa0oII.,-Jl—’afiUaanOaII-4.0

rTI’IIlItJ:,:z:jIIIIII00IJ.iflJii-fl1a

:laI:5;allti——lIa334HO’P0-III-a3.,:c:piIa1rll2’S42Ii.30t49:;.s-jII‘0,4II4S31II

II.jn.na0fl<IIRCOaMIICcII*IlII!I,4a9Ij

nw.lJnn:I‘0tN)

Iiod-.j4-fl0-a.•-a.

Ud43JII•-p,(ViI4JJII—3IIR4NIIU‘-C•rrIII

Page 101: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

010

It ‘CtI 4

U fl:Z • IC ‘(‘Ct ‘CI XXIX

X K ‘C ‘C ‘C T X ClXXCtSX Ill‘CTttrnXX. I4* Ii 0 5

ITTiJAtX45 ii. * 5•4 •..sIC

Cr Wt.r’C’C’C. I S 4 4 bE1 II

*fltT.CCWX .o.a .011111

XTt’iXX’CX* • 4*1111 NIl

‘CXTr,Tt’C<.:,.0lIuIlI:lIflhI

‘C t’Cin4tXX’C’ •‘0UII Ii 11111111111111+

q*XudrE,cXI,.I,IIpIIIlIIIIlICCIII.&

ntfltT,’XX51III1II1II11It1IlCI114.

X’C r’CXX I III’ II 111111 Ii II: II1, ‘C 5.. I II II II El II II II II II II +

SIC 4.4III1IIEIII 0

fl * 1’ C Q ‘C ‘C ‘C V 0 II II II ii II II CI IC II II II II 4

aEtSE tOXIC 4 1111111 II ItO 111111

ll’CfltUtt’ttICX0IIlIIIIIIIIlICIIIIItlIIIII

ICXT*fl,YEDtX’C’C.IIIIIIIIIIIIIIIIIIIICIIIIII

cIflXvlraiL0’C’C1.7NK4lIIIU1IhIlIUIt Ill

XØEO—TJEC:rT)<X .ICIII,4’

‘V XXIIUI,11.,+.IIUIIIIIIICIIIIII

4. I ‘C ‘C 4 II II Ii II El II U U II

It ‘C 0 114’ +11111111111111111111

xC,:EII...k.+IIEIIIIIIIII:IIIIIIIIIIIII

XXI ‘C*7P PXX I * 114. 41111111101111 ‘11111111111

‘C.tEIUa%rSt.XX*711:IIIIIIIIIIIIIIIIIIIIIIIIIIIIIEIII

xVrrnrITCXXI7IIIIIIIINMIIIIIIIIIICIIIIIIIIIIII

K .TrrltrIrZXXXI.ITIIIII,II.tla.Il.1;IIIIIIIt

SC Xtrr,TIT’r ‘V’C xC Xl I I 4 II 1 CI II II

XXItDTtILTt>X’CX I * * *4 P .111 111111:1 IC

‘C ‘C ‘C P IL 0 VS ‘t 0 VS ,< ‘C K ‘C ‘C S 0 4 4 4 1 4 5 5 Ii ‘I IC It II Ii II

XX’C’CTr’tr.pit’CXXXX:CXIg.O.IZSIIIIIIIIIIIIIIII

XStXAT1SZikt2S’CXXX.XXC 4* 4’’ III 11111111 ii 1111

‘CXXX ‘C ‘C -C LI ‘VIt XX <‘ ‘CCXX V 4* 4 II II El II II II IC II II

K XX ‘C ‘C ‘C CI C ED ‘C XXX ‘C ‘C ‘C ‘C ‘C X I I I 5 4 II II 1 ‘I ‘I II II II It II

‘CX’CX’C’C’C’CX<’CXXXXW’C’C*’C .‘.5vIII II lIp 111111 71111

• S X(XX*’CWX’CXXX’C’C’CX’C I •11 11 11 11 11 11 11 11 11 11 II

4 It It V ‘CXXX XXX XX ‘C’CCX 71 144.11111 tIC II II Itl III

• 0 I It S V I I XXX ‘C ‘C ‘CXXX • 4 I I I I I I ‘I II IC II II II II II El II II II II II

a’, Ip455•*0 .XX’CX’C. 455147’ ss :111111111111:1111111 lilt

• I 4 II ‘I II .Ii 1 Il II 1111:111 .1 II II

• 4 * II II IC II II It I 0 PtlT*#4iI4’ I I S I: II II II II II II 5 :1 II II

• II II II IS N II II II ‘I II 45*11* I 4 I * 4 1 — 1 II II II .1 II ‘I IC IC El Ii

IClIIIIIIIIlIIIIlE1ICI 4051’II4 4* 111745.IIIIEIII+4 4+

CIII 5 III’ II It lilt’ 11*41 I444S 4 I .4 *0 .111 liii liii4

IC II II I I 111111 lIlt II II II 4 1 * 5V*4..4.44.!l C II II II II II

II II It Ii II 1 It . El II II Ii 400tI 5 4 5 4 4 4 I I It it ‘I II II II

•IIIIIIIIItICIiIIIIhIllitItVI. 44 q.4:#•*IIEIE

* 4 II II II II Ii It II II II II II**j*III.*..t45*II II II II II II II

• 4 5 IC 0 II II El II Cl II II Ii 4 01*4744 4 1401411 ‘I III II II Ii II

**4IIIIICIECIIIIIIIIU IIIIIIIIIIUIII’IIIII,l

0 V 4 S II II CI IC It IC 1 II II II S 4 4 I U Ii II II El II II 1 II Ii II II II II II II

44 1*4 It It 1111 II CI IC IC It’ •IIII 111111 11111 II 1111 111111 IC

I I 4 4 V * I II II II II II Ii II IC Et II It IltI it II ‘ II El Ii a II II :1 II II

• 5 5 4 5 4 S II El II II II II II U II II II II U II It II II II II II It II II II

V I 4 1 4 4 V II II II I; CI II CI II Ii 5 II II 11111111 II II II It II

• 4 * I S I 4 4 4 Cl II II IC II II Ii II It 1111 II II SI IC II II El II II CC Ci

• 4 4 4 4 * 4 1 II 51 II II II II IC El II U II II I; It II I 11111114 II II

• 4 4 I I I 1 4 1 II It Ci IC II CI IC 1 II II II II Ii Ii II Cl Ii II II II II II

S S * 0 0 4 4 C I V Ii It It Ii IC CI II IC II II Ii II II II II It I II II II Cl CI

o * • 0 * . 4 . it IC Ci IC II II It II Ii II IC Ii CI II CI Ii II II II II It Ii CI

I P 4 4 4 P IC It It it UC II II II II CI II II II CI IC CC IC II II St IC CC II IC

4 0 CI IC II II II CC II II II CI ‘I CI II II I: II II Ii II II II CI II II

• Ø’J 1* 4 II 11111111 CC 111111 11111111:11111 CII: 1111 II It III

IC II Ii 1111 II II 1t II II II II It U II I’ CI II I II II CC Cl

• *44 44 CCCI II lilt CC II 111111111111 IC 1111111111111 CII Ii II

‘4145* 4 II II II Ci II 1 CI IC II II IC I I El 1,1111111’ El II Ii II II II

1111 CI 11CC 1111.111111111111 IC lIlt 11111111111111111

* I 4 V I I II IC II IC II IC CI IC Ii CI II II II II 1.1111 Ii II IC II II CC

lII.SIII CI CC II C C II CI IC CC 1 El N II Ii It II Ii Ii U 1 II U

*11111 IC II II 1111 1111 II 1111 1111111.111! II II II IC 1111 Ci

l C I I S CC IC ii Cl IC CC Ii II 1 5 II II I: 1111111111 I II II iC II IC

• 4 4 Il III II CIII 111111 lIlt tIlt 1111111111111(1 IU El ‘II II

• 5 II II II II 111111 II tIC 111,1111111111111 IC El III II

• *4 It II N II IC NIl ‘I IC CII It lilt 111111 11111111 IC

• I I II CI C C till II CC II II Ii Ii Cl IC II II 11111 I II II II II

• CIII 1011:111 IC II II II II II El II 4 III? It It It II It

I Iii II II It lIt lit CI CC II CII 11111111 111111

IC 1111 CC CIII IC CC IC II 1111111111 C II IC

CI II II II U (I II II U Ii

CI Ii CI It II II—

91I

F

FC

‘CCC

.4,

++

4•44

+44+

44.4+

‘4+4.4

lbIt

91

‘I

II

EElS

Cl

Page 102: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Ii

• I ‘‘

b I

C to .—I ii’

U • •e4ø

it‘

o — 4•’a••l•1

=

——

It Cifl •rbrrr.• nvCrr.

4.,., >, ?.L•,r4 3

Cr a rzrcr.•K.rrtll

c__i a I ‘

S‘

:n..:.I

‘_ U or• I,

eq “I-.”

° Ct ‘:::::it • -U

4aWebflI

- 0t I-.-- rc

ci c U •‘.. Ill

ICWCI

U W —I

U2E00 >

.91U X— C_I_C ‘‘ 4C.1C1

c .Cqr: S

ci itS —

Cl i—I I

.c Ct 0 •IXIOnII

U > U1;

nfl ...x

Js_CO

to *01

—0 ..pi’r’

it C_I s_i liii Slid ItU. = 41I11at

II P II II 4 4i—I 0)

r4 U Z nsa....

5-i >, pjIt

LU ‘U

(‘I U HI t

IIP 1

0 4 < ‘‘II’’.U li_Ill.

o cn 444Th’ 1c__U a •

e > ‘liii I•‘II F’a.’’’’

o cj——.thI,II

N‘“‘“7 $

o 0% 1:::::, II

IIil.

.

en ill

U I,. 1’

Page 103: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

IIII I

Ill (41 IIll I•I II I I I 4 + 4 I 4. II

+ 4 4 I 4 IIII • 4 U•‘ .4+4 08

•+I 4.4.4111111 4 II 4114.444.41111111111 II

114.44+4111111 110 lI44 I

I I I I 44 • II II + 411 II II 1 + + 4 I II I I * 4 II 4. + 44 ‘I 4 9 44 4 I I

• II II I; II ii II + + U II 4 4 4 I I I4 ll8 II II II II III 44 4411111I; *Si(4 Ill III 144.4.1 I I I I III ‘111:1,, — •41 I I I I I I I I I

XtX.II;I:+IIIIIIIIIIIiCt8. 411 I4IIII4IIIIII+

ctx 42. ill I I I • I I I I •.4

aIxX..&1141I1 .44444.11

UtTC’Y” 111111

xr rTtccx%

...*rxxx*,x1<. 414,4442.444

xxxtatTatTt*,< 444444’44.

4

U XCn1.znflatZtX(I U..

U ‘CtX CTna2ETXW Ill III 111111.4.

. ii II II II I ‘C ‘C a a 1. ‘C C . ‘I II II II 1 1 4

pOll 0 II I U a S I I Till! 1 4 44

tlIlII+41l1I ..I.o,tu*..iIIII 1’4CXI 111141 4Iiii,XOttIt*

Ut *3114.4411 XttttX I .1111114.4 +

U tx.iIlI4.4.iI’CtttX’CX4I4HI ‘111111111

• U I ‘C II 0 4 4 I • II ‘C ‘C ‘C 4 I.,..0HhI II I I

UW U1 4 II 4 I + ill ‘C ‘CXX 48 1 II 11111 Ii II

X4Uk II •.XX 4*11.. 111111111’

I C a i ‘C Ii II 4 44411.! ‘C 2 1 II I 4 4 1 II II II *

Ctt%XXXz ‘1111,1 TI 41111. •XX’C’C *11111111 * 111111

CCXX ‘C ‘(xx4 * 0 II Ill Ill,. XX:o:tr .011.11;’ II

C ‘C * 11* S XZ I I I * 11111. 4 XI 4 tll I 8 ii II +

K 4 S 4 II II 4 8 IC 2 I II II II II I 0 U C ‘C * 4 4 II 4

• I 11 II II II II 2 ‘C ‘C 3 II II II II II 1 P I IC t I a a ‘C

III II II lI...tS.CI 14 .II..,,lxtIatrX.** II

11*44 l;8.’CX.IlIlI4(

.44+4II I 11141 ‘I •+,ixCiI :1:11,11

I I I I I I II I II 4 4 — 4 I I • 0•*!I,+4 I II I I I I I ‘I 4 4 I I I I I I I I I b0lIIII4t1 I.111111444111111111...IIII’•llI 11111111.,....IIt.411 lIllIlIll

1+41 I1I141I .1I144’b4

1144111 1114+4111411 III,.

.....IIIIIII111111 III11111111 ‘IIlIIIIl11111111111111111IllIllIllIll a

111148.111111I1411’4IIIII

I I I + II II • 4 I I I I I III 140*III4IIIIIII

*4IIIIII1445*1111I44+4

IItllllll+IIII’I14*411114I11144111

*4ll.I.Il+IIII4IIll

•4*I82I*GI I IlIX*.1l114411 III I I I I 2 C U T IC II II 4 I

till i4ICZ3t•2II4lIIIII...X’.IlIlI4I

III.,.IIIII4II.traIClI4III*I1IIIlIilI*IC’C.lI*2111111111 +.II.4X..II+111111111 45II*XXtl.4 4 II

jI4 •II.toQr.l 1+111

+lIIII,*l++_+II’Cbi1.c4.I4.*4441h12

*11 •8,4* Mfl<l.lIlIUIt.1.2++..ann,.:4r,,CICI

40 xawwx ,.rvn.rl I

0a

II..III,

4.

74

4+4

IIIIII.4,

4+4

II4.

I.*4

.4II II IIII 4.

I I II’ll’111111I I I II I I 1 7

11,1111.011.011?.

II0

42*

IIII—I.4’.

IIII

93

0**l

aaSI*

•0•I

XCfl .11’ — 8 0

Page 104: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

IK

IlK

II.

IIIIIiilIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIItIIIIIIIIIII

II*I.—t+

HKK+

II.q-cjt?IIII4

IIKKKK

IIKK•KP

IAIiII$‘III‘IIIKIIII:1IIKHiiII

IIIIIIIIIIIiIIIIiiIIIIIIIIII

IIIIIIIiiIIIIIIHIIIIIIIiIIIIIIIIIftIIKPK•K

if•pK4K

IIp4K44

IIa.PKS

IIKK.na:14KP44

IK*4t*

:1.*K4K

IIK44IK

U‘lxx3K3K3K

II*3KA3KAUxx3K3KAHCAA3K.3K

If3K3K3KAA‘IAA3KACIIAAAAAHAAXxA

A3K3KAA

II131313II13t1313ii13.aS1313TI.5fl1313II1313-t13

131313SIIC13131313II1313131313II1313131313

I-.,13-

HP1ft

IDEn

‘1rop,ft

—f.4

OQP1‘

CD‘<0n

ftrtfttH

Hftf-i.

‘4Wftfr1.H

I—atCC

Cr’,rto

•_-

ftftI_J.

roP1Zr?ft

HHftc<ftrlftHCHZZ

(DOPc0CD K—

>4

F0%0ft

•ftft-It

Hort•ftCC

oilCl

MIDK-—0,C-.Cl‘4>

‘0D)’lz,-.

C-—

‘C•Htn’C

Ui

Pc’0-K

(‘2=—K-ft13.P1Pifl

1.4

-CD.0CH

04

oHHft

nnQU)

In

raftr13

II

is

‘I

II

ft

K

B

ii

CI

H

H

IICflaaa.1HaaaaaIIIIanaaCHII1313aaaII

IIaa1313aII

TIaaaaaIIIIt3CtaII

II13aaaaII

IIaaaaa3

IIiIIIKP4AP

IIP4P13H

IIP4KPKTI

5,p4P4PII

.54K.1Ppii

HK*•4P.1

HP4P4KII

‘IP41PKIITiP4ap4II

IIII

II92aa•J.1

H:4.49fl3HII.1:a:,H

19TI:43:1itIif:255•:29:2:2II

ii:1:4332:1

:2.4.2.4,iII

p:4:42:4:2:1

H•NItaIH

TiNNS

IIS—N4II

aKIt.1ia.I.UI

.n..I-PI

TICKC-I

LILIaa-I

.1SaPWA

isH

4—

*Z

cc1313

00

Inc

0

—oK

01$no

InO00

.3—

DIn00

K.

00

tar’,KK

oI.,00

LJa

Inc00

‘IA

01$00

‘I’

‘0

In000

LAKP

o‘ft00

4

13

‘<o,nC

LI

IiElIri•1

Page 105: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

95

ci‘Ill

I I...l+lI I• .114+41 all I

+41.1111IR.Il I

+ 111111 414iIilIll.+. 4. II +

Ill I liI’• II I

,iiiIi44 4 4+ITI. +11.11

11111I1 •4’—4I° II.lIlI .1111Ilxn+4.tIIIIIt,II..IIIII

4

•ltIIIlI4Il44.IlI.IIlII+4

2 fl*111114U411411 .•II 11144+444

xltIII41P4I ..oaI ll’I ••

11111111414 L+f .4a0lII443’41

II:ln.Xxrfl II • 4.111 +4.44+1I

• • Xl ‘‘C4 I • ci I IXXrrrc—’<p. • ccl I

XlaaXlfli a.tl.+.nsIl +4.4+

.Xmn4atnnltaUtX 40 .41 4+—+

4X11t44¼ 4aja.WT I I * • ci 4444+

II III 4+11+4

WI 1114.111

4+4111111

XXX XUSaXnar,4l’C fl1111111111111+11111 •a444 nIl

0 4 8 U I a a n w If 4 1 Iii W I 4 Ii II — 4 4 II II II

X I fl t I • T I I I X W 4 V 14 + 4 4. 4 II II II

X T r t I a n I r I I I X X • • II II 4 — 4 II 4 I 2

XOnn11DYXI •.iIi II (I 411

* ‘C ‘C U 2 fl N 0 4 K • • • • • I’ II II II II 2 4 ‘C ‘C ‘C

• XXn,atIlUX5t t:’ IV 4 III 4111111142 XXX

• S ‘CUD =r,IwX.CIkCffn. •4lI.lllIIIlI* 4EV

I .xrnzwtaTX.c •‘W nil ‘I IIX.

‘C ‘C U K U U U a U U I ‘C K 11 ‘C ‘C 4 II II II II Ii 4 * • X2 4

1411

4¼ U 4 X¼ S tI II aUnt ‘C. * XX ‘CX’’ +

I ¼ i U Z o ¼ ¼ 2 ¼ U U U U C ‘C • ‘C I ‘C ‘C 4 II 4 a

r.c’S •00 n¼0884000Ur1n(l.’CrTC.ll

N7¼n¼¼U1’C’C*. n—Il....a’C... u4.I ..•

.IUUWW8OI* ‘•*. To1;R4runltrtzk2 ‘In.. III

Ill ‘C1’Crfl0’CXX1 P I454 IIIIII III,

‘C Ill • 112 •lI. xUKTX2 In,’ I I I I I I

UUntXaX*II 111111*. .lItIIXInXIlV P11+ II

CIrtIDX44IIIflhIII,1I11h1hI1l1I41I+1l1I Ii

•,‘C,.110lI0l41111n114.1111fl4+I .41141

.4111111111111111I111411. I44+4 11.141114.111

11111 lllIlI

111111 +4+4444 lll’il..IlI.lII+call cn$4411 1I444+4+’I

a.l I ..I4,nhIl1flO4’’4l I

• ° • I I + II II II II II II 4 II

11111 sIItlIn4IX4hIIfl44I1.11 ,IlIl.’Cat,CfIIllll+I

1111111 I,+Il.ZaUlX.1111141 I

scull puI44411l14aUXlt114441i*iIi..4X¼¼,’CIlII

iulu+,g14¼’C1l4.11112

• • a a a • i 44 + 4 + ‘ I U ‘CI +4411 II II

..oar.lI++441111*Xi’ In

• o.rr.eI+ lI*II.II’C11,,11112X1h1104‘C’CI’Cl(4Ii++4Il*4II44

i1.+iI,i.CUOCIZ’C .n+A,.1141...IlnI,tr..t’CxI4I++ll S•I

I I*IlXflbdT’C’’4I4t44l S

Il•4lI XxXg*— Il.IIlIIlt

ee..ca.OIII 4.4.. ‘,.I,uliI44i?lIV4,,41111IIlhII4III44hI)C)<

I I 411 II II II II III’ — I I I • 4

00 .. .111411 II 1111 II II I tIll’,il.II’C.IVII11I131i1111X14

artI.unIIn.4.11I14

I 451+1411 X.1flXlI# •thIUIlnIIH

— I I • IIt •014 ‘C’CIw’C 11 4 * 5

II •IIC,lzUaTTroqr’ 4V

411 t’Cfl¼4U0 U

•IIV I’

Page 106: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

a)A-i

-4C‘S

‘C

0tic4

C’,C4

noL’, 0

•1’

000I

q.

no

fl.

II

000*

fin

U

Ca)

-4

-IzC0)11t

U

alE=‘-“ U

.0tn,.D

C.”,,—-4

-t

-4

Clat

0 —a)’.”

Cl ‘-..

i-i U

0)4-i Cr4Ca)I4

COa)

,J, >,

Sta) .-..

nJ‘-isx

“-4 0) C)“-4Ca)

-4 a)I-ito>

—4. > a;—I -4-4 Cl

tO 4-4 .CaNtI LIo cir1 0)It1 C

4-i04-40o 0 tO

-4 C-4 -4at to>.

0) -44-iso.

0.an-ito4-)o >,wp. tot C

-4 —.4 IiCtc-.4 I)US1 ‘.. a)

a;

o >

I-.C

00to

(1-;

It—K..,,

a.... I,a

• K

oWI! 1 r I.. K “ 1I’ r. r r. I,

) I, • K r 11: a’ it

• a’. a’. r C aa p. r C C I‘r,trri• I

I

I-..... p

a0 U

par OK roost PI 0 C C 0 0 Ii

It0Ctt p

I, ott no It‘““flop

, a’,;I, a a a a a I’I’ C a a U K

ii a a a C, I’- I C P a a a

it a a a- a a I’

a a a Itit a a a a apa 7a’5 IP I

P kU Ii 4’. II

I P

31111 P

I CPp

• •1It PqUppPplPPP K P P Itit It K II P II P

II Ktrill

It It tIlt It K

‘KitIt 1)11K

1113 P013It K

“It liiiPill II.I3l hrP111110

In— I I I I I IIP111111

I I I P P ItPIP II I;

K

KP P

Ccon

NtJ

-C -

-K)-’,.:

S

00•10

noCr

00to

0

0OK,

00

InC,,

to-d

to

4*

at

U,--4USaIK,

Page 107: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

•II+•IIttt

t4t4-

—III.SIu.S.c

•!SSSuII•SOS

SSOII•

SI’.

•beII.S

Sa.S

S(ItSS

...iiIII,-.IIIl11

•.IIulIil..Ill

.uuIIIt.xx>ll5..IjIIC...

•i4..tupii.xxxtGa.iIIiIeSCaSeSS

,*iIij..xxIIII

olIxo.xrz:xiI...IllIi

III.•SxZxMIllji,ItIII

tIl.eecxxII,ICII++tII

+iI.sSXxx>CIIlIIItttttIISSSS.5

•lIlItu.x..uiIIIli—.t*l

•IIIIII0s*SilIItIIIIII$IIII

.11111111TIll‘lilt+IIIIIIIIIIlao.

4...,+III’‘I‘IIIIIIIIIII50

•ttt•.lIlIul,Il,il.S+11111

tIlIICIIIIMII1115III

+IIIII•IICSt4II.IIIIIIIIS

•IIICIITICxxii+iiI1II$III+tI

•IC50IiiNNt*II+IIIIIIIIttt4

ti,.’It’C.tL1flxII.IIIIIIII+411+

lxIIIIIIlaxL1.txSii..+IlIl++IISI

.tx..xxZlJtxxll.t++IIllllIiI

GXACxInnsrel1111t+++4111+4

UNNNflflCI’SIIIIIIIIIIIIIIII4•XN

Ltx:.rcc.z1xlIlI411IIIIllIi.xxx

x..t.*t

qsInt2:4n01N••SNN$-tII

•S•CD:N•IIIIiiNnCUCC

•I£x•II4Innna0

Lo#aILt-NIol+4’

LiS-CIttIII.

INnt,LL,III*naUfla

11*NrtxTS.II.SOOCZt

t+IllItllXIlttII

IiiI4*lIttII+.nLLXZ

111101ft4.IIIIIIIXXXX

‘•11,-IllI..xxx

IIISIII1’5tIIS*•

1111141.••.l’It*SXX

III+4II—tpt4Isp

•II•.ll+lliIiI*xXX

l.—*il)I,4,l*IllIuI**

till)11*11CX*O**

IIINaxIIDqaN*•SIII

tIUU4C

Ceg.fla

flMd4IiC

CI+

5”.—:”

aP0Ii

KNNN•Ii

•IICSII—

4—tII41

oIiIiII—4I

IiVIIII,IIIIIiIIS

11.114CX*

+4III:*IN

liFISXSXxtnNilt$)C*511liii

••Ii.aa£X)S1.flNIIISI*CIII

.NcoItIn.xllL.0**11+

..ll.LaAxI.,.naxNt

lolll:ll.LxrStoa.LxtvnsZxx.tak•

*t115,INSttfllIX*n4kItDS

IIII-to.x13SflIXNt1Na

IIIIt.i*CNxL.tIZxtU

II1.11,XNNxr*N.txX.a

5+.xxx.,AØSU

••III4-5iNNC45C

IIII•5xS..xL

+4IIIICCXII.xxL

t—IIIIllir-’,tsxr

+.—...SN...xxxNX

IIIIIIII*NSIIINNxNxIi

•StIIISSIIIIISINN*Ii+

*&II11111INSIIINI5141II

III1141111ClxI,x*lIC*1*

IIII.,—Ntr-LthuIISSCNN

IiIiIISNt2a*x-tx.*II1*NxI

IIIltttZC’NxNSXXXXCII

.a,x:fl*NX:NNI1

Za1*ZPIXNNSSIIII

Is*a*EIIt,lI05IItItIiUittI1+4II4IIIII

I*1

II

.5.

I..+)IIt•.1+11

*4Ti—+

SIIIiII11+111111

IIIIIiIIII+4.iiIIIi

1144+‘‘‘‘II+-t++

+4IIII+

+44IIIi*II

SaCS-aNNCC

SCRCmINN

CUCRCM20xl

CCCa

CCC,UU*1

z.s*exxnznn

auntsS

xxx...uCxaj.n

SIISItf*tiltCZXC

.*IiIi•4-ItII*ItU

CliIIlit15IIII•ICU$

IIIiHiiIIIiIiI*CUU

HIIIIIiSStNC2

••.t.CxLioS

,x.IxxNZ$I

XNXN**xx%IIitC•

S13xIIIIIIii4

IONIIII0IIII

LN54*IIII

NINN*S*ii

xNXNxx*II

•..xNNCIi

IIII•III-SII

UIiII0NNNIII

•IIIIiiIIIiIiIi

SIIIIt4.IIII

IIIIISIIIi

N*•uIIIIIi

Ix*IIIIIISi

CN4IIII4t

ax411litI

NSIIII4-ICI*SII—I

aaitSii•t

SLNSr—

CxxCII-.

xN4-IiiIIt-5

II551IIII4t

IIIiIIIiIIIiIII

IISIIIIIIISIIII

5114Cill

IIIIII4-ii

.4+.II

I+++

—4N’

IIIII

III

£6

Page 108: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

AM! --

.4%1*t4tflt?

La-CCanrLa

II‘I

LICCC4LI•0

I.e.en

II—II

ii...4.IIII

LI•C

LIII

IIIIIIIIS

IIIIIIIii

IIIIIIIIIIIIII

IIINIIII’

iiIILIIii

LIIIIIIII

IIIIIIIII

LIIIIIIIiII

IIt•4.——U

LI4.4.Ir4.LI

II....tIIii.t.-AtIII

LI4.4.CP4II

144.—IlL(IC•CC4.II

II4pC4LI

IILI

IIIIIIISIILILI

IIIILIIIIIii1

IILI‘IiiIILI

LILIIILIIIIS

LIISLiaiiiiLI

IILIILLIILLI‘IIILILILI.1IILI

iiLIIIIILILIII

LIILIULILILI

IIII

‘I*C*SSII

II***CCLI

LIICl

LICSi.fl•CLIL

IICIeCII

LICCS51IL‘IIICCCSCII

LILI

LiXICNICNLI

LINNXXNLI

LINNNICN‘I

IIXNXXNIL

LINNaNNLI

iiN#CNICIL

LINNICNNII

LINICNLI

INNNNNII

LIII

IIaa321II

LII32.LIIL

II223.12LI

LI0221flLI

II£fi.L.2.1

IL222II23.tCILI

IIStI:I21

ISS.2023LI

IILI

IIa3aaaU

ILaaaaa‘I

LIanaaaII

ILUaaaaLi

LIaa0UaILL

IiaaaaaLI

LIIaaaaLI

IIUaaUULI

LIaaCaaLI

IILI

LIaaaaLI

LIaaa•.IICCCatLILICC*C•II

LICC3CaIL

IICCCCC.1LIC•CCC1

CC.Ca

IICCCCILIILI

IS2:2:tS:4II

LI32:,3ALI

LIAAII

IIA13A‘I1.331LII

aaIC4LI

‘I:4:2LIIALI

LILaA21.11.1

Ii4AA%ALI

LIII

‘I•*Ca*LI

LICCCSC.1

P5S*5.1

LICCCSLI1

55:—a

1$SC.15.1

IIFin—UCI

IIIJI12taLi

LiPIIS.flI

ILi

0LI.—

-LCccxc

C.a

1<

onC

<DiID

PCDCa

-F-4-

MDIDi—f_a

GDi•t(D’<0

rtD’na

“3H.

HflF-4.

HZH

CD00

I,o‘—LI

CDHCiOD3H:3np

DiHF__al.aCD<

CDF__aHCZ

(DO

IDCD

sn-nF_OIl0

CDLI

DiCDrr

‘4La•CD

CD‘10

oc-iID

cc.7;0Don-C—0an

F_iCDC_-C

00-.Ci‘40

IDDiC,

0-cCDfri

HF-’c_I,‘

--Ci

ID.-C—

aMn—C

C.CCPCi‘4n

CD•0

C-—.0<

CCCr1(Dr

ED

LI

IL:

III

IL

1’

tIlL

UI

r,

r

00C.

1210C

—0

00

4.

.‘C00

N—

o‘n01

NNC.

15000

LiN

oLI00

LilA

CI000

alA•1

CI,

aC

121000

121D

CLI‘30

Page 109: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

0S

0

C0

• •a.

Ill+11—II4t4

+

4,

+ II H

II 4II 4‘4- I ‘4• + I I • H II• 4 4 I ‘ 1 II 4

++,IIRfl+ 4+IIIllIIl.lI+.++ DI 4 +111114K1144114411 +

II 1111s114.44 III +l.I

H H II II 4 4- + 544#5 I I a P“.1

+4.1111

44011 II 004—541 I• • Ii Ii 4 II II + —4 + 4 I I I • P

• lI*411111+4411 liii.I I a a a II :1 • 4 I I I I 4, I

IX) C • • II + I • I + 4 IIXI I I H II II. I I *4- 4 IXCI *114’I II 4 I

K II 4’ I I44 X4- XX’lI4 It IF

‘4 + IC I XX ZT K a H 4 + I

+ + + 4 4 Ii C * • K TI fl K II 4 4 4-

+ 4 4 44 II • • I K UT K H II II II 4

OIl.. •KZTTKC.

• +4401111 IX*tT.CKXXXII

• I S.a.XKKXX.aI’

4+cli

ii I a C I I I + C • II II II C I 4 1 H

114? Sd I 14.11K p115,111 11,104+

II..II.IIIIIIXI.I41IIuII’+

I I H I I I I II I II 4 I . I . II + +

+4111 ‘I 14a114411

II 4HIl0.,,4FI1I1l’411I11

0 0 + I I I + II H H II 4 P I I I I

411+4-411 o,,eI .4+’’?’

XKII+4+I I, III+III?I

XK144+l a•al I I ‘‘cliii?

XK.iIlI4 III? 111+4411

XXX’ all — — I I I •Oee •I IH H 114

XXXXXS II + I I I.oa.as. I Ill • ? +

XXXXX.Il4+I 114114

XXKXX. 11’.t .4111111.

• 4 • P K a II II +3l.0..I’ I I 0.1+’’’

•*.a*IIHH +‘I•°, Ills.?.’’,II

•‘‘4111141 ctt.CII+,

II 11+.

.7

Ill

4 •‘‘I—+ Ill IllII

1111111 e.G. er,...

lIIIII++4IIIIIIII4..—., 4IIlIlliI I.

4+44+54+•li lill .a.Iliii 11111 •I Iliii’.—.’’ +iIIIll)II

1111111+ 44+4+IiIIIIIII

.11111 i4+.+4+’I 711111

.,iiiIi+++.44+I,IiIlII

.0.11.11 +511?iIII05’c’

• • P 4 S • I I + ‘I II II II II + 4 I I I I

• .1 I I I I • II II II IL II + +5 I I

.111 .11 + 1111 ICXI ‘i.—+I

IIIIIII++111111X1X111’’i

•lII11 l+?IlI IlxxXxIl4’ Ii . dl.

PIIIIII-+IIlIIIIIXVJlt.Tl’IllC.PIIII,IIIIIIIIIIXOOH*411

aol’! I4IIUlI.4fltL +1114111111 ,XTOQKIII Instate.

•eCal.4 lIillIXQ10LIXH?II

.oa.II+lIlI,XUO4CXIIeI

.,o.? 1411 lI.X”tOI *147.0.7..,

PS eel I.II,.:UUUCI ‘I:

S ..i I4IIIllTt4l.C* 114-I

ao.rI I l,,Igar.,’4r.III I.

an.. fli I I Iixnrz S

I.SrII,+11n5r1X11

111111 l+1Z’T’1+I coociII ‘a.

4511?I*IIUrTo4hII 444111

11+411 I II.aa,,’ •1 OTI 041 •llH*4I I 4-I W 00 I lr.,rIU

4 + I awe we we a, iw P II +

4 + 5 7 a 5 HO W we — a Pp 1’ K II

.Q;aa.Ia,CweiP a

g.taNM

:.Ill

711111‘11111

o’.i Illci lilt I111111411111+’

I•+’

114+44’ii.’’’’III,’——

+‘IlIII I+454+7 ill+4..—. Iii• t II II H 4 I I4 . U C H 4 4 II II • a II +

I ‘ I C X a 4 II

I II P K C II II

I ‘ II I II II III • II II II II II

I 4 + II II II 4 1

I I I ‘ ‘ II +

I I I I + II a a

I I • p — II 4 4 +

I H H II II II II

I P 7 II II II II II

I a 4 II II II II IIS I I + • II II II4 C + II C I Ii 4 4I4IIX5 1?

I I “XXXIII• • ITT’

II + II XXXII I• ‘I II II 4 II

.1’’’—4+5114+4+4•.II.’4’?

a...’ Illnil

• 5P5

5I5

a...P..

Ga.

P.

99

‘.1no.1 I

.11...l S

IIII 4444

+ I I ‘4II IIIII

IIII HII ‘ 444+p I.•‘IiI.+47 1

I • IIIIII,

4

iF

Page 110: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Table 2

Values for calculating energy quality of crops

100

Sector Annual Heat Solar Solar Referenceaverage equivalent equivalent qualityprice/lb kilocalories/ calories/lb factor

(1975) lb (3.6l0 xprice)

Corn .0882 1579 3.175.106 2011 1

Wheat .0587 1500 2.ll3l0 1409 2

Soybeans .0820 1828 2.952.106 1615 3

Vegetables .0626 580.0 2.256.106 3879 6

Weighted averageof 4 sectors 2331.6

1 $2.47/bushel shelled corn x 1/56 bushel shelled/lb shelled (Handbook of:

Ag. Statictics, 1977).

2 $3.52/bushel wheat x 1/60 bushels wheat/lb wheat (Handbook of Ag.

Statistics, 1977).

3 $4.92/bushel soybeans x 1/60 bushels/lb soybeans (Handbook of Ag.

Statistics, 1975).

4 $3,185,179,000.00/50,854,200,000 lbs vegetables harvested (Handbook of

Ag. Statistics, 1975) over the U.S. for 1975.

4 U.Q.5 Average = Z

i=l a

a1 = 67,222,000

a3 = 53,761,000

1

a. = harvested average of each sector

a2 = 69,641,000

a4 = 3,401,590

6 from (Watt and Merrill, 1974)

7 weighted average value for vegetables, calculated by

ePE= Z

1

Page 111: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

101

Iiej = bomb—calorimeter value of vegetable; (Kc)(Watt and Merrill, 1974)

= percent edible portion of vegetable

P = EP. = sum of percent edible portions of all vegetables

(Watt and Merrill, 1974).1: fI

Vegetables included are: artichokes, asparagus, lima beans, snap beans, beets,

brussel sprouts, cabbage, cantaloupes, cauliflower, celery, sweet corn,

cucumbers, eggplant, escarole, garlic, honeydew melon, lettuce, onions, green

peas, green peppers, spinach, tomatoes, and watermelons.

3‘it

Page 112: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

102

values range from approximately 0.0 in many areas to 8.5 Kc/m2—day in the NSouthwest in April.

Vertical Heat Change

Figures 17—20 show the distributions of average vertical heat change

2 2for the United States (Kc/m —day). Values range from 2,890 Kc/m —day upward

in the heat of the Southwest in July, to 27 Kc/m2—day downward in the Mid

west in January. The average heat change is upward for virtually all

locations except in January, when it is downward for most locations,

suggesting strongly stable atmospheric conditions and a cold surface

temperature. The pattern of heat change is generally one of strong upward

fluxes in the Southwest, with values decreasing with distance North and East,

corresponding to a similar variation in solar insolation. This pattern

varies significantly over the seasons, with a secondary region of upward

flux centering around Tennessee (Figure 17).

Advective Heat Change

The tate—of—change of heat in the planetary boundary layer due to

horizontal flows are shown in Figures 21—24. These maps exhibit several

interesting patterns in distribution. The January map (Figure 21) shows

heat being lost in the Far West and South and converging in the Midwest

and Northeast, suggesting the influence of the Westerlies, as well as

circulation from the comparatively warm Gulf of Mexico.

The map for April (Figure 22) is similar to that of January, but

the zone of heating now runs across the breadth of the United States from Vthe Southwest to the Northeast, while above and below the band, there

exist regions of advective heat loss. i; tiVtIll

It.it.

Page 113: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

103

July (Figure 23) appears to be dominated by Westerlies, revealing

a gradual increase in advective heating from West to East, with an

anomabus region of cooling in the Nidwest

October (Figure 24) shows advective heat losses in the South and

West, gradually giving way to heat gains as one moves North and East.

Change of Free Energy of Water Vapor (Vertical)

The distribution of the rate—of—change of the Gibb’s free energy of

water vapor in the planetary boundary layer due to vertical flux of water

vapor is shown in Figures 25—2S. This value is an index of energy sub

sidy of dry air to evapotranspiration. The higher the value, the greater

the tendency toward evapotranspiration. The annual range is from 0.0

Kc/m2—day

in the cooler months over a widespread area, up to an extreme of.

12,666 Kc/m2—day in a hot dry area of the Southeast in July (Figure 27).

The values for January (Figure 25) are generally very small (between

0.0 and 10.0 Kc/m2—day), but seasonally increase two to three orders of

magnitude by July. The January distribution of values is quite patchy,

but the pattern evolves seasonally to a high energy band in the South

west, decreasing North and East.

Change of Free Energy of Water Vapor (Horizontal)

The distribution of rate—of—change of Cibb’s free energy of water

vapor in the planetary boundary layer due to advection of water vapor is

shown in Figures 29—32. The extremes in range for this value are

anomalously large, from —7323 to +78,980 Kc/m2—day (bath in July).

The values for January (Figure 29) are much smaller (between ± 1,000.0

Kc/m2—day), with high values in the South, and no strongly defined pattern.

Page 114: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

106

The April distribution (Figure 30) of values has roughly the same

range as January, with most values clustered around zero. Negative values

appear in the South and Midwest, and high positive values in the Northeast.

The July distribution (flgure 31) is marked by a strong North—South

variation from high values in the South to small and negative values in

the North.

The October pattern (Figure 32) is less extreme, with a large cluster—

ing of values near zero, and generally higher values in the Northeast.

The values for most of Florida are negative.

Change of Free Energy of Rainfall

This parameter includes one component only: the change in the chemical

potential of pure water component in rainfall to surface water. Inter

actions with soil are not included.

The distribution of this value over the U.S. for January 1975 (Figure

33) shows a high value for Northern California/Oregon, and a fairly high

region extending from the Great Lake states down to Oklahoma. Most of the

South and West have relatively low values.

The April distribution (Figure 34) shows much the same distribution

with slightly higher values, and the high region of the Great Lakes

extending into the Dakotas. The general increase in values reflects

greater rainfall for April than in January.

The July distribution (Figure 35) is markedly changed from the pre

vious months, with a strong band of high values appearing in Texas,

Oklahoma and Kansas. The Great Lakes states and North Dakota, as well as

the Central Atlantic coast also exhibit high values.

Page 115: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

a_

105

The October distribution (Figure 36) is relatively uniform, with a

region of high values on the west coast, extending into Utah, and some

patches of middle values in the Nidwes tern states and Texas.

Maps of United States Agricultural Productivity

Corn Productivity

Corn productivity (Figure 37) shows little significant spatial pattern.

Low values occur in the Southern and Northeastern states. Highest values

occur in California, Indiana, and Utah, with medium to high values occur

ring throughout the country.

Wheat Productivity

Highest whest productivity (Figure 38) occurs in the states of the Far

West, followed by the Great Lakes states. Lowest values occur in the

Northeast.

pybean Productivity

Highest soybean productivity (Figure 39) is found in the states of the

Cornbelt and in the states immediately surrounding it. Virtually no soy

bean production occurs in the Northeast, nor in many Western states.

geLable Productivity

Vegetable productivity (Figure 40) is highest in the Southwest and

California, Florida, and Ohio. Low values occur in the Northwest, North

east, and in some South—Central states.

g4ghted Average of the Four Sectors

The average productivity (Figure 41) for the above four sectors is

highest in Wisconsin, Illinois, and Pennsylvania, with lesser peaks in

Kansas, Arizona, Nevada and New York. This distribution reveals a high

Page 116: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

0’tt-CZ04——otx

ccU,

IIIIIH

Ii.11

U00

•H0•ho‘H

H-Ilnb

H-‘IIItJ.fl—nC’GD

•2-H

I—flCDCDI-

111111111HIIIIIICDCDCD

IIIIL.JIIIIN—no

IIIIIIII‘‘-qfri—

IIIIIIIII0(4flCD

HhilIIilo.-

IIIIIIIICDC

HIIIIIII!iiIiIIIiII

HliiiCD-C’

HU1HC’HIZ

lilt11:-IlJill.•<CDC’

IiIiNIIIiii•HI

IiIIIIIII’IIIIC<lIllIllIllliuwo-a

IICIIIIiIIIIIiCr

HIIn

Ntt—7—II7;ll+r,+llIIt4•tttII.—0lltttttll

II—fIILJJIl.*IJlJt4r11

I,C’CD

IIq

HXCIIC’—‘

wxx.>c*xilZHCD

llx>’>xJID(jCDN:<,<,-,:xII.I

N*X)c>cXl.—>

H<<)‘;‘XI’Q.‘‘.0Caflxxlwxxiip-n

HOODDOIICi

Iic;OtCIIIIDOtSDII—I:?)

:J-3uolI.$-SIICCODOII.

S1%’

HO0CDDHllCDJODaQto

110000011C’%J

IiH‘<Lii

isII

ILi.ZSiDIl

IiiIS:ii

I,II-ta:3II

CD0C’

UI‘riiI—ci

IiCciCDan

It..-:::t:3IiCHCfr1.

4:liC’CI;—I—’C’IitiLt.I-...

H:5IIN£ZLroll

IiIIilk:;;1I]IIIinI)4l:III’flIi;4:1IICD74

itCD

HIiIIIiUIIIS

I.IIC’$IIIrutwz,It,tNJ

Iilii-II•C

HIIi_CD‘<CD

I_A.t<

CD

I--GD

t.J-4

Page 117: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

-..11

*.r-..4

86

eon

esn

a.

eo

ns

SH

tJA

HU

PR

AA

R

XX

XX

XX

XX

XX

XX

XX

XK

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XA

XX

XX

XX

XF

XX

XçX

XX

X+

,•.-,t

xX

XX

X4,,

,+

++

,X

XX

X+

tfk

fr

tttt+

FX

X•t+

•F

tt+

+$-+

44

t*

F,

t+

++

tt

f•+

frtt

+ttF

*t

+

=

‘a

o’O

2

a....

‘S

..

•0

azg

x1K

I9

C4

X2

i6

0000

£O

9?IK

00000000000(I0

4j4

X9

800C

C000000000000

++

++

.+tt,

000

8‘i

S0

00

00

00

00

00

00

00

0+

FI-t,-It+

000000

8e6

6e8

95

8b

ee

OC

C000000000000

tt•.-t

++

+0

00

00

00

00

eeeeee€

cn

see

eoccooc000ooooa

++

*.*

.+

.,

00000000

C9P

00

00

C0

00

00

00

00

Ft*

b*

t+

t+

+000000

S0

00

00

00

0yep€E

PS

8E

dH

9€

80

0o

oo

oo

oo

o00000

RS

80

0S

t2F

6€

0IH

A€a€se

00

0000,)

OS

RA

BA

000

e€€neae

e,l

e6pR

neo

ocononooco

==

==

==

==

==

=0000

e9

e’i

esR

00

00

.ini

se

60

5E

€A

688

0000000000

==

=—

==

=—

-=

==

00

00

0€B

A€68

00000

0aiizii

...

eeeoe

00000000000

==

==

==

==

==

AIR

RA

80

000

00

0000000000

==

en

eeso

n#H

**IW

000

000

IiiZ

ml

00

00

00

00

00

9OR

OR

AC

OA

eeef3

AA

e003

0Ian

0000000fl

0n

eseescis

seen

SA

SH

OH

O#S

Iii

11111

•n.ufl

UG

AA

H€

31

1H

’iP

Ir4

Aaenneqe

nfl

lliH

ennoP

eW

SU

n(U

nI

nm

cc

OR

HR

SA

AF

,HnA

eseA

e‘1

afl

OH

IS

AR

An

inn

lajiN

ig

.z,n

wqn

HA

OA

Hth

3AA

MIS

1‘4

;4::

l0

0A

45

OR

StIMNeI

Y>

’I

SX

XX

XX

XX

U:c

la:4

1505

RA

ShA

ii.....

IIIU

UIfl

Ifl4

iWA

RU

RR

RS

QH

RO

SX

XX

$X

AX

IJU

QEl

0A

SH

esan

ee

....

im

aiw

na

111O

)1N

PA

RR

RH

HA

AR

AX

XX

XX

XU

WR

NH

00000

Ad

AH

HIA

UK

gG

DC

lC4.4

;1M

HH

nA

iIH

$IR

HH

XX

XX

XX

fl

00

00

00

floA

t)

II

SP

,1t4

+.G

HA

XX

XX

XX

XX

00000

00

0

0

XX

XX

XX

XiC

k’iiJ

[X

)Z

ZX

0000000

an

nu

l—

——

——

——

4iN

I)fl

1,c

qz1

Ntfl

000000000

•.+

.*t

XX

Xa::

r.cc4:I

A,l

xc4

QIQ

000000000

•.t+

tt+

——

4ac4

.acc4

.X

100000001)

•ttF

+f

==

r.,:

i;ci

,q000

•+

++

t

IK

XX

KK

tin

ai

FF

4-F

oq

:jcK

X,u

44

Krn

q

wcic

n;t

c1

c4

cc4

4c4

:sS

+tF

+4

-nfl

$-F

F+

gN

,lX

r1

4x

,4

Ka

Ft

=

tt.1

fl3N

C4C

I4S

M,a

cl

t+

tttf

=

caC

4F

Mo4ac4

-++

F+

+1

rr1

z:1

xn

+4

4-F

.

c=

rfl

OsnA

neoR

0fI

eA

fltJ

sR

Sfl

0R

OO

’3O

19

00

HN

:4H

A

--

-C —

I

-cnJ*

______

——

-..--rt3.i

——

-i-sr-£

.a4a’

t.t

..

‘-U

.—

...

•—

Page 118: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

244j

•ItHI‘CP’1

•cn4],e.1z

ncIIN4tII•1iiUI!ft3711

ciU

‘40

j41It

.1.0%

ciIi:rerruC).

I>i—fI,II

‘HIt

11ft

a)a) 14_i —LinC————

p.3_it.(tn-i..

)i.cirn =0

‘IIIUii0000011

•cocOOnLfl•.‘cCOOt_iuI

Ij00000K0•’Ii

•,‘°

3‘fl;‘“oc’coooI’JI00000n

-C’410000011•0IIQC000•

HP-I

4_iU>xxxa33

.ixxKxr

‘—il,0’).5I,

11’‘C•

C)—I:xzxxx

U

zttC—..,,ft

-

£ItILttII3_itII.+4.+lI

I*iI.7•.•.I—in-I0EIi

.l_i.

0on-.ciCIIHHriii:H

•L_l

IIipnflhl 1-.C——

i,.It•

IIIIU1bN

4_iCt‘CIIIIt—iiiiInQ)VDC’1ItIIIIIK

cic_iiii•12:NIl AL[4<‘—IIIIIII

cici11-—N fin-!•‘•—.>n——.•

‘JuN•I•••

it.]

>1000otcu._•——

il-n04_iI’ft0It0.I

U.1:K

2,n•°

•H•II

IIft

•rl

11

a.

:4

Page 119: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

1.1

zrcnE)4a0

•2x2x2,Jxc,t2cxxta0000

0tOfl0flflfl000

-

K2’U.tXZOflODflOflflflQ

0000000000

124F’104fl9flflflflflflOlin

XMMXiI2000000florIDa

I

M4xe.czAsf0000flCflDD

£ac:t000000000000

22ZCK2,a00001,0000000

S.C9a4z1150001,0000

fl•Vfl•w.1s2000000000

00000000

flsauaiii£3a00000000

all111111oOn000000000

lillaititlillIl000000+

•S$fl4d1M•IllillullIllill00000+t++

lIllililIlillIll000+.t+,+

lilIIiliIliInlI000+4+44.4.4

iiiiII111111004

NullIIIIIJIIIJIIU11111

IlHIilItlIiiIilHIIitlilIllIllIll414.44

uhit,iitIit,,tliillIliiIIIIiIlIliiiIIIill4.t...4.4.

JIIiiIIIIIIliIIIIlIIllittlIritIIllIuilIllIl

nhiHhIIiilulilIuillil•++++t+

IIIIIIIIIIII1IIIIIlililulInhilullItluhIk.41t4t+l

•IIIIIIIIIIIIIIIaaIIIHiipIIiiiiIIH1iiHII++.4t•+

HilipuhuhhIliililtIilhliiIihuIIIhIlliIIhiitU,—.t++.+

IthliulhjillhIlluihhlli.44.4+..

IhIltillIlhIlIllhulihilulllhlhhihIlIllluiuuiulhhhI

luliltIttiUtIjillalls11111,1111upIhul+4.4+t’

I.IhiiuulIIItILIltillhlhiK+‘.4..

uilhlulIHiiHiluiIIiJIllullOullIt.+liii

nhlHHiighIiliIHiI4.41111lillIllhhI

HliiIINiiHliiiIIHI)000004+tIIIIiiUIiliii

IihiluIilIhillulIiilIiiIilIiDODD+t.4ttliii

0000+‘++tliii

-

HIiIIIihiIIIiiiIIIIiiIIiiiiiiII00DO.••.+IIIIIiIIIiIi

iIIIliliiiI$iIililIiIlhilt‘‘4111110000•+++•tIII

IlIlipi’0000tt’.+ill

iItgIluluuuI,uIalIN,lIlNuzilH0000+tt+liiiHulhulill

lIliItIiIllilIiiIlIlflIlilliliDODD•t.liiii111111111

IIUufiiJJI(IihJUUuli,ulIIDODD.tt+lilt

—.•

hinIluillIlliKUIIIIIIHDODD,,

iitutuHhIifl1111111,0000tt+t*++t+.•.++.

IIIIIIIIIIiiItIIiiIihi000++,+.,.4

UuII)IhUIII.4+tt+t+++t++’t+

Hill,.4+’.+44.4++

II.+..+..4+t+tt-e+t++t+tt++

11111,.,,.•.•

-•1III)Itt.4.+..t-+•,+..t+4+tt,

IIiit+.4+.4+++t+

i.,,.,xx•

-II.IIIH111111tqXXXX+t’+tX

IlluillhllillI).)cxxxxxxxx

IKIll11111+XXXXXXXX.4.4.4.4.4X

•.IlhiiltlIIilhlIIl+4),XXCXXXt++X

+xxx

IhlIlIlIttIliIli•t,DODDXx

II•,.

‘alilt1111)1÷.,000000xxxxxx

-I

I?iiflhIliIIIt.4.4+000000xXXXXXXX

II£iIlIlIIllII.4.4t4000XXXXX

+•+.,

,+,+.,XXXX

IiJi

HNIIU,+.4ttXZKXXXX

UUIII’huhiU+4—XAXXX

IIuhillikIlil.4..4XXX)(X

‘alltIlIlillIii.44XXXX

jutullilutlUIit+*4•+

11111111111111kIII+4+t+++4+

IIuIIIiiiItaHUItIIN++4.4.4.4+.4X

JirIIIiIIIIIiUIIliii.4+.4+.4+•XX

-F-?;LhuiliiIi)lultuItui.4+4.+..XX

_‘.I.

‘aIIIiHII1111114..t+t.4+.XX

‘,Ic•HIIIH

.4.4.4.4.4.4.4.4)tx,

•1h

•44+4.4+1*4XXXX

I‘4....÷+

9<

+xxxxxx

‘14._I”++xxxxx

.

1L-..3tJ

-

•00

it

601

Page 120: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

xc

-‘)czI——

0oCCr

ci

aIia

•aa

1-I.a00

TI•II00

.2

JII0

a—II

—IL000no

i.1

11.fl

a—a

:-“

allilill0Cc.j

•IIIIIIIICDi—i

IIIIIIIC*111111002IILJIIIaaON£1111111h2—no

Ilium-

•IIIIIIi11111111.—EnaII0-00

aIIIIEn4UIIIIIIIiU1<0.I2HUMIIU•,It3IIHIIIIIIh00hjPH14021111I•014IiIIIItJruCD0

IN0Ii1IIII@——

ia,1IIPPUII—IIHUHKII-

IIi0”1

It.tttPII+++t.II7:0I-p+I.tII0ci

II00I—-pu’—-.”•8

PL4

I‘I-0Itt.ttII0_rii,tt.tIII‘Ipxx)caX110•IxxxKxIICD

00—a

IX)CXXXHtJlD0)C)’)d1I4

00000II10000011•00000U0

00000”0°00430110000011C1000nDIlNLJ

00000110--0000011

H‘-—LL00(I-‘.0

-1

00

z::Z-tIm-4:t:DDII

—.2)0

ot%

a,CD

2N.2=C%2fl1100(0

a..EtN:tZIo-1

-“0fr-I.314J33:IItC

UTI%IIaa:II’aIi

flII=0II,000

.PTII

.00ri

.tdZII‘DO

E1JA11t-.

a‘Cr.i

00-0’

‘C0o

Page 121: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

a.

a,. —OO...•0

•4 a

cccOC CC 0 0ccc 00

DcccDCCC

Cc.Ciac

Ca-TTICcii a c

ca- a’ a icc a’CC CCOC TiCC

Cc oWCWC CCCCC’

CIcciCt —CD a- N

C N

NCatzrvIiI,D pciitiita,iCeiCi

0000XXXXX DODDOxxxzx conexx’cxx c000Xxxxx 00ccxxxxx 0000XflXX GOODXXX>CX 0000XXC,CX 0000XXXXX 0000

xx 00004•a

44

4

4S 4

4SS

S

S 44S

S 454

5SSS 4

S S 4

4S a S

S

SS

S 4S

•05S

• SS

S... SS

SS •SS

.55

o 00

c Dccccc cocoa

ccc Dccccccc00cccccc

CC

CccCcCDCoccccCDDC00

0

ccc:COD

CcC

a,

.5

Critartcci

• c:tNC, Ii

amn:ICU C•xn C

I C

N tS aCCC

• 12 tI•flC• ChiCo

551W TZICTIn,nw taCtiCu—nfl chitlaI%Cfl

atWIlfi S X’(XNI x*,<xC

Ca’ xxxxcurCCII ,<xxxIiI xXYx

chart XOO(caJav’t xxxxcSC4-C xXCXt t r C X

Ciurm3,TtC xxxgxits(CitCCC : : : :°.

S

S 4S

•4 5

•5 4 5S S

S 55

5 OS

S 55

•5 5t .1

S S

5 S4 4

S

S•5•. S S

S

SS55 S

k

ii: ‘LiL 1:i f

(I

ill

S

COCC

CCCa-crcore

CO TtDO etc00 Ciio Wit •5

CCC as

a

‘N,,”

DcccocccC

C00000DCCC 00

0000000000cc00CC000Cc0

cccceDeDccc000 Ca-icc ciiiC trimso cliiiaudi

C I t C’C SarcC 00

00000000000000 Ccccc 000000000000

cccccccc 0occcoc 0000LCO COU

o 000 C 000ccc c ccc00000 Cc cc0000C 00000Cd000 0000000000 CC0000 000

CCC 00 CC000 00000000COD 00000000

c0000 OcCC000000cc-c 000000ccoCDccC 0000000000CODS Cc000000ccccOc0000 000000000000000000 0000C00000000ccc cccCc00000000

C 0000 0000 cccC 0 0 0 0 SC 00 DCCC0000C 00 0 0 0 00cc 0000 00000cc 00 0 0 cc c C

000000S 4 00000

S 000005 00005 00005 00.0S4 5

S

SS •S

4SS

SSSS

45.5

Page 122: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

t

C’,S

U

4-i

C)-4C)>

-4

Uci

C4_i

to

H

-4aaCl

a)to

I_I

2)

-4It>

a)Uj

I-I

C,fj

‘C

Itr.up

r • a. I; a IIt.t.lIcr. nl

a. ir.rIIaIn_ft

TI t I. 7: I.II C r I. t IT IIIII a x ;:‘I C: 7 Ti I.

C—1—0

— .,a.Lr:-: I—II

II ‘7 7. r KIT 5: C xIIII C T CII C CI’ T C C I

‘t• IIT2ISII11- u-a-a ::rt’

II

C .1 C Cq a a a- C ‘III III CCC 1’ CIII C. C’ C C C’II U U 0 Li U I

4.0 IICCCCC’rI’S.

• UI_UT_c I

11CC CC C III CC C C C,

DCCC

IT X X X p7 xTI 3. 5< 1 p7 ,< I

II 5< 5< -5<5< T—4 nxxxxx—n IIXX5<XI•0

—— IIX5<l<l<XiII 5< 5< W 5< 5<:

TI 5< 5< 5< 5< 5<:

II III .4 • .4 4- -4

-4 -4 +II

a— II,.44-’+’C— +

0 II

II .4 .4 4. + 4

II II I TI WII IT II II IT ITII II II II II II

1-C’ IIIIIIIIIIII•C IIIIIICIIN.• • II II TI I’ II TI

IT TI IT I. I ITIT II II 111111’

II IT II II II TI

II I I I III I I I I III I I I I

gt. 11111114.0 III In I• IT I I I I00 ‘111111

NT TillI I I I I

ftIT. C14 —

ft

on

U,

C—0’-4

IoTaIi tUCi

CJD0

C)4_S en1 C’,

Cit

4-iC)

CciLII 0

U C’,05$a)>0t14ci

-C C

0) 0H-owcow

ci >,toj ClV a) t

S —

C) C’,

o i_i —

a)

H a) H

cia)

tol.j Ti .t0)4_i UCcitjtz) 0)

0-1

toH

DOIt

—42 .1.

-SC.

Page 123: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

113

Ill

I Nilliltill ill

p II ill!I pill!

liii,,— ‘Ill,,’— — ii—— p ii• liii,—— I I Nil—— P’tP I—— Il liii—— 111111

XXXK*XKgXKXX

K..’KK

K

‘C‘CK

II

IIIII

ill

IIIIi

+4+1+•4

+4.’4+.,.44+44

4

4

4,4,.•+44

.4.,

4,.•44

or

NiIi

INNp

I I NI CI44+ ‘I II

•44+44 .4

+++4+ +4 I ii4+., 4.4+ II

Iii

II

liii

4. .4. III+4 44, II+ 4...-- I

czTrr -

p Iz11r p

II.” I‘lip ri II lfSiI I

IllilIllIl , liii11111111111 X(X ii

11111 II liii ii II XW:—4<’C

I 11:1111111 X*XKZ<II II

Ii III 11111111I liii!

I’ll Null 1111111o 11111 liii N

111111 II II nuluI I I I Ii II II N II II

111111 1,111111 IlIIlI:11Ii I IIIIN1IIPI lIlIJItH

111111 I .1.111110 llI1,IH

11111111 IIIIIIIIIN 11111111111111111 IIINIINIIN 14:1

111111111 01111011 II to

IllIllill IllIlIlilltill! flu

II ii II Ii II II II H 1oo.’r 111111 liii Pill III’ or.

ii :i II 1 II ii Iio00I 11111111 lIIIiiIlIlsea.. U 111:11 1111111111

.10 Ii II ii5’oO 11111:1

II ‘I NI IN e r1:11111 11111111 .150

• a ii 1 ii 11111111

liii H— — — 111111 Ttt

tt1r1Ti.ltttTi

IT’I

IttzIo1.III.Lt’———+4•4’444t

— - - —

, •,+..4.4 H

III .+4’ c11111 II +4+ see

III)! liii! a,,11111liii,11.111 I 11111111111 n,.,r.t.

11111 IIHIIIPIIPI I..’’ill P1HUIIIIO rrre’ pa

II II lull HIll

liii IltillolIll flIt1 flz1NCas

H Mflflfl4flfl04flJ.SIPIPOINII

0111:1II wn3.J p

2fl2II3

II—H N I . N I III N I I I I I

11111 INIi N I I N I I I

I N.4.

IIIII III 4...

— 11111• 11111• 11111

till• III!O liii• Nil

t I.,

S : .c :1: Ic

K Z CI4,

ç , -.

C Cc I; K W KNi 1 Cc ic Cl ‘C K

ecu CCC UC’ C C C C 0 C C U L•SC C C C C CUC C (3 C C C C C C. U-J C C C t.. C U C (1LI CULL C U CLC C C C C C U Cr:

C C Cl. nrcCI) Uric

C.U •4 Pt

P Inns.2 4

Page 124: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

U)-C1*7C——

C1.rcrccU)11

-

III00

H’4.IIDO

0

41-II.’..’II-

IiIIH-hIl__IlII----Thom

11II.4k

1’“-,m<

F..!iipp903I,IIIii<CDF—’

C)rt

IIIIpIIIi4(VCDIIIIIIIiC“4IIIIcIIO—ombII—•

IIIIIU4J11111110C3’<hi

II0IIIIIICDz1”4.

(VIIppIIHIIIiIi030)Ji,iiflIIIIII——tFtCD

t(V

-IIIIIIIIII1103U—‘CD1111111’IiPI:-<,oIIIIIIILIIUII—‘-C0IiIlet+.II

•IIt,+++lI0’0hi

ht-va—IICD

littettil•1

Ut,tttll—-.FtC)pI+ltIPQpjpC)U)

1:1II4-•4t4II0

lii0.CD

U>xX*XIiU)I,*xx)cYIIfl

It,I:x*.rxXIIItC)LX*XXVWCFthiII>*t•-xXIi‘JN(VC)C

I,xxx,*ii

I..J-lI>t*X*XIlNC

Ii

•ucooconCDIIOCtiDOII

.11h0003311t’.zC

1:1-110000011_%_(V

ODJ0.ZPIUMO-F--

-•r‘0000330•.03Ftri

.•lIoflflflOilon“4CDUC)000I,•CD0.

1100000119-II(VCl)

•jprr.Z1iIr••n

U)d 1IIaI13)II

•Hi-pjiort,’uw“4

•Ha))3,ztI,-I

II£311TIIIIt’0—

I33IlI3LII•t.DZLLII

-

ppo’D

-n%:n330lpC,

0-.1:,:II

U)2)1lPW49 •-P.)>

—,-t•pt‘-ait

iI-\ilII.-.j2II

-.1IU-.Hpn,IfluII‘CII.IIiIt.4UII03CD

IIgt,I)IIiiI

If4I0‘VILIPD.1I’r;”flflp•0.

IPX-II:1%.0011L4,(V

I.I.ii1231II.p1•(V

J]1HUnI.U.1II(.30.

•jIP

IIII

OCt

•14

I

1’

!!i’j

Page 125: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

&, “3 t 0

1t3 Ft,r’itS,fl’t 0

t lii’ t tt,fl,t r1ta. 000’)

ititt4ttTt’fl 1.11’ 1ti’r’fl flflflflfl

‘t:l’t.flth,i’ t ‘Ctht tonhin 0 D0000

liftt•t fiV% ttt ‘Ii liOtfi flflflflfl(3 noon

tht.t o:Dtflcr 22 n 0)rj.300 0000

mItt Ii’ trr,tm r ,MZf nr3r,000 Sm)

ItIt tIti ottm ta:c.ctrcr, 000000 00000

,tU.L n,L’D(L q:* ri-c: It-,. !)fl0I’)flQ ff000

i:cDa rha 3)00000 00000

a,IZ.L,’D tt4M:4zN::l 0000000 00000

t13 X-:1N 000 300.Z-)

95’M 2 ,fl.I4i-4A4 000 0 DOijOD

ifl’N 00000 000

,zzsi :.2Jn:.l 4 t Z’:39 0)100 000

zSliflW t+’f flfl.D’Oi)nfflO 00

4+4+ + +• 000)D 0 +

C-

Xflt’R 4 4+4 + 4 + (J00fl + 44

+4444.44 00’) 4+44+4+

:It4,a3,J,CI +4*44+4+ 000 4.44.4.4

o4X:C,94 +.-ett+ C)’) 444+44+1

XXX+44+4+4 11111? ++4#+

XXXAX$XXX4 11111111 hull 404+4+

XX*X*WA,CX +44+4 lillOilhllIll 4+4444

XXXXXXXXX #+..++ iioiinIhhl 4+444+4

3€ 3€ 3€ 3€ 3€ 3€ 3€ 3€ 4 — + + + + II ii ii ii ii ii 4 4 + 4 4 t +

X3€cXXxXx +4+494 IiiiihI’il

XXXX3€X3€3c 1+4+4+ qIllillill. +4+4+4t

3€tX3€3€XX)( +4+4*. hlillIhlIlIb +9+444+

XX3€3€**3€x 4+44+. IhlllIllIl +14+4+

xxX:<x3€xx 4.44+9 IIIIIIIIIII +4+44+

YXXX3€XX +4+4+ Huh 4,4*4+

•+4+41+ H3

4+4

44444+ 4+4+4+ c,,<t hihhlihl lii

II II II ii

• + 4.44 00003 fl:4 fill II II lii II Ill

,+.,t+ 0000 ttc)c:ut IItlihl

4.4 0000 ,:C1€A lIhlhhul

111111 (JCJQO c,:c,:>1 NIb.,,’

+4 1101111 0000 X33I 111011

4+ 0111111 0000 :4r—,:4 111110

4 4 II U If ii 1)003 5 D A II II ii II II Ii Ii II II

+ OhlillIhI 0Cr)0:X :4 IIIhihhIhi (1311111

• IillHhlhl 0)051111111?

• 11111 II 0000 t?)4XXXX

4 huh U000’ lb 111,111, X’3€XCX

1+ 111111 000 t IlbhlhlbIl

•+ + III 1.1111

444+4+ fill lUll 3€X3€XX$$’X

+.+4

bill huh 3€ XX)€3€X3€

+4ttt hIllihilli N

4+444+ 11111111

‘.4+444

Ii lItTON X

flu II n,,nnN

• - - - + 9a0t nthIlNII D

- . • . 4, flflqqn4, nuaii ut,t

• • - II M14Wnn13)I nS3nU

— • — II nRIIU eIj lIMIT ID

Ii 3€Ii 3€ %)34t

II 3€ uq:4 s,;csi t’vvt

II 3€ M $t4 Nl.itWiilt,tfl

II XX 1i-;3;:)‘ DC

H XXX)( It DDW1

H XXX a1)2.t trt’vO

J) )tX3( ibD-3’ It’D

XX tt’b0’OIt

XX ttt.tt,DI) DStfl,t

N”’p U lv

o upno00)0030

00000

0

71sing olUrI?I 3ahindMn” •A

ann NNQ

Mat. -.fa-2

NaU 2*4W.)h

3€ 0 X X s,fl

XXI II

I

••

I

, I

i

115

FF

IF

ill4’

4It

44+4+44+

44+44

4..,.4+4+4

• . * • +

4+.

444+

4+4+4.94+4+

*+444+t.+ 9+.

+ + + + +4.4.4+

4+4+4t4+4

• •,4 4+4

•tt++t

+4++4 *

+4+

Ii hi hi II II II hi

II IL II II II hi

hi ii ii R U ii n U

II hi hi II TI II li

, itnhlnhl ii

II nil t

III4+4 II

hi +44*44+ hI

II ++•+44 U

Oil 4+4+, t 3€

till +4+4+ II Xx

110111’ 44+4 110 XX

111,1111 ‘4+ 111111 XX

ii hi hi till III XX

II hi 1 Ii II 3€ X‘loll XX

X3€X3€

XXX3€AXXX 3€

‘I

IIII

II ii ii Ii

II hi II lb Ii

Ii Ii II II

Page 126: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

116

productivity region around the Great Lakes, and a smaller one in the

Southwest.

Investment Ratio

Table 3 shows the average values of the climatic inputs as calculated

by averaging the values of the contiguous 48 states. Also shown is the

dollar value of counoodities purchased by the agricultural sector in 1975

(Agricultural Statistics, 1975), and the solar equivalent values of both

purchased inputs and climatic variables. Dividing the total solar equi

valent value of the purchased inputs by the sum of the climatic inputs

yields the investment ratio: 0.02 for the entire U.S., and 0.05 for the

four crop component of agriculture of corn, wheat, soybeans, and vegetables.

Page 127: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Sun

Table

3

Avera

ge

valu

es

of

cli

mati

cvari

able

s

4600.

3360

6

wate

rvapor

AH

ori

zonta

l

BV

ert

ical

-336.

336.

4

3045

709

r51

13.7

41717

13.7

!

9713

Rate

of

change

of

heat

AH

ori

zonta

l876.

BV

ert

ical

-!

365.

Pro

ducti

on

of

turb

ule

nt

kin

eti

cenerg

y—

81.6

1345

5.2

5

-.

279

12.6

0.9

656.4

7061

3515 54

I-k

I-.

-J

Input

Worl

dA

ver

age

U.S

.A

vera

ge

Energ

yE

ner

gy

Val

ue

(nati

onal

Ener

gy

Valu

eE

ner

gy

Valu

equa1it

(sola

reqyiv

ale

nts

)av

erag

e)(h

eat

equiv

ale

nts

)(h

eat

equiv

ale

nts

)fa

cto

rK

c/m

2/d

ay!

Kc/

m2/

da34

.K

c/m

2/da

y2-

Chem

ical

pote

nti

al

of

3350

ct-

-—

Chem

ical

pote

nti

al

of

rain

fall

/runoff

-;4

-

4.6

10

0.1

89.9

2•1

O17

856

Page 128: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

•.--.--.

..---n

.-.

Table

3—

Co

nti

nu

ed

Input

Worl

dA

vera

ge

U.S

.A

ver

age

Ener

gy

Ener

gy

Valu

e(n

ati

onal

En

erg

yV

alu

eE

ner

gy

Valu

eq

ua1

it(s

ola

requiv

ale

nts

)avera

ge)

(heat

eq

uiv

ale

nts

)(h

eat

eq

uiv

ale

nts

)fa

cto

r-’

Kc/

m2l

day4

Kc/m

2/d

ay

lK

c/m

2/d

ay2

Fan

pro

du

cti

on

75

27

ex

pen

se(t

ota

lan

nu

al)

4.7

48’l

O$/

m3

.61

01706

Far

om

pro

du

cti

on

ex

pen

se

—4

secto

rs—

52

1(a

nnual)

8ll

.23’l

O$

/m3

.6’l

O’

60

44

av

era

ge

wo

rld

insola

tion

div

ided

byquali

tyfa

cto

r3

av

era

ge

of

state

—avera

ge

valu

es

of

cli

mati

cvari

able

s4

fro

mT

ab

le1

5pro

du

ct

of

colu

mns

1an

d2

60du

m(1

977)

7in

cid

ent

min

us

refl

ecte

din

sola

tion

10calc

ula

ted

fro

mto

tal

farm

pro

ducti

on

expense

sfo

rth

eU

.S.,

1975

($7.5

85

81

0)

inclu

din

gfe

ed

,li

vesto

ck,

seed,

ferti

lizer

and

lim

e,

repair

san

dopera

tion

of

cap

ital

item

s,depre

cia

tion,

hir

ed

12

labor,

pro

pert

yta

xes,

mo

rtg

age

inte

rest,

and

land

rent;

div

ided

byto

tal

land

infa

rms

(4.3

87

10

&.

(Agri

cult

ura

lsta

tisti

cs,

1977).

calc

ula

ted

fro

mcro

pp

rod

ucti

on

ex

pen

ses

for

the

U.S

.,1975,

of

corn

,w

heat,

soybeans,

and

anar

ea—

weig

hte

d—

avera

ge

vegeta

ble

pro

ducti

on

inF

lori

da,

1975

—76

.C

ost

sin

clu

de

seed

,ferti

lizer,

lim

e,

herb

icid

es,

insecti

cid

es,

cu

sto

mo

pera

tio

ns,

all

lab

or,

fuel

and

lub

ricati

on,

repair

s,

inte

rest,

and

land

rent.

(Cost

sof

Pro

ducin

gS

ele

cte

dC

rops

inth

eU

.S.—

l975,

1976,

and

Pro

jecti

on

sfo

r1977,

UR

San

dU

SDA

,1977.)

(Flo

rid

adata

fro

mB

rooke,.1977.)

9p

lan

ted

—are

aw

eig

hte

davera

ge

of

pro

ducti

on

co

stof

corn

($1

91

.33

/acre

),w

hea

t($

91

.48

/acre

),soy

beans

(l2

5.0

0/a

cre

)an

dF

lori

da

vegeta

ble

s($

1461.0

0/a

cre

);div

ided

bysu

nof

pla

nte

dare

as

over

the

U.S

.(m

)of

corn

(3.1

6.1

011),

wh

eat

(2.2

7.1

011),

soy

bean

s(2

.21.1

011),

and

veg

eta

ble

s(1

.38.1

010).

I.-.

2-

—-—

z’

‘ra..1

Page 129: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

DISCUSSION

Discussion of Climatic Energy Values

The climatic energy values calculated were found to vary significantly

over the United States, geographically as well as seasonally.

The heat—equivalent value of the change of chemical potential of rain

fall was the smallest of the climatic sectors, on a yearly average, and

solar insolation was the largest. However, values of the horizontal com

ponent of chemical potential change of water vapor, and rate—of—change of

atmospheric heat were occasionally significantly higher than solar insola

tion, in July and October. In terms of the amount of work that these flows

can accomplish, these high values are misleading. The work available from

a gradient of heat is limited by the Carnot efficiency of the process.

For vertical gradients in the atmosphere, the temperature gradient is of

the order of 10 °K/Km. For Z = 1 Km (the height of the boundary layer) the

Carnot ratio is l0°K/300°K = .03, which would place the value of work

available for a temperature gradient at 3% of the actual heat available.

Horizontal temperature gradients are even smaller, and hence less efficient.

Finally with regard to a variable such as the chemical potential

change of rainfall, the value of the input depends on the local scarcity

of the intput. Rain is valuable in the desert because of the relative

lack of the substance. Consequently, some caution must be exercised in

treating these variables as predictors of any particular system behavior.

Spatial Distribution of the Partial Production Functions

The state average values of the five production functions evaluated are

shown in Figures 42—46. Despite the differences in actual range of the

119

Page 130: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

iiII ) N % S ii

Cii r 0 11

CCC 0 .- n — 0 a W 4)4 D I K 0 — N S IT

C— I.ONOnWII

II ii— —

p — L • —.—lC’1 C,O n,v.r.siCt 6 CO Ic.rrip

IIy.%r,zII— go lr.rrLoL44 Ucoo %

pp.COEr’-——Cr3

• I, II•II t • b • IICd wr

in t C. iio — 4 II IIin — in II a IiI— S —0 II•ba.qHC’i Q)_

SatI!14 -J fl4 ICd — —

II IIUI UI i—i flnnDflcII

a) a) •- nfl000aii5 > P. ii Ii t C t II

Pm 0 C a IICd a) a)1’ mmnoonoU $3 —I—— 0eC’Oo,i

im a Ofltn iiX . Nfl 0 0 0 0 fl IIa)——0)

.430wl•Ci171C11C OP- :cI(rttndr-I C P-P. IIr1TciIU t IIt9it,I

flP- HIS-taila) to ri—W

43 43 -.1 0 rJ p t Cr — I t IICl > —— IITIIIXTI110r

Ii iC W 1< iio c.flO fl<i(iCiCflLi_4 P.•0 il(<iCilr. CI•‘

• rnp- C) NN llNaCX*iiid tOC C 0 ii a( X IIo — Cl

— ‘p xx ‘C pp m

6Li S II I I a • I iiU— a) ‘Sin PallC U U3 •11

1=. inc. ‘annrq

C U •‘ IIo ci 00 p a • , a I II

—4 w u 1 0 a a I I It43e-I C II ‘1

II II II II I l IIU cdr-coC > 0IO liP III 111)1‘Wr1 ($1I. flip lll,l,lIlo M ••iin

s—I 0’ • C l•’ ‘ ii p1 ifl 0) C’N ii II III III II‘0 ii ii ii ii ii 1‘—4 43 • II II II P H It U

II-p1 ci CdU II 4 4-, ‘

Cscd ni a1J)4-4-. •. S P-p..r., ii

C ilA+4 44-NII 4- 4 4 4- 4- II4-I Q

44-4-Il043%a iio p.o’

C•li’ Ill’• •1•t ppCd -t

> U —p.

in’ 1141* III>a ‘J 0 •—it ii p I I,ODd r-4 441 p I I I In$36 NIlIPIlI

p-CU COI Pall

0.—I

Din..,Or.—I- •1• •

III Pto

-

in22 j11

‘‘C—41*

L.

Page 131: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

9

29.9• 2 29

99

99

II

99.9

• .a

• .9•9S

•99..

222 2 992 C92 CC29 CT“9 I,rt.9 C:rt292 CCC2 CIT

art

+‘4+44.”

I,till +‘

lull 4111111II? Ill II

11111 III II

9

...

• 9.9•94•• •.9II999

I I I I II II• 9 9 . I I I I I II II• S • • p I p ci• . 9 I I I I I II II II.‘I. 1111 11110II.. Ill, 11911• 9 • . I I I I II H II• • • I I I I I ‘I 71 1• • . . I I I I N Ij II• 9 9 . I I I I II II II

• . I I I I II II II• . II II II II

9 4+-’ IIS ++++44 III

•9.I 9 4+4+4 III’

444444

In

•4+

II,a...... nil

++4•2+

OIl

4.44+44

1111• 9.. •4.4•94.4 II• 9.. •+4444 U

++ olin

I

I II II II••... III 1111111111• 9 5 I ( II II II II Ii

I I I I I I II II II II III I I I I I I I I ii II IIIt lIlt! ‘+4

11111 ‘4+4+S (II 444+’

• •.. •444+t

444444

9 444+4+4

5.+.44.4

4

4.4 44

•94

•9• 44444*44

• . I I 4+49 4+444+

+4+’’

K*XKX

, K r KXX * •Xx I I I S

xx • I 99xx I.e tOllXX 1111117,XX 4 1111111,,

K I II II II II III II II II II II II

II II II II II II III I II II II

I II II III II 11111I II 11111*I II 11711$I II 111111

II liii.?

H •+4..44a

I 4+4.444 54, +4.. 1994 4 4’4 4 49.44 5SI I •.944 999*9 49 IS

•4 ‘pørI 219••

4* •.rIi 5.9I94 ••SI 9I•4 •t.*

.9wflqm9 cOn •P,a”flS. aCe Wflaa• uC,nw —a’1sI Daaes *MflW2IaIfl• ,teautu “awrlnaI nan gNORWn8

• wean• 2002 —:nW—’sa• ace nu$s’.wn’••* NR9S19I!WRIIU

II0cç%t

U an UPx’12,i2I BURN

1’C UNtt$X N

Kxr.ktcc,c

*XJ<XX*X 1

XX XXX XX K XXK XXX XX XXX XX K IC XX XXXX CC K CCXXXX XX K $X K K

XXXXXX XXXK XX K XXXXC XXX

.4 K+444+

44b44444+.5449

+44—44.4

.9

pin

a

7:,.

121

a

2229

‘‘9

9t292

9*9

a K

I,.•4* III.

4.Oil SII II Ii II

II II 7• II4, II34 II44 II

IIIt

II II I1 I

It

44

SI

S.

Se ItK V

KRKSIts K

‘.5

t

n

SIt

I

II..

III... 3 •. — 4I. 59 4. 44 4

I. I 44.44 4+44

44443 4444I 4444 444.,

II.. 44444 444.4

••I. 44444 +S 44444 4 I

• I’S 44444 595II II 4 5 5II II I 9II II p 9 III 11 9 5II II . I

II II • 5 5II II 5 5liii *9*II II S • III •.*

SIS

I

9

a

.S

4

II.

5•SI

.5I.

IS

I.I.S.

I.

.9• II

• I•9

• IS.

S

I

II P II IIII 0 II IIII II II IIII II II IIII II II IIU I’ II IIII II II 71II II II IIII II II III II II II0 II U II

II II II IIII I’ IiII II IIII II IIII II IIII II IIH 0 II

11 ‘I4444444444++4+44 4+4 4..• •444+’.

4•44+——‘‘I...

*44+444

—4444*

+

I’!

I

Page 132: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

‘-P—tt

I$7

0——rC.,—c

‘11

KIIH’

4II

-Jo

4,ar.

40

I,

4’‘4pntjjiLlI,,i

0

hillilliUaIDB‘1

l,CIiIIi,tillI,IIu’

—_fll<

144hJ0DJH

oIiIIIO°”‘<W444444Ii—‘14’fr—44’.•D)DCII+tt1-•II

a’ita

44c-la

“-lvi4”0

14t,,..ttflt’JøH1.1

44t,tt4•

cA)Pt

Mt,t’.JtUG00p.••—44

0‘PtII

0Cflrt

p.4ppIIii4•0I—’.444’4444444

Li,F—’i

i4flVOhUh’C0H’4iII44•••-41

Pt044)4044O4Ia-aflCDPtup1444pp41414—_.Ca

44pp14p4iiL

4pu441’iIIlpPC

oU—-<nII)440flItjfl

P4F-—i-’.‘<mc

pp.•U4444•4—i.

4’*44444•—xl41.14114>C

444’000ii—°‘--fl

4fl’M$4PI03—$J

U)t$*>IICF’JQri—

4i)fltD$443laCl

14K$$)4*1P0t1

4I’,x$>:II‘<‘<r’J

pICx*,•x4Ic,DP4

IIH’-

,pcrrzpPCC

I41Z.L140CDPt

‘4rr&:CaePtP4P4

Wa1t:T,:ri4ijLflnu’3

a<aIl_fl0I’P4IH.

lsnfltofl”tCflI4nb04I“-aaa

i4qçpIIL-LH

44n1_0,C’a

1_s.

IInaCaflhI’•I4QCn0-P”

H

IIIluafl4an

IIIIrr$a

artcø

a

pp444s44i_4P40)Hix.Pt

‘m

j

II444‘4IViHI_-a’

H’II41o-‘II——at.,cn

ppppDIII‘4

H’_--JE

—40aat..ia

ii.ia.4.ip02’BII44444‘4.1

N)0)o,

-Hlax....,—H

0)I0

IIa4.e.q-pp..—•)4ICt

0.)4•

lPaa)J,4$ITCr114C

44

Page 133: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

en

r.J-4

flo

wxflfly

4X

WX

Xfl

•44

)cx

xx

44

.nw

444+

44

44

4444

444

—a.

4—

g

30Kf’flQ

9€!3E’

3030

K

K,

WI

Wig

S

‘if

uw

*’#

Kg

iwff

Ri_K

,

30gIst

1313

Wig

‘S

RI

.WIN

111K

W

SW

ill

KIW

Ig

ift

Nfl

fl

•31W

flflfl

-

n’Inrflflrm

W,W

ffD

U,r

ms,f

lJII

It

1.1373

73I

SW

kW

hN

III

KW

ItSifS

SR

II!IIS

ItIflIS

IIbS

RflnflS

mN

..fl.w

II

4W

rcm

rrr,n

Frz

KIo

IuG

3o

Urxx

xzzrzw

ygw

ttinew

cie

b7K

4C

Kt4

XW

ifflF

IV

I.y

;xK

rx

ufl,y

r):,:

Ynit

r$vx;q)130

rhr

3V

VPC

lCt

PGC

3evV

Kr

K

a—

.

‘ar—

n.

4

a5*

a=

==

=

a.

.7.7

3.5

lifER

Inn

—Z

n

SK

flu

_I.,,

IZ

IR

SIK

IR

RIZ

-

WX

’XK

fl$30

flfl

I.VIC

V.U

51PG

“4’’’’—

4+

a5

flfl

+4244

+4

2+

444444444

•+

4

==4444.

4444444444+

==

==

==

44

44

+3X

Y).X

44

.4444444+

4+

4t

44

4+

4

44

4,444..

44444424444+

==

==

==

=•44444•

==

44

44

444+

a+

4+

4+

44

+4

+4

==

444

44

44

44+

44

44

+•4

,4

4+

44

444444+

r

4+

4+

4+

++

_=

==

==

==

==

_=

4+

4+

44

44+

_

•••••••

••

——

_C

__

__=

4444

4+

444

44

44

44

444

—+

4’

——

——

——

——

——

a—

Page 134: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I’

0WI

uc

,r, w.I.

CtT%fl4flhI

— 0 r4W64

o ct0 >.

—4< I 4

o a)• %

o >.gD

IrWILrfl

ttt001rrv.’II

—I —.‘7 C

——

lnCn BIIII. %.tll

0 Uc,.Iltt..

tiN t!*Vll

_0HV.tII

0 C rj .j I’ t • W — II

a) 0. • ,.II

4-’ttrlP

FOnUI4

Ct en•

t — r’4rr•IflaOI

U tC

f-Jll O a a

C — (_fl .ooaan—— lIr,n”QII

0I.

a) 0 r.

—It-

Cr’3 ‘-_

2 S

‘4-1 1-’ 0 0_’—— InsTil

II

•——

U-tC •

• IICCCXli

oU O@3

rJ llXXi(II

U C So llWXfl

oaoittX*fl

-.

o eiItW1

011W? J1F4 II

4_I.tGJ w nejll’.’4ll

C) - S — 00 ii. •

z,-l C)14.C

ll.,WWtII

o 4-JOI’ U

I-i (OX t

o0iiIIiiIi?IWO

04 4- 0) a)Va 110 10111111

. 4

• • ii II II II II N II

.—40.W 0•p_i11:p11n11r -.

ItIII l.c,?I1It

,-4_

Ill

(‘IC 111111*11111

Cn to II II liii liii II

•UC

110 1111111111

K H

U it>,gflo44II

It”r-r

‘4-’ 5 Ct .• •0—”

Ito.,II_• _411

a) U44 411

0)—1 CO • 00

40Ila.’-,+II

It Z >,Ii,,...I’

n•t•‘Ifl I I I I N

> —. PHI”

w

It I I P I I

II .11

‘I’

IWO

toWV’ ‘‘‘

‘—Ic.c‘‘I

.4.. (II11 .1W

12DZ 10

‘-I—— U“‘C

—< 1.

2tj4

Page 135: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

II.99jill•9I

II.9.9.99IIII99I9II

IIIIIiIIIiIIII•IIIIIIIIIIt.I

I.,IiiiiiIIIIIII9

‘III0IIII4I41111II.I

4Ie•II..I,..III..

S••IIIIIIIliiiIII

9*4.949.1II I’I.4***i*I II44L.•IIttI...III

II...I•.I.

•IIIIIIIIIII.4..4

$•.•MU4ttt±.rt.%III••I

tRn.i.atbWMUIIIII

ItIIIwlsrMQSgIScCIIIII

tI1atpU*tWbwg*III

I•iiI bwmnW.aM,,-.IIIII nnKItUaaWk.Uk94IIIIIIIllI g9trwtcPk;s..IIIllI fl*kflgkaSlC4PlIIIIII g:4tX*IIIII nlnaaFtIIIIII sIam•IIIII IICnCCaC4X*

ttnrnaflXZ4aSIIII9 tac.I.gIJjJI.ttI n*UcI.MNZ$t*IIII

IIII,III *1IIHIII.IIIIIII 10111111IIII

*111.1111111104)III*•IIIIIIIiIiIIIII

III*IIUIII1g.4tttIiIII.t.,.4III •

.I•ttqqI4tttttttI

9IIt9

•R

It”32

‘‘It•*Rb

9919kb*11

bRa

•1

9IkaIUta

a

:117rI.,

-1I

IIUIIIMiIII.jil.UIIUU

I’LlIIIIliiiIIiiII,IIIIIUI.IIIIIIIIIiIIiiIIIIIIIIIiIIIIIIIIIIIIIIIIIiii

11111111IIIIIIIIIIIiI;4

IIII0++4+9IIIIOIl4*IIrtt4tt$

III

t+*tt++ttII,t_’_++4.*III

III’,t•IIIIliiiI.IIIi.111I.iiIIIiIIIiIIUIIIiIIIIIIIIUIIIIIIIIIIIIIIIII’HII4IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

11,11100011+4,II4+44+4+

+ttt*+e.++++*4+,+,,,,t+t49444+•4+++7.4144ttt+t++4-t4t++4,4+t+—+—tt+4+t_t

t7+*t+tqt,t+4.q-ttttttqq-tt1111114,444MIII’III

111114LII•III•IIIIIIIIIIIIIIIIIIIIIIIIII•.*iiIIiiIIIIIIII•eIIII‘IIiIIIII*•IIIIIIIIIIIIIISIMIIIIIIIIIII••*IIIIIiIIIIjII4IIIIIIIIIIII •SIIIIIIiiI£III•UIIIIliii.iltI III111111111

II11111IjIljIll114111111111111111III111111111I‘IIIliiiIIIIII.,1111IIIIII1114)1

IIII111.1444111141111

1111111111111I.1,111411III II4.

41111141II4-4-414I141111.,444t’t1)11111111,IIt.t4.t111111

II+4-44-411111*11111II+44+-411111IIt+III

hIlUII49*•t,4IIIIIIIIIIIIMI..*9+4+4411111111411%*Wtt+t++11110111IIIIIttt+IIIIIiIIIIII**IIIIII114111111111II11111114111111111111II).1111W.tR

111111111*)CX.ZLRb11111111IIZX•

HillIIx’IxICLRb..*,*c).rst

1.1*14Xjibi*5*.X

I.

991.19kb••a’bte

lb..‘I

Page 136: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

C0

0.0 pP4,

ci 1 0 — i ii

> 0 1VP4h1%lI

— U - C

4J° lKltiCk

Co 00 N

cici

—•

c-—iCon rrrr’ ii

tot C t ii

it p w SllOO,l,.w.Xc11

CoOOrrr.’450

c .

• Ci 00C Co

to ••pb.

I.,• Ne..

—I jCO ••4 COifl.ll

—t ‘0.CC.,,.wii—Ii

CICN• U E ci

•• •nnoottflU’t, oDoaCli— Ii Cf U: DOlt

c? d-ii eflacOll

0 DCllflol)UOfl

‘ci 0 COOUCDOOI

— ci CCt .,Tttl

aOil.—rTTrll• Co .

>1

clr4 cit

U C’..• clc.’l

001f.tltlt

9 • K

• LS-4 flClonw.(X*.CIl

VfitCfTh<fl

• .11’ •cxxxlir13 W,CXX II

C ntIi...cnxcn

• C I— c w II• C •

0 .n-f—I ‘ — Orj,, xxKX’ll

U C ‘0 — — IiQCLflCo •c’•i

U1c,.. •* •.ll

C.,.11

k.. 0 rice,, • •i It

S Vt”1i,. •u’.il

C 9 — , .P,lI

0—00111...n

U00

K>-• - nail ii -fill’ liii‘0 _U,nhllIltliIlil

- — S l -f K U II

o z—k 11411 liii

0C11 in 1111111

II Ii CI it liii it

i—I 0 ci 0011 II II 11 Ii

CU •H “ii CI Ii Ii t liW

r14J •U COO > vtn,,+,,.1lI

‘ SC toto— ft

L4 •3• 9oci ci

U

II? 1111• .lOtU-l ““llilltI”

to ‘I ci ‘I’ll 11111

>U ‘.0> CCUii1lIlIfI

ow ci .—.lttehI,lt -

9—ittW ci lIilhtu’

s-I ci I-iC OOntttIIll

144U ci - tjc,11t1l111 -•

— eU

Ca• ‘O— Ii

Cr1 C—, • II

0• N

to Ii

-i-I lx0Z viIa—— U.K—. 1IA

U,

Page 137: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I

II

I.I.

4•

..I.

I.I..

•4I

•.II..

I.• I

I.

• SI.

• •S

I’..

••I.

44.

IIIt It

iiIII C C U I

14*1 4 I

•i II + lit’

14* J•I 44 I

•1.I III 4+. II

Is *41 +‘.4 II S

WI Ill +.+ II

II #44 It

• #55 II 4 II

** (III ftI’, II

liii I I

i Is;, .5 4

liii, •1

IS til•

I... lllI 4

5

I III I

• I4 •• • II

• .••

I I S

•• .I..

• ••I

.4.5

I..

S...

II..

I 44

I 4+

I 44,

S 4.44

I44.4.

I 44.4.

+4• 4+4

•5 44.4

1.44

II))

WI•4.+ liii

liii‘‘II,

II I 11111

lilt,lilt,still11111

5•4still

liii

I .‘. 111111

11,111I,si)i,l

I s•• 1111111;

• I ilItlil

• 11111111

Itilti

S I

.

I.

I..

r

127

IiIi,

111)711lilliliI’ll,,

S II

*

I

I

I

II

III.

• •5

• S

I.

.4

WI

I.

l5

I

I

I.SI• I

IS

II

II

III

• •4

I

.

5•1

• S I

• I I S

I I II

• I 5

I

II..II

I •I.I

.4

I

I..

I.

• S

• I_uw

• I.

• I I I •NSI •mISfl.HE

•I flUff

44 I III W’R Upltfl

• •lW#gjrs.a

44. 4111

44 •III IWR ,*PWJS’.a%WW.

+4 41*, WUW

44 I I S I •lI

44 IS;t

44 1iI

• 4. I Si

4. (4.5l

I IIII tv?nrt knisM

• not.;stpus wUu

I !LIUrTS’Dt finn

I rttt.t.tt’I WIttOtu flu

I ‘rti,mc .

I WWWPwOtw

orz rwzn

‘Ill’’’1111111111‘tilt 11111lilt) liii11111 TIIstill Ill111111111

Ill, IllII Ill

SI I

Page 138: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

__

__

-

Fig

.4

6.

En

erg

yv

alu

eo

fP

art

ial

Pro

du

cti

on

Functi

on

#5fo

rth

eU

nit

ed

Sta

tes,

19

75

.P

erc

ent

insola

tion

need

at

the

surf

ace.

(Fro

msurf

ace

alb

edo

valu

es

of

Kung,

Bry

son,

and

Len

schow

,1964.)

Data

valu

eextr

em

es

are

76.6

7an

d87.0

0.

Abso

lute

valu

era

ng

eap

ply

ing

toeach

level

perc

en

t. 7P

.73

tI..A

Ot.8

7-

.n.—

;..

!.t

tic.’

ti2.’

‘Ia.

0]

3t.

QO

——

s—

,:—

—r

,

C)(iO.J31101)Ci

Ru

a.4

.’.J

,nq

..1

czr

ktrtt-

r)g

,n’,

tp).

Ion

fi“4I.4

.4q

)T

.kR

j12Z

t....l....

•t•..!.t..

LJJ

.’C

)flC

IsO

I:R

.Mfl

etit,,,,.

QC

flC

YV

jilj

fl4

Ij4

f,eh

I1

qtIsjI’O

.

••

..

••ti

(,00t’

.Ifl

I)O

jR

—’”-—

’a,

Page 139: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

-. -— -.r• ‘• .eck”•

MM

—ala—a—‘s—au—

MM Ia—

SalSIR

•aa — N —Ma. — N

I—ala——NIMNMaa

asa U

lxI

Sfl aa’ft •MUFm NaZMt’tt flMtta InZIZ SW Na’Wt MflS

wan a-

--

SMNI!R •m SNIN Rca

a’5V® S$’Z NW

a’lxtSt — sans

ewairrt Sn PM

tttttvt UMWM a

ZSt® NIiçfl SS

Pit :1it an ttila’t.ts:tt

S t’ttS 5mltttLill

Wlx StT’XI tlxZtlr-X tit

S nih ztat a’

ttS.ttv t act lxI.tTt

• fins S a’Z’rLr$

Wha’at taILS tratrit

ma s t,mfl”D s;trtm

WNSRNM I r.xltlxD tttDtl

•nnua mactat tZa’SDI

BSIRflRM S(TZtC fix

flUMWfl ?rrmti& IL

ItU’UaSRU ta’2&m tzcCRat_at .t. CrCC

I*t’IV tilt CCOC

SIFIL ciflit flocO

attn sari atfrcx CcD’

saute CCmtt stratI Coer

ats?’t tEXt StEtit Coct

at-rtit Sri rt t’t CZft CrCO

Slits Tart TSttIL CflD(i

ciattt I .‘a-’t at ,-ta’ Cant

imxpt last ttta’ OfluoC

SftI’tcr Stilt titEtSILcDtD Icit

ctttt tint.tccrzttt coctt.CIIt DCCCDCasts_Et caccoc

attasa’ cVDCOwta’ttaw-.occac5tLVD{1t1 C•JtCQflS®-fl-tap COCCCswlxrrtr oc:CDDITItESIL COL’tJUDCSe-tnt CcCZczO

ccc +

SttTtt’VT ?TaStWbLCL(P SIP +4+

ctasswrrx SaC ‘‘4

watut raxsr •+.

S tE E2ttt ‘+4

cit C -filla ITItutu ottlur

Nfl SItE a

flaWW t .t.tT a..

SE_fl “a.

•t2fl t:trrr?tnP”ua ‘trITiti .

•MgnS STLLttaRwas tVLZrt a

UUfl WS I I. CL a

WIns tilt? f———— at 1 (U r iJ p

a’ta3,rt5t411 Swafl

cit’s .ainyn

ax •flSff

—N—awn

a_Ma.IS_a

an aS. *

aW a*q•N NflIN laW UNSan INMW I WINSU

N S IrwI SHURIS

N WWWRnNa NIlPa N MM— a_P.M

—m MPMSNM RUtIW$MW NMSIMIJMN tWMa4INMMNa

C CoD CflO 2 C 2ocean . a

CCCcO •

Oo.:C:t a

COCDOQ a

CrtVOcO a

000cDVCcuacc S

OCC000 a

CucCL.•

a S

4444,4+41.4 OCCC000.+, ccocCacccc

‘‘4” CCcCflrZCCO4441.4 CC200CCCCO.4... CDCCCCCC4-e4* CCC*LCçJ

.4 cccCC003C• . a

aCtS ‘SN

• Nfll•*• a a

S •

NMfltSNM’4I

fl,t.,3. a

5

M

Li.I,’

fill

alas

-1

—tNa’—

MNWN

urnNaaaMaII

a

Ct_ti tTSt tN a’-rtt-tV t

StC -a-I ItS ltDI itS I

aMP it11a5 Ta’ atflaLIW SCaLa’bRMN. StSSt

Pa’

S ‘t a’ 111 San atstT FIXWIM tttlTDLr

n”icrTtt-EtpSMfl flSItutCE7

rnaW tStuttrtt”wart cit trrttrsS.t.rrrt

ND asciI-vt ri)’, ISIS• tt’rtttrSttrurflU trzllxriIac’,gx

at a’ t t : I -I I t a‘Pit rEt Ft r itt Pr®P ii El C Pit P-C Ceav.t,rrr,ttrLfi.t’ptt SIts I

sIrs ta’P5210C 1’ cL-c D-r a r a’-F a’ it SisP

if..

-: ::41 I,

Page 140: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

130

values between each of the functions, the first four exhibit considerable

similarity of trends. This is true because they are each positive functions

(sums or products) of the climatic variables, weighted in different ways.

Texas has the highest value in all cases, with Florida also generally

appearing high, followed by a Northeast region and states of the West and

Midwest. The Northwestern states are generally relatively low—valued.

The fifth production function (percent available insolation at the

surface), however, has a marked dissimilar distribution. The net avail

able insolation at the surface seems to be highest in the Southeast, and

lowest in the Southwest, with variations scattered throughout the North.

This distribution is not particularly surprising, although comparing it J

with those of the other functions illustrates the fact that climatic

distribution is not solely dependent on surface insolation, despite the

fact that climate is ultimately driven by the sun.

•1

Comparison of Production Functions with Agricultural Productivity

The distribution of agricultural productivity for the four sectors

studied (Figures 37—40) can be qualitatively compared with those of the

five evaluated production functions (Figures 42—46). Coefficients of

correlation between agricultural productivity and each production function‘1’

were computed, using the SAS statistical package, and are shown in Table 4.

As shown in the table, each of the four production functions evaluated

explain less than 20% of the variance in agricultural yield over the U.S.

for the four sectors studied. In an effort to improve the correlation, a

stepwise correlation of the input variables as heAt equivalents, solar

equivalents, and the product of heat equivalents was computed, with the

computer optimizing r—square by weighting each input separately. This

approach resulted in r—squares of 0.33 to 0.36.

IN

Page 141: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

31.

H!7

Values of correlation

Table 4

coefficients of production

131

Production function

functions

Correlation coefficient Significance level

0.008

0.018

r

ii

I j

‘htic.

‘frtiIl0.139

0.112

0.107

0.004

0.04

0.36

0.33

0.33

Sum of heat equivalents

Sum of solar equivalents

Sum of solar equivalents4 >solar value

Product of heat equivalents

Percent available insolation

Suit of heat equivalents(computer optimized)

Sum of solar equivalents>solar value

F (computer optimized)

Product of heat equivalents(computer optimizedCobb—Douglas function)

0.021

0.67

0.166

6.006

0.001

0.013

-. .

.

I’.

.,;—....‘

.

Page 142: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

General Effects of the Environment on United States Agriculture

The computer—weighted production function of the sum of solar—equivalent

inputs greater than the sun was found to be most highly correlated with

United States agrict’ltural output over the range of the data, and consequently

is the logical function to study more carefully to determine general effects

of climate on agriculture. This production function explained only 36% of

the spatial variance of yield for the four sectors. Neither long wave

radiation, nor latent heat transport was considered in the analysis, be

cause a) these parameters are somewhat analogous to sensible heat transport,

which was considered, and b) because the potential of these parameters to

generate net energy was considered negligible. However, other parameters

fr must surely be significant: a geographic distribution of soil type, fossil

fuel and fertilizer consumption, ground water and surface water storages.

In addition, secondary climatic effects, such as temperature and humidity

relationships with fungi or insects may significantly affect yield in some

cases. Clearly, agricultural yield is not a function of a selection of

W .monthly averaged meteorological variables alone. Perhaps the productivity

of the natural systems of the United States are more closely linked to

these variables, as they are presumably comparatively independent of human

energy sources. Total landscape production includes forest, range, and

pasture production as well as crops. The fifth production index (Figure 46)

ratios can be calculated using sunlight as the only primary energy source.

Values of 2.5 for the U.S. economy and 1.2 for the entire U.S. food pro—

duction system, including processing, distribution, and domestic energy

use have been calculated (Burnett, 1978). However, relative to the system

of agriculture, climatic flows other than insolation are also primary and

can be included in the calculation.

1324:

• 1

ti

iii

• I

Page 143: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

133

Limitations to Results

The number of values used in this analysis was fairly small (64

to 235 for most parameters — less for others). Even assuming a smooth !&

spatial variation of the data, a linear interpolation of the data (upon

which the maps are based) may not be appropriate. Host of the data con

sists of monthly averaged variables (some of even longer averages, e.g.

constituents of rainfall), which may not be appropriate in a production

function when a week—long perturbation (intense frost, for example) could

have a significant effect on the actual output.

Since rates—of—change of climatic variables were based on calcu

lated gradients of parameters using the difference of only two data values

for the vertical case, approximations were involved. Also analytical

derivatives of a polynomial function were fitted to the data field for the

horizontal case.

Finally, the production functions developed to test against actual

, yield are probably not entirely adequate; they indicate potentials avail—

. able, not actual relationships. The computer was able to generate several

functions by individually weighting each climatic variable which explained

more in terms of climatic variables than those originally selected. Nowever,

the computer—generated functions were produced to optimize the correlation

coefficient, which may not be the same as producing & realistic model. What

is needed nextis a sound model that included other important factors (as in

Figures 2 and 3) which can be tested for several locations and evaluated.

Investment Ratio f or U.S. Agriculture

The investment ratio for the system is defined as the ratio of feed—

back inputs to primary inputs, in energy units of equal quality. Investment

ratios can be calculated using sunlight as the only primary energy source.

Page 144: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

134

As shown in Table 2, a ratio has been evaluated by summing the solar

equivalent values of climatic inputs, and dividing the solar equivalent

energy value of purchased inputs by this sum. Whereas the investment ratio

as calculated with solar insolation only, and including economic feedbacks

to farm production only, is equal to 0.5, the new method yeilds a value of

0.02 to 0.05.

Significance of Climatic Variables in Energy Analysis

As shown in Table 3 and Figures 47 and 48, the embodied energy input

of climatic variables to the farm is greater than those input from the economy.

Even if only 2% of the solar equivalent value of all climatic inputs are trans

formed, this value still matches the efforts spent by the economy in purchased

inputs to the farm, the entire value of which does not benefit agriculture.

It would seem appropriate (even wise) for mankind to invest some of its

economic potential in further studying the variables of climate, in hope of

using more of the immense potential of the energy sources to which the bio

sphere is attuned.

Sunmiary and Conclusions

Everyone is familiar with the weather, and knows its power. The farmer,

probably more than anyone else, realizes how much he depends on the weather

for his livelihood. This sutdy has shown the magnitude of some of the vari

ables of climate, and that the amount of energy invested by farmers in their

crops is small compared to most of them. Even with a crude production

function, it can be shown that climatic variables can explain 36% of the

variance in agricultural energy yeidl as it varies over the nation.

Several significant factors (e.g. soil parameters, fossil fuel use,

fertilizer use) were omitted from the analysis, and it is believed that

these variables, together with those of climate, should be studied to

Page 145: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Fig. 67. Energy signature—heat equivalents. Log (energy) versus log(quality factor) . Straight line represents world—averageheat equivalent energy flows. See Table 3.

L

Page 146: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

136

8

6

4

2

C

v.3E

-N

CV

U,

CC,

0

Da

Ui

C03

>-•0

UzU

00-J

0

-2

-4

-6

-8

ILOG (QUALITY FACTOR)

t

II.

Page 147: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

— —._.__ Fr -

I

Ic

“4

a

Fig. 48. Energy signature—solar equivalents. Log (energy) versus log(quality factor). Upper horizontal line represents world—average solar—equivalent energy flows.

Page 148: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

C

E

CU

U,

Ca,C

zaU

C

0U)

0a:UzU

C0-J

138

12

10

LOG (QUALITY FACTOR)

Page 149: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

139

obtain a more precise understanding of the coupling between natural systems

and human systems of agriculture.

iCh L,ç4

•:1• •

• 2;

Page 150: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

APPENDIX I

CALCULATION OF SOLAR INSOLATION

Solar insolation was estimated by the equation (WA LAB, 1972)

11= K9 sina (1)

where: R = net incoming solar radiation (Langleys/min)

R solar constant (=2.0 Langleys/min or Kc/m2 — radianof hour angle

= % possible sunshine

a = average solar altitudet.i

and:

sin ci = sin d sin + cos d cos cos h (2)

d 23.45 cos (172 - D)1 (3)

where: d solar declination (radians)

• latitude of observing station (radians)—

h = average solar hour angle (radians). 1r

Integrating (2) over the length of a day (—7T/2<h<m/2), we have:I.’

J... IiR 1(9 [irsin d sin • + 2.0 cos d cos (4)

where:

d 23.45 cos (172 - D).

1)Thus, R is a function of K1,, latitude and day of the year. For each

month of interest, average values of sin d and ens d were computed:

d+n.

ad = sin d = sin125n

(172 - D)] (5)0

and similarly for = cos d

140

Page 151: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

141

Thus:

R = KR [iTad sin c1 + 2.0 bd cos (6)

From this value, coefficients of albedo were subtracted to obtain

net absorbed solar radiation:

R = K [ 1 — a 3 = KR [Trad sin + 2.0 hd cos 4’] [ 1 — a J (7)

The distribution of albedo coefficients are shown in Figs. Al — A3

(Kung, Bryson and Lenschow, 1964).

It should be noted that this value of net insolation assumes that

atmospheric attenuating effects (i.e., absorption and scattering) are

negligible. If atmospheric attenuation were included, the values of net

insolation would be somewhat smaller. This value remains a valid index

of solar insolation, however.

Page 152: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

‘Ui..

1”•

.

• •

Fig. Al. Summer surface albedoes for North America (Kung,Bryson, and Lenschow, 1964).

Page 153: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

.4’,..—

—I’

II

VI

F)

6

•fit

‘it

•I.

—7

1,-

1’.1,..’

4III-I

‘I..’

1,

-I•I’

••••I

Page 154: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

a— .v..n,s I.n4 t: •,:•. ‘i... •i4

I;.

lb

Fig. A2. Spring and Fall surface albedoes for North America- 1

(Kung, Bryson, and Lenschow, 1964).1.4:ifIllS

11

IL

ii! 1

Page 155: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I1k

II

•1

.4.

)I.’

‘I‘p-,

-}L

.‘.7I

‘•1 1._i..I—

‘:

I•,, I?..1.(,1t

?I

—:“ I1’V//

I./

silt

Page 156: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

1’

I !

1*.1

4

PI L.c& 4••

jrJp

4

tz

Fig. A3. Winter surface albedoes for North America (Kung,Bryson, and Lenschow, 1964).

Page 157: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

•..--

-•I/.-t

ii\¶1•

-\3.

itj

••I.

-•

ix I;

‘C

$4

I--

•It

A

-4,

/

/

I./

/

/

A

7.

‘I’.

3c•,,....“i_

-A.

•1_

--I.

3

I

7.

I-

—S.

II...

/4,V

//

-__YI-,-.•••j_.•’•.

•-1-j.:•;.-

.I-.

-.•,I,j—-;‘-.

-s

-‘INT,“ k5———L...’‘-7--•‘--S..-..-I.-—I’.

Page 158: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

.4

1I

xc

‘Cr

cc‘

00

—o0

00

-J—

00

4IC

I_IN02

0o

0

004•

C”00

‘4z

00

00..

.4-’00

00

L’S00

00•1

00

—0

0_iCO

‘C0

.<orn0

C

pLI,

IIII

ii0ii•0

II0Ii

I..UII

Ii•III,IiIIIIIIIIIIIIIIIIUIIIIIIIIIIIIIIIIIIIIIIIi

-IIIIIIIIIIIiIIIIIIIIiIiIIIIIIIII4.1.4.4.•II

1+44NII4.4.04.IIii,t,’IIo—i.j4—II

II——.——IIIIIIII4.4t4.IIIIIIItIIIII’IISIIIIIIIIIII‘1IIUIIIIIIIISIIIIIIIIIIiIIIII’II0IIIIII

IIIIIIIIIII,IIItftISISIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII4.*I•III

III*IIIIIIIII0*IIII4••tIII,I=III

II021I0:1IiIII•IIIII•41IIIII••*•IIIIII

II‘CA‘CX’CIIII)4‘Ct:4icIIII‘CA‘C‘C—IIIIKK‘CKIIIIK‘C‘C-CUII‘C‘C*‘CAIIIIKAKA‘CII

II‘C‘CK‘CAII

II‘C*x‘C‘CIIIIIiIICi.04LIIII4:-iit.1.SUIiS.CIitII-sI.3’,;pII

Ii4i£-.jj.IIIi‘C3.£4:15IiitIIIi‘TiS.1:tIIII11£a1)IIIIIIIItb000III’ao’,tIIIiU‘3t,.1

II0GUI’IICC0:3II

II00.aIIIIC0CUIIIIUCUI0IIIi00III..•0I,UokCC0II0k‘CIU0IIII••ii

IIoCCCIiUt03CILII•000IIII0000IIIIIt

10:40IIUUII:1:1t41III44tiUII2:40I’51tt4toIIII:425:4t4IISItJ2.‘20‘I?‘4iiIi4S1W:4IIII2IIIiIIoII7ULI

1II5152Iij:1i7IIIIC2itII;:CAIIIILIII111Usit1.1‘Ia‘J7_IiiII‘I£4SI,.ZAftItIi

It

H’oQ

0’IIF_StflCr,

fri.

ac

rtIt‘1F

SDCDCJo

“tiD)

aa.

91<

oOoI

9”,,F’,”,,

—I

WWI-’•

Itooz

toc•0—JID44,_ti

tI

SF-”Ffl

—F-i.

ID

rt0

0°”,,Sf0c_IF--.Crrno.aID

F-a5-4.

CItmeD

0--i

Zn

anID

DIn•0-‘0F-c.

F-5’DC

-I

aI--.

o—4

5_sa

F—It•P1

Page 159: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

6T

III

I2

•-II——•I—II.114.,.ll.,iS

I•IIII

•IIIlI.

•.1.—i,•1

•11$Ill

II•STxii’IIIS115nH.nx..lIIKRKt1IsI1111

SIawan..0II0MHHflI!UI’f

tPWbMHlift:p

WnMtUNfltflaB•KaHUM1ftI’S‘IsKaIWMMKRUSOII,1.tNII1*at.sZ‘vI.0Ixt

I.’4..tOlIftIlli.•II.1..IIIIII-

11I.•IxQt•II•W)p

hII.,..lIll.b’—..IiSSI:i,.i

Li.Xl)IA$.lI.II........11111111

II,.nnnXpIl.IIIIIIII

1111111111liii111.1

t..zSIl‘III,XtltttIII

•IlI..-....IIi.111111,.11

III..t..lI‘1*111.1IltIllilill....

llII.,tSIlilJIlIip•qII1,K.•11.l

Ii:Ax,cX’1tOc3•l’..£

II,IISp10waaUaa3-IIIII•I.IMLUUamaI.1.1KaxIsI_ntxnb.akh;sI

11.1.1)LSK$nU$.>.IItIISAt-•atpP5

IIII_IIiiCUPSft1.111,...•.,JXcfrIiIl11111I...:x..,lIIH

III1IIII•I.I’HI.12

IISIIIIIIIIIIIIII.•4

1111,111...1111111,11

IIII11111111IIIIII

‘4c.bI,

•IIIIIIII.—

I:IISSIIII•III.•IIIIiiIIII?

—IIIIII

•SSIIII—IIIball.—II

•5III’—IIIIIi05.IIII—.—I0SIll

IIIIIII111111111

•1l1III•IIIII

IIAXQfr.I

MEats55+1

muaaxIJWHKN*ZIISNdNNIJhII

UKHN0.IISKHKNtIII:UaKflYAII

I....4aCIXIi•

Ip*50IIS—IIIISSS••S

111111111

111111111111111111I11111111IIIIIIIIIIIII—

IIIIII11111111111111111

IIIIII—

IIIIIIIIIIIIIIIIIIS.

111111I—SIIIIIII..•IIIIISIIIIII’

lI.....IIIIIIII—II

S

•SSt

III11111IS.

III11111

1111111

SI

111111111111111III

-.iii

•I•III

I—

III1111

IIIIII•IIII

IIII

IIIII•IIII111111IlL1..I’llIII11141

1111111111III.III,.—.III.11111.II.

S

S

Sq

II1111111111111111III11111

III11111

11111111IIIIII1,111

S

S

II

.1.1SkIS

N—OS.abaH

balm

SSS

.5.

IIt+

111111111111111

11111

Page 160: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Hrj

0ccUi

ii

HII00II

:‘.1••U(j_s.

-,..“.U

-I..

.‘I-Inart

.-iii’III,,9H.111111IIIcvnIIIlI1I_.COC

ItIIIINIIII—JrDIiIIIIH0

H•ij,+tt+IIII.ttt+II

•1——•Ii

-

lit_—ti.Ii—

I.,tt*IIIIb+t.HiI

•IIIIrn-tiIIiiIIHIIiiI’j

—I,HIiIIIIIIIiC..CiiiiiiIIiijiHiIiIIIIIIIIf

•NohiIiIII,4.3•0ItIiIICC IIIiIIIIii

IIIIIIIIIIIIIIIiIIIIILII

•II-H•iI.tt.Il

II.*IetI.

II••t*III-INCOHiHaaIjHa.II..JiI-tIIoal*?11allIIII•IIn.CDIIIIIaII0

H0COH

II,x)l)..(IIa•IIXZ.CZ4U20HxxXCXUah.I•XCAHXXXXIIUxxXxxdf-’CD

LILtLLOIIIIt,tzLrH1L.I

r(I-s.

Iiti.flV_._eIlSj..LLiiFJ,ftIiLtI.ZIlaLit00C..ii1.t.C’IIa‘IID,lt-t...tiIiI,tjtitiL,nIIHtD) il,:)cfl’JlitnIi30i0UIIII(ICU0I4.p‘acUUah.0.2c.JI••.JItcIJI.th2j’IIUo.).iI00lIcvunI.iL•0

r,rj

oii-0I-IIF_HiiIt

aitIs.3:,IAx:’II,.

•flI-5Z.0

I—t.fl

na.IIiIr.l.3%:IlIII3Li’.-SSHDun•

II.111•7

I.LI..:H.lL0c.IHIs,;.aH...,.

Ciit14;.rJIiDi

H0C

a

Page 161: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

•l.*xU’

.iI.I•lrXtX$Oq.Lt•XXC,i’llit.

XXXCiio..+tiIXiIoamQo.LLLXXA••Ciiiiii.X*cflAqnLVLAXXXXX

-F

,C

rtrr,cauorXXAZI.X*x,CXXXXA*,cxzanxaswqcLtLXN*X •

-X:4AXXXXxXttn1A*cI.tXXXXXXXxxx-ttxwi:i3:4an0tXXXX*AX£X,r1xInon;cana4no-LxXXxfl

•-

-

MuontS3X0wKnfl0MnaQMDLL-X*IIuiR%,-IonoaonaactrzXXet.2S3Oan0nonnat3tAXt•45.*

•is:2noa0*XsatDX•CiiUiiIJr

SiXnMOOOA*&.tX.i•1I.,liii

Si•Ni494X22qWaCOZXLx5fl1.5._i

•i.J.•Sa.l1t:44ZJ:rSAaC0A1T-cx

•4an334242CAnOQtrcttAste.,”*t)_ICCISJ

-•U3SAj4’4floAnOLDL’fl.1.C

‘U0*CZS.nMsncn0njWnXatX•iii.ti

OtMaOfl%auqqnOno,g*ca.tX.H...C

1twonaoz*ntzuxtrrtx.ri,.iI..’.’C

XUOTEUr-CIOEtZZXXAX*XtHeC

xxDvr;ttntxX.x,cXx,cx..—iXXXSt£L.tt15AACAAXt4I.

•XE:4AZVfl’D.btDxxJr,,r..AXXX.iH.C

Ct•IA:4AAStAZX•iiiiii.C‘AX.lidtI

prl.rJ.e.XAX;SE*X..iilil...AlieiiIu,In35.AXA:4X...ohiileiiIC,.J...ii.4

ii111111C‘‘4.•——9IIiiiiii•••.CIIIi:1:1111iiiiS

•••CIiii0iitC•iiIIiiIiiiIiii.iii45*11IIiilit..I,UILIiii..4.IilII**il*IC

IFt...ilI**lIe

iiltillIUiiIICflIirIiiiJtt.IJliii11I14

110i.lliI_IlIli.‘‘nih%—nJiiiI——

iIJIieiCiliisirirrii.nln.4th_Cs

•lijii——..IiIii’.ICJp.i’iIrl—.iIlii.Cl4..a.*lC

•‘i...IrirrJ.i,4.C.l*slili.eII

rirriretistiI

Jhi;—IC

CI.MtC..rIi.4—C.Ci.JIUCCXritI,I

•CIIPM.XXX.•iitIIC•Pitt,r,i.*tillIPtflMCXXJiDZXCrJr,tI.I..iirr..XxrsLx..irC•lhIt**M*L5LiCX,Cliu,i.CC

—liiCC•ZXX53JX•CFlPtwiIt’’PCCC*AASkN**

It.,X*XXXXXXelihONetet*AX*LjLX5Sri.rilihIrwir..

err:,.—PHIlIPC’.XXt?r:t.w*w•*Dt*xA*PP

Iii).,Z1SSZX**XxUIZACI1OIis

445l.SZLcLLS,JAX*rnid.XXCCiC*t1tAflt)ttiIP

•CAAAX0tEXtCut4PSCANAAACMX•ii5SrIISi

.15..*C..XOAX*etk.C.5•*tCJr.*Ax*cWe9a

ifIi•IIAXAXLXAXX

-XXXXAX*XAAAXXAX

AAAAAAC•II+P

-AX.4CIliA

CC..C.

SI’XX:

CXXXSS.XA*1.4

Page 162: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I, IIII

It:

a“

• I it

‘l;L.!‘—.4 1 — — p

Cd c :a pi ‘j ‘pII II

p t 1: Ii

Cd4..J ii,::Cd .

‘ ‘1L%t:tf

2— ft L

t—4 UCd

— a) ‘)t ‘tstn••IItt.I illi

4 0 & 1? iia., ‘p.,

fl iI,u’tIl

• C Pt fl•f •‘t F: P

tO r.4 ann”flhtP rI:,Ft3l!1i0)

•‘ ln’ t3’PI

• i:t11 ‘13’Ia., 0 r’4,,UI 1Ot:tflnPl

to)

a., C 13-Ur4 Cd ppTr.rrq

C ¼ ,, T:c U’- I I II

0) • ‘IL! ‘LII

w p r I t, I

IC F—I II 2 V ‘I r ii

ii to n.rr-rCIII’ PP

¼o W

IP-Li_i Ii OC pcx,c:< Cl?

i’<’ Cxi:01Ii 0 121-,

C0)_cr14

o II I • I II

II I • I I PPLI_I • II a • • I I Ii

‘4.-I U) IPhIbI’P

W’.c’•1 1 Ii..I.U

ci F. nj ‘

II p I I • I I’

Ci.flo

II I? P II Ii— C II ii II liii K

to ‘‘I II II II II PP CHIP ii Ii II Ill

LI_I O ‘0 nilLI. C i H II 1 ii II Ii

2—4 Cd —.1-a Ii II II 110‘p ii ii a ‘I ii III? 1’ II U P PII IIlP.4—.—pi

t S Pp.II. •4S11no a...,.Ii

Din PP —IIo 0 —

— IIPP II

Ca)0¼ II

—n—I Cd I I I I I‘I I I I I II

a) P I I I I I II-d S fl I’ PP r I I PP

°

WA., 0111110

n-IX2

I.

sO flPIl—

0” Pl•qn

to II . I II

PP II

‘I,

-1C

1-

‘if!

P.

Ii‘I

1P-I

k

.1

I,:PP‘-I

I.“P

Pj

NI

t

1:ti

-IiA.

1

Zr

Page 163: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

p.ta-P.,Oataaa

—b1a.mwaaz,.

-p.arLaaaaaa,.aa.aIIP,aStPNad.M.:,O3yp

-S.aa1P.

‘a’-•bI-i.•‘a.’.’.

•a.“I.flflaaZRaLU.KUKX.U1>-aI—‘)Da,flaCNfl.aU.t%a.•l

InitS:.nNWtas3aolrkaaIIIp.aSaaaUaaUUamKatCCSIaaXXrama.aamaWUaKX‘aaaCC—N‘Ta

5!.0Ic’acabauwbnaA.aConDCU

PD0-NpC4t3a.Laoanan

aaria4tLUbm!c4SXUriaatanaX

Ntafl1.UX3X’4btab%.C

2‘VChUmaa’aUWXN347SSKmU.NNUW00aaIiUa2:‘V22D,753cmXa?KaaaarUbUaaaUNNaa3:)t339—a.Cta

atm...C’

paa$uUa.moan.na4rzmaCaCata.CaaaUNa.aaaN4aaa.aaaa.aaaa

NNKNNa$UU>:25KS2aCmaataatCK

NANUIUKUNNU14ICKaaCtaaKaa00

1tKZ2%UUWSN13ctqakaata.Øn*nskuo

•aCCC*4444taCCCaCCKKKCKtItIa..Ct4aaaa11‘SaaCaa‘KaaCCKKoaSrs‘ir

C.‘4aaCtNaa,1a.•P0Wannaa0S.3S.JCXL4C0KPC3.taaaaa4aaanflKnoa*a32‘1i3.’I’t3•a,aS*a•3.abtatatCkWUPKCCfltI‘Vaa343434

a.aDamnCCaaa*ataCanoanouharoaxXan*34

on.tnoanta.qCt.a*tPflco3.5133s,tX’V34saxa

aCCKCaciaacitaaC4.a*aaCaVC3.a00a,Ift.XXaK34K

13ODanaCaxoqa.taa..Caacanoca£YKa>*X

a.1fla0citkKa._e.a*a.*p4..pCaciofl-a.1ft.>.aS>K34aatoflancanJ’aX*,a,.aa.Jc

K34(Ia.013.1,ciCNaUCCPaVC00a004aC4*3.1.£P34x*aK

03-111UNaaC3.—CciCaoC—CCaaa&a4.0I*K>

a.IS-LS3.,aaa.aatapCci3aCciaU.S£I£aIT

£3.vsa-.014.toi-tj04343-a.nomaLa-al2>*X35,nciDflaCPaacpS,1naaa..nnnX;11L32

•M0fl.*.Na0PK3’1S•I>13’01.£10C.....tCC.aqUKkCCNSaII1••a315,u3ia.aaa—.aUKKCfla*aKIa115**x3X>fl*.oanKCUKflon*a.1113,aIL

•K11K*P5.1a0054.1144.3.13.23311Ia’3.1aaK3’121an>3aaaaaa313’1In,a•23oIaI

IaaA5133aIci4I.aa—3Sa4.1153..ta—

I.aaaSnO2372.a.3413141324L’StsI...,1,l1.L11l.0013I23?1sLZv,o.arxz

pII•r1ft7237a.cicicimlI’S11?533.3.3’34K

U•xa1t3a2.Laaacna’r,’31zra.3G,.n

•xaQpta3aoatoaaaaLaaaat

tP*x1’i,.JtNaaoS.apIlL®p•.aa?.o,Iu—.ooaqat*S-1tiTsxKciaaaaav733ciCaa.aCScia.KU.1.1335a.a1aKaKa..34100noOn..CPP33lx.

4.a,34K344.ICaa0CC3300W0C3.3.3,X>>’A>13aPC0C3lirciaacc’1

,.XKx*aaUCaaIll..:JjLac

‘S2315711322LaNaaIK‘•K34a3.113‘r3..131.11NaCCK

IIIaaa>fl13331tintaaataNSIKXP.n34xxxJ13111rirnaaonr1!

nail>at•%XXK>pK33113kn13.a.a.113.ta

•III.,•*X>lI>a>KXXIITLLXZI•••Iflaxax:.4xX3K34a*23Da1

>k>np.a,,IiILII1I5SItXX

xt4.2,Ka•I•III.,artxxp

I.II.XKPiI•.34.aI-IIII

Ii34•414aaK*I,I•p,aaK33

U34•III*1(340

I,i

Ii

Icci

Page 164: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

a)z

-4

4_III

IS :1 4 1

ii .2 I 3 :iU 1r-4

‘,i:zn’

Ill V.

III—.. > :1 In;;

0 ci-4-4

II II

14 V

04_Io ‘I

bO ‘I II• 1-wa’1lp

(0.—iV

rJn-1flo

U — _)2 ‘1n,SsLI

LIaZ.,II

is ,n a U C

II LI

IT rtt V LIU C Ii t u it C t (I..4 tt

, itrrto’iO 14 ii r-rtrii•

V ic.’PL1tIIa) ii •r a 0 C -r

:i r D r ‘I

.i e o.rcVLHII H

w ofl-c.cxII

o Vu_I ‘1 0•1

U,,a_I C N’jC 0V ,fl LI <4x:e;< II

ii1) II • H • ‘ 4 LIr4 ISHI I 41

t4_ • II I144 U, II , 2

0—— lit It•I II

0r’J II ‘

V B III • I S 4 II

‘ a

i0II II LI I’ II Ii 1

U,- 0 II II II II Ii LI

14.1 0 ii LI Ii II IL Iii_I — II II ii ii II I

ii ii 1 Ii II II IiU, IIIIIIIIIIIIR

>1— IIIi

B II — 4 • + I. IIV ——

o oH + • • * •o lI+,t.*4LI

C V 0*4+4511

014,.4 C 111111111

MI’ 11111U,

.0WB ill ni II’

14 V .1 I I I I I Ii4.214

11111110

II IIII

II 4..’. II• I I

II

00

allIi

rl II

U,

ZLVI,,

:1

Page 165: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I,IiU

-Ci.&•lIII•I..xx1:1•I.

•II’.i.xxxvCI’.l...SSiI*lIliS>.,11?..,(

1l1II1IS

•1.1,I.....

•5bl..1QRSbXflIxx*lI.’...“4.fl°kOflt$XXt’c,i•PJt•

IIIHFbwx.vflnts:Cz*MIxx.11+1••X)1C*WI’aflbyXx)rxxyWI,.•I1TWIaflr32Cnnxx*..

.H,Sfltfl;nr,n*rx,.p.-.

IiH.I‘•Il_-jill

aflnISk3uann2’txxSH..pill‘III

•,iiIlII0ttr0IpiinS.w%XDa?2a..ii—,.

kgCZnnxL2*.il—,IiPI

llafl.flHJl4kflbSflXfl*a,j1tx.p.11111

ar:zrn,.nxzi1sttxo.LZ(XCI4HIS.)IlS

I*Irtauwrixxxr.ii•pp.**XiitSjtl)itPl•I“‘*xx10scx5n1r3KSSSIS•S.I;O

SbSI.HI,•4H•t.tH5”II’.

tiCtI’1*0acDCIIkSSI‘IHU.I. r13I•l.£10011JHHiiII.D2J1SJ.,LI2fl1’t0u1MiIiJxxSflh,HIIdi,w..)Is_...s

2LL:nanLI.1aoonDxnS*PHHIPITI’F113’tOnCnoU*ntnr4•

n0na0aa0XcadxS*t’I.uIlh.exx..p,I.nzA’0p2zgJn14•HillHII’IIi*$454I.

fl0a0112*na•1.1’S>txu•IRanU4DL*..1SI.IICLTISIC

III—.llSXX*ti.5•.5I••lISXXX.H.IC

ltxoZX5o54I.HS*Sk4I,.S*ltn*Utt,I,l,.j_lI

1.1stII.**t111SIIxS..lS•kteSS415+’IPi•”

IIS’H54.511

II•.*xxxx,*,.*p.I•—115*5*4*1111k..H*•**xx$‘41’’11IISI—H44HUt•I

ISI’..II54445*111111,h*tt*4s*4.lllIllliI,.*CIl+

•IlII..t.S.11....1lillllllIII,l,lI..).,,.IlIS..tIIIIlltt.p’*Sliii111114HI’II**IlqIIS551111111II..IIllI.IIIISIII

tSIllIIltl,411i1C

I,1.lI.tHIIIl.4lSSIttlillS

—SI._t*,llIIIiI.C.—SIC

•S‘5.51151•SC11111—s—I1.1.1.‘1511.,,.IIIISSS.Cl.S

C1.1111.IF•I5•IIIISII.II•ft*

•511.1111*5•.1+115...

C551.1,5.411••—•IIH*5H

SISIIII5.

5,4.—IIII

SI•I—•HIiI—tI,II

It

t*It*tKF

Sia*I,HI,*KKS

—4•IISII..

IIII

T1•1.5SC

cc

Page 166: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

-i

APPENDIX II

DERIVATION OF EDDY DIFFUSION COEFFICIENTS

The turbulent diffusion of heat, momentum, and passive substances

such as water vapor in the atmosphere is often characterized by equations

of the form:

J = PK- (1)5 sz

where: = the vertical flux of parameter s

(s per unit area per time)

s = the concentration of the parameter of interest (Kg per Kg of

dry air)

30 = air density = 1.23 kg/rn

K5 = the eddy diffusion (exchange) coefficient for s (m2Is)

- the vertical gradient of s

Thus, can be determined from the gradient of s if K5 is known.

Unfortunately, the apparent simplicity of equation (1) belies the fact that

K is a complex function of local meteorological conditions, and, in

particular, the local stability of the atmosphere. A region with a steep

lapse rate (vertical temperature gradient) and light winds is liable

to possess K51s of different magnitude than a region with high winds and

an adiabatic lapse rate.

The eddy diffusion coefficient for momentum can be written as:

(2)

where: k = von Karman’s constant = 0.41

156

Page 167: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

157

Z = height above surface Cm)

= vertical gradient of horizontal wind CS)

= a function of atmospheric stability.

The exact functional form of has been investigated by several

authors. We follow Panofsky et al.

Cl + 18 Ri)’4 for stable conditions ( >

= I. for neutral conditions = 0) (3)

(1 — 18 Ri)’4 for unstable conditions < 0)

where R1 = Richardson number (dimensionless)

potential temperature lapse rate (°K/m)

Richardson number is an index of atmospheric stability. It is

3defined by the equation:

aeR.

=

(4)a 2

where: g = acceleration of gravity = 9.8

-

= lapse rate of potential temperature °K/m

o = potential temperature °K at the geometric—mean height, (Z1Z2)2

-

= vertical gradient of velocity (us)

Plugging in equation (4) into (3) for stable conditions, we obtain:

3°hi

• =[l+18( .,z II

m

and from equation (2);

Page 168: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

158

K2Z2 -

[1+18( )}Du 2

1/2where: Z = geometric—mean height = (Z1Z9) Cm)

To obtain representative values for K at various locations in theiii

United States, rawinsonde data for twenty—five stations (as published

in the monthly climatological data for the United States) were obtained

for the months of January and July, 1915. Estimates of and 4- for

the planetary boundary layer were obtained by calculating the gradients

using the monthly averaged values of 0 and u at the surface and at 1000 in

above the surface at each location.

The eddy diffusion constants forheat and water vapor, !c and Kw and

related to Km by the equation (Pruitt et al., cited in Rosenberg, 1974):

a2K = = l.13K (1 + a1R.)

+ 95. for stable conditions > (3)where: 21=

— 60. for unstable conditions (-5 < 0)

—0.11 for stable conditions (ft > 0)

20.074 for unstable conditions < 0)

Page 169: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

APPENDIX III

CALCULATION OF PRODUCTION OF TURBULENT KINETIC ENERGY

The rate of production of turbulent kinetic energy per unit mass of

air by mechanical effects (wind shear) is (Webb, 1965):

1!(1)

where J = vertical momentum flux (often referred to as t) (Kg/rn—s

p = air density = 1.23 kg/rn3

= vertical gradient of wind (s)

On a per—unit—area basis for the boundary layer, we have.

= ZbØ(E) = ZbJ? (2)

where Zb = the average height of the atmospheric boundary layer = l000m

= rate of production of turbulent kinetic energy per unit area

in the PBL

The momentum flux is given by the following equation (Webb, 1965):

J =pK. (3)in rn3z

where K = eddy diffusion coefficient.UI

Thus, the rate of production of turbulent kinetic energy per unit

area in the planetary boundary layer is given by:

P =Z PlC(3132

(4)UI b in

This represents a flow of energy from the average wind energy acting

to organize the turbulent structure in the boundary layer.

159

Page 170: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

APPENDIX IV

ATMOSPHERIC HEAT FLUX AND RATE—OF—CHANGE

The equation for the flux of heat in the atmosphere, including terms

for advection and turbulent diffusion, is:

Cl)

where:-

= heat flux (C/m2—s)

= specific heat of dry air at constant pressure = 0.24 C/Kg

p = dry air density = 1.23 Kg/n3

= turbulent eddy diffusion coefficient for heat (m2/s)

vs + 4 + - gradient of potential temperature (O)(°K/m)

U = potential temperature (°K)

= 3 dimensional velocity vector + ft + (n/s)

For the one—dimensional case, the X component of equation (1) is:

JHXCP [_K1d+ ft] (2)

To find the rate—of—change of heat in an infinitesimal volume element,

we take the divergence of equation 1:

—i —

________________

= flux in = flux out

AX IC

160

Page 171: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

F 161

h=i/V=_VJH

and-

A

H.= —v

-; where: h = specific rate—of—change of heat (C/m3—s)

H = rate—of—change of heat (C/s)

3V = volume of element (m )

7.J = divergence of heat flux (C/m2—s)

Substituting from equation (1) into (3) yields:

:1 h = c, 0 — 70 (4)

where: 720 = + -4 ÷ = divergence of gradient of potentialDx Dy Dz temperature

VO = gradient of potential temperature

If we look at the one—dimensional case:

hXCpP[K.dL9_ *where: h = the specific rate of change of heat due to advection and

k diffusion in the x—direction.

For the atmospheric case, we asse that:

(6)

÷and W- 0 (7)

Thus, from 5, 6, and 7:

(8)

Fr. .

(9)Dz

Page 172: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

162

and:

= Cp& (10)

=— CK11 (-g) (11)

where:

h = specific rate of change of heat due to J11 (C/m3—s)

= specific rate of change of heat due to J (C/m3—s)

= horizontal heat flux (C/m2—s)

= vertical heat flux (C/rn2—s)

i.e., horizontal heat flows are primarily advective, on the average,

and vertical flows, on the average, are those of turbulent diffusion.

A) Vertical transport of heat in the atmosphere.

The equation of turbulent transport of heat in the atmosphere is

similar to the equation for turbulent transport of momentum (Webb, 1965):

JHCPQ (12)

where: = the vertical flux of heat due to turbulent transport (C/m2—s)

specific heat of dry air = 0.24 C/kg — °K

p = air density 1.23 kg/rn3

= eddy diffusion coefficient for heat (m2/s)

= potential temperature lapse rate (.l°K/m)

The coefficient l11 was determined from rawinsonde data as shown in

Appendix II.

Page 173: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

The rate—of—change equation (9) is equal to the divergence of (11),

and expresses the rate—of—change of atmospheric heat due to vertical flux

on a per—unit—volume basis. If we wish to consider the rate—of—change

in a column of air in the planetary boundary layer, per unit area, we

multiply equation (9) by the boundary layer height

aFM. = ZbP(h) = ZbCP K1ç—j

. (13)z az

and, for purposes of calculation,

= ZbcPPKlg_4 = CpPICia cplc (14)z b

where:

FM= rate of change of heat in the boundary layer of the atmosphere

(due to vertical flux) per unit area (C1m2—s)

= height of the boundary layer

( = 1000 in)

= specific heat of dry air

C = 0.24 C/Kg)

p = air density = 1.23 Kg/rn3

= eddy diffusion coefficient for heat (m2/s)

AG = potential temperature difference over the height of the

boundary layer (°K)

B) Energy Value of Thermal Advection

Thermal advection is the transport of heat by wind from one location

to another. This transport occurs in all directions, but we consider here

only advection by the average wind velocity in the horizontal plane.

163

Page 174: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

164

The rate of change of heat due to horizontal advection is:

—h = cj

x0 0

where F= rate of change of heat/unit volume into the atmosphere at

x (kc/m3—s)

p = density of dry air (kg/rn3) = 1.23

a1, = specific heat of dry air (Ci°K—kg) = .240

U = resultant wind velocity vector (mis)

temperature gradient vector in the direction of (°K/m)

h is the rate of change of heat in a unit volume of air at location

z due to the horizontal advection of heat (see Fig. 1). In order to

transform h into units of rate of energy flow/unit area, we integrate

over an appropriate height (the height of the atmospheric boundary

layer Z 1000 in)

Assuming that 3(h)0

3z

thus:F Zh

x0 0

where Z = height of boundary layer C = 1000 m)

F = rate of change of heat in the boundary layer per area (C/m2—s)

Plugging in all constants yields:

F (per area) = 295.2 4 i (KC/m2—s)

÷(note: U is evaluated as some boundary—layer average velocity)

Page 175: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

165

Note on calculation of vertical changes.

The rate of change equation for a parameter s due to vertical fluxes is:

2?s ,9s3tt’ 2

az

in difference equation notation, this can be represented as:

(s —s ) Cs —s )As 2 1 1 0 1AZ — AZ

K= E2 (sz_25l+s0)

In order to simplify the equation from 3 to 2 levels, and because the

vertical data were sometimes limited, the rate of change equation for the

vertical components of parameters in this study is:

= KAt

AZ2

This is a simplification which is equivalent to assuming a constant

vertical distribution of s (i.e., zero gradient) in the lower boundary

layer. In fact, the values of data used to calculate gradients generally

appeared to be uniform, but errors may result, depending upon the varia

tions of vertical gradients at some location.

Page 176: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

— IM

APPENDIX V

ATNOSPHERIC BATES—OF—CHANGE OF VAPOR PRESSURE

The total flux of water vapor including turbulent diffusion and

advection, is given by an equation analogous to that for heat flux:

= q (1)

where:

flux of water vapor (Kg/m2—s)

p = air density = 1.23 KgJm3

= eddy diffusion coefficient for water vapor (m2/s)mass of water vaporq = specific humidity ( . )mass of dry air

u wind velocity (mis)

= the 3—d gradient of specific humidity (m)

The flux of specific humidity (Jq) and rate of change of specific

humidity (q) are obtained from the following equations.

Jq = (—K.Vq+ qt) (2)

q= (icV2q-Vq t) (3)

where: = flux of specific humidity (mis)

q = rate of change of specific humidity (us)

In order to obtain the flux of water vapor pressure and rate—

of—change of water vapor pressure, we use the approximation

q =O.622 (4)

where e = water vapor pressure (nib)

P = atmospheric pressure (nib)

166

Page 177: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

167

and thus, = .622 — e 8!’(5)

where:

= q rate of change of specific humidity (el)

= rate of change of vapor pressure (mbfs)

-

= rate of change of atmospheric pressure (mb/a)

Assuming = 0 (i.e., constant atmospheric pressure), we have:

g .622 Bep

and

Be P(6)at 0.622 Bt

Equation (6) can be considered as the sum of rates—of—change of

vertical and horizontal effects. To determine the component of

for each dimension, we examine the vertical and horizontal components

of equation (3).

Considering only the vertical dimension:

2- ÷=v IS_?&.h.

(7)q 14 2 Bz BtBa

+If we consider = 0, then

2-

(8)Ba

and, from (6)

= .622 ‘S4 -

Page 178: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

168

If we apply equation 5 to the right hand side of (9):

a2q — a .622 8e .6223 ar2az P 3z 2 azaz

= .622 +-ei q+3cj!) 2(10)

Making the hydrostatic approximation:

a2p= —pg and —j = 0

we now have:

= .622 1 .L + g p + 0 + 2e()2

(11)

and, from equations (1) and (11):

e=Kw[ij+f& +2e(&) 2]

(12):

where: = rate of change of vapor pressure due to vertical flux (mg/s)

Kw = eddy diffusion coefficient for water vapor (m2/s)

p = air density = 1.23 Kg/rn

P = atmospheric pressure (nib)

2g = 9.8 m/s

If we consider only the horizontal dimension, we have from equation

(4):

• (13)

If we assume that Kiq

we have

Page 179: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I

169

Again, from equation (5):

= .622 [ — £. f (15)

eAssuming —j y 0, then:

B_ .622 ae16ax i’ ax

Combining equation (14) and (16) yields:

• .622 aa—

p (1’)

and, plugging into equation (6):4. 4.

• 3e K(18)

where:

e = rate of change of vapor pressure due to horizontal flows ov

vapor.

= horizontal gradient of vapor

= horizontal velocity vector.at

Page 180: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

APPENDIX VI

FLOW OF CHEMICAL POTENTIAL IN lllThtIDIfl GRADIENTS

4The value of the specific Gibbs function for any component in a

mixture of gases is: (1)

RT in (P. + 4)

where = the specific Gibbs functions of the th component (Kc/mole)

R = universal gas constant

T = absolute temperature of the system (°K)

= the partial pressure of the th component (mb)

= a function of temperature (not of iuunediate concern)

This is equivalent to the chemical potential, of component I

where:

g. .g+RT1nX. (2)

g :RT1n (P+p) (3)

P.

x

2 — = mole fraction of component i (4)i P

P = total pressure = Z P. (5)ii

g = specific Gibbs function at total pressure P

To

obtain the total chemical potential of water vapor, we multiply

equation (2) by the number of moles of water vapor (note the change in

subscript I to w for the water vapor component):

C =Ng =N g+11 RT1nX (6)w ww w w w

Using the equation of state for water vapor, we can put G on a

per—unit—volume basis:

#1 170

Page 181: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

171

PV=NRT (7)w

Pvthus G,=1— g+PV1nX (8)

or, per unit volume:-

PgG mx (9)w liT w w

and from (4)

Pg PG—+P1n () (10)

To obtain the rate of change of chemical potenia1 due to humidity

changes, we take the time derivative of (10), assuming constant T and P.

wt= friFw[F ê+1n(-)

BP Pc =— 1 1 + in + ](KC/m3— 5) (11)

where: = vapor pressure of water vapor

P = atmospheric pressure

We note from 3 that g is a function of p and 4). Sears and Salinger

define • as a function of T, as:

4) = [C,(T—t) — CT in liT in — S (T—T)]

where: the subscript denotes a reference state

T = the temperature of that state (°K)

the pressure of that state (tub)

S0 = specific entropy of the state (an arbitrary value)

g = specific Gibbs free energy of the state (also arbitrary)

Page 182: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

172

Thus, from (3) we have:

(C—S )(T—T) C gp ° °

RI? P RT R T RT0 0

If we set the arbitrary constants S and g and use our previous

assumption of constant T and P, we have:

(14)

Equation (11) simplifies to:

P1+1nJ (15)

To obtain C on a unit—area basis for the planetary boundary layer,

we multiply the right hand side of (11) by Zb ( = 1000 nO, the height of

the boundary layer:

Fg= ZbEr [1+ 1n] KC/m2 — S (16)

(Note: the vapor pressure of water, is often denoted by e.)

If the pressures are measured in millibars, a conversion factor

of 23.8 x 10 is needed to convert J to units of KG/rn2 — 5,

thus:

23.8 x 10 Zb ir 1 + in ] (1CC/rn2 — 5) (17)

where e, P are measured in rnb

= 1000 m

Page 183: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

APPENDIX VII

FREE ENERGY VALUE OF VERTICAL DIFFUSION OF WATER VAPOR

From Appendix IV, we have an expression for the rate of change of

water vapor pressure due to turbulent flux vertically:

* = K+

4 2 (ip)2e1 (1)

where: K = coefficient of eddy diffusion

= boundary layer height — 1000 rn (rn2/s)

p = air density = 1.23 Kg/rn

2& = 9.8 mIs

P = atmospheric pressure (mb)2

(100 p (mb) = pressure in newtons/rn

e = water vapor pressure (nib)

= rate of change of vapor pressure (rnb/s) due to verticaleddy diffusion of water vapor

Frorn Appendix VI, the expression for rate of change of Gibbs free energy

due to water vapor change is:

WKlObt[P] (2)

And thus, for the component of free energy flange due to vertical

diffusion of vapor:

= 23.8 x 1O ZbKW( + ft ÷ 2 c1g)2eHi + in ](C/m2s)

173

Page 184: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

APPENDIX VIII

FREE ENERGY VALUE OF WATER VAPOR ADVECTION

From Appendix IV we have an expression for the rate of change of

water vapor pressure due to advective flux:

— 4. +ae De 3x a ÷

. u (1)

where:

= rate of change of vapor pressure (mb/s)

= horizontal gradient of vapor pressure (mb/rn)

+

u = horizontal velocity vector (m/s)

From Appendix VI, we have an expression for rate of change of chemical

potential due to the rate of change of vapor pressure:

= 23.8 x lO Zb - [ 1 + in J (KC/m2-s) (2)

combining (1) and (2) yields:

Ô = 23.8 x lO Zb ][ 1 + in ] (KC/m2—s)

which is the expression of the rate of change of the Gibbs free energy of

air due to the advection of water vapor.

176

.4

Page 185: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I

Fig. AL Locations of 64 data—gathering stations used in thecalculation and mapping of climatic data.

Page 186: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

aI—

II

4

.

I

IIIII

-

I

I

I

IIII

*

Page 187: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Fig. A9. Locations of 235 data—gathering stations used in thecalculation and mapping of climatic variables.

Page 188: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I 7I a I I I 4. e I 4 I

I-.

b

Page 189: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

APPENDIX IX

FREQUENCY DISTRIBUTIONS OF CLIMATIC VARIABLES

4-

1

Page 190: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Fig. AiD. Frequency distribution for solar insolation, 1975.A) January; B) April; C) July;. D) October.

Page 191: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Mz

*ae

______

__

d hi

tI

50 40

50

40 30

-

a Lu

20

(0-

.0 MA

X6

0 50

a

30

A fl.Hm

F

‘4

£9

20 10

45J

1)9

71

21

3

772

13

:032

09

01

6

11G

89

140019

72623

44.6

2362

302

29

i836

MII

I72623

20

44

26

23

62

20

266032

29%

&36

33

16

39

A4X

£0

-

C

40

30

89

02

0I4

124

2055

.27

263764

3fl

0?8

3632.9

3438548

496&

02

5550.5

7613312

47214

20

55

.23

20

37

&I

3220

.31

360291

3!I

54U

40

68

.02

555Q

57

6133.1

261

1567

V

20

40

-

I0

30

-

0

20—

l0-

MIN

o311

124&

I50

3C

S5B

37

01

28

43

26

56

4963

055571.4

36

19

20

2681421

?4T

hW

MA

E2

4.N

50

308s

893

10

72

d43

2&C

6435005

5571.4

36

19

2.6

2604.2

17435W

6O

G

•1

0 Mm

35986

82571

12

91

60

757*

22213i

2t8

W3Ii

507

362c

A04

40

66

80

4552G

7M

AE

62

51

312

9164

)15746

22

23

33

b2

o0

31

55

.07

3620

.94

‘Eb&

B3

4552.6

750Ib4

Page 192: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Fig. All. Frequency distribution for mechanical productionof turbulence. A) January; B) April; C) July;0) October.

Page 193: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

___

—:•4j,.

__

_

H.HH

nn.1

02

55

34

045

5.10

5.9

5G

bu7

2.55

140

425

510

5.95

68

0765

850

0

030

0.7

21

07

14

3I.7

’i2.

152.

51226

3.2

20.

721.

0743

702.

15251

2.0

6322

158

30—

A

pao

30—

20

-

10— 0

a (LI

U-

B

6 tAJ

Cr

U-

I0-

MIN

ü,S

,U

jo.Z

J030

040

Ut.

)O

tt(1

70

05

00

50

MII

IM

AX

bID

(120

thee

0.40

05

00

60

0.7

00

80

(194

3‘.0

3M

AX

301

30C

0

cm

I,

20 I0

0 Li

0-

20

0 Li Cr

Li

Io

0.05

I70

n0

0M

III

0Cm

02Ü

05

00

60

0.

120

LW

1.40

4.8

0150

MII

IV

AX

OW

4J

060

08

0100

1.20

140

I.

15

02

00

MA

X01

)311

36

I—.

C,

Page 194: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Fig. A12. Frequency distribution for vertical cowponent ofrate—of—change of heat. A) January; B) April;C) July; D) October.

Page 195: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

b”%

ufM

fr

__

__

__

__

__

a hi

It

U-

40 30

20 IC

-

0

A40

0 w2

0-

U

a hi

It U a hi

It U-

Miti

b.I

c.

OW

2JJ

5.40

811

10.6

1-

13.5

1M

MX

0270

5.40

6.11

1061

13.5

16

21

B

r_rf

lH_

Hfl

flM

ill-1

90

5.7

9.1

71350

-1521

21-1

3309

3-1

1366

4-9

4435

-752

1)6

-559

.77

-36749

-175

20LM

X-1

7135

0-1

521,

21-i

38

93

-113664-9

4435

-752

CS

-55971

-367

49-1

75.2

017

.09

16.2

116

.91

21.6

22432

18.9

121

6224fl

27.0

2.

50 40’

30

0

C50

40

30-

U

(0 0

Mil

lbtb

I..2

scm

3z?r,

1u.r

rn5s4

7,a

MI4

9in

la1a1t.

9€c.7

4a43.4

tezi

.47ti

6

MA

X-2

taxn.2

a.3

7a.l

9n5s-

l7;,

33-I

4aw

-Iaaha-9

ec6-7

4a43.4

3u2;

-24fl

â2.a

MIN

.160

5.75

-144

415

.t2U

2S

I.1

1201

*1

-‘L

92

5.7

97G

2-6

35

96

-4N

55

-312

.72

-151

.08

M4t

-14

54

15

-l2

a5

I-1

120U

d_

‘tJ

.7

96

.U3

5..?

d—

41

43

5.3

12.7

2-I

I3

dIi

i5

I-.

U,

Page 196: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Fig. A13. Frequency distribution of horizontal componentof rate—of—change of heat. A) January; B) April;C) July; 0) october.

Page 197: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Li

--

*

________

a “3 Er a Li

.3:

-;

a LI

a:

a Li

a:

I-’

a’

—4

20—

10-

B nflfl

D

A

20—

i

10— M

I:;

-%.Q

_2

-76743

-5aa6s

-337027

-I2

flG

303

090

2935.4

a5

04

60

67)4

G5

s24

32

3M

AX

-?td

Th3

;sia

ans

-337527.1

21310

630.9

02

93

5.4

6504O

71

04

65

024J

23

11

35

38

2

2O o[H

HHn

mnr

M;I

d-4

531i4

-tB

1J

-I645

MA

X-4

&3

thJ

-12%

15

3S

3b

9

10 M

iN

-76

9?

-67

0.5

6

FlA

X-6

7056

64I5

H-4

(41

5-2

5774

-51

33

SS

Gd

.25

7.1

-i-5

13

35

0d

36

1.4

9

30

14

9tS

flO

7343’

9ó17

56793

7743

19b0.7

2113713

20

D

0

3W

&3

20!8

24

52

91

93

6936

2785

6762

K20

.496

29t8

24

3655

5852923

6930

.27

65

67

62

0204%

18-4

131

MIN

-190963

-13

96

91

-88

-42

0.3

7149

141.

2265

3.93

1166

.64

67

33

521

9206

27

04

77

MA

X-1

3969

’-O

t,-12

0-3

71

49

1-41

.22

05

39

311

6661

679.

3521

9206

27

04

71

3211

.39

Page 198: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Fig. A14.

r

- .

.-.

Frequency distribution for vertical component ofrate—of—change of chemical potential of watervapor. A) January; B) April; C) July;D) October.

Page 199: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

20

0 U IA a Ui

Er

U-

•lf

.—

:

A20-

I0

0

a U Er U-

10-

B

HHHH

mM

lii

004

.0.4

2.63

3.0

34

02

02

6.02

701

8.0)

9.03

MA

X1.

04203

103

45

02

602

7.01

BO

l9.

03003

30-

30—

C

0

20

-

MI’S

00

3

a U x U-

MII

ID

IIiG

âA7

332.

6349

9,10

665.

550

3(9

0996.2

1164

.62

1330

.gd

1497

34M

AX

IEa4

733283

493(0

bSS

.55

635.9

099

8z6

1164

6213

3uU

0(4

97.3

3(6

6373

V

20- * Mm

00

578

37

33

656(5

571S

73

53

53

1(2

3W

30

27

(497

4665

4£4

%Id

?(0

374

bi5

S7

40

/393591

(230

9(3

(027

49

74

6I64

10/1

02

p2

00

03

btn

c2IQ

DI

IC

(030I

2403W

27

W)

St4X

&tj

26L

Gc2

9fl

.LU

’(W

UbC

Goi

Z10301.2

4060)

/ttC

Ofl

aA

3

0 tO

Page 200: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

Fig. A15. Frequency distribution for horizontal component ofrate—of—change of chemical potential of water vapor.A) January; B) April; C) July; D) October.

Page 201: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

flA

tE4

’q

2

C n It L&.

C ‘Ii

a:

30 20

A3

0-

20-

a In Cr

Li-

10

-I0

B

CAin

i-stt

4.7

4ii

.5•J

l£4

.39

91

7.2

06

.70

.14.

231

70

.24

70.7

I5

63

to7

55

65

S3X

.754

11

-59)6

4•3

37

-20

62

0-1

42

317024

37

0.7

1t.

3IS

75

5.6

534511

30

0r

C3

0

20 l0

20-lA

IN-4

5629

-25236

-‘0

9.4

3

MA

X-2

52

.26

.i0543

65

.50

C In Cr

65.5

023943

41

33

65

d7

29

76

12

293515

lI09

23

94

34)3

36

55

12

57

6)2

93

5.I

SI)

09

IUR

03

01

0

tnfl

SO

ud

9130

33

2.5

24

73

j46

14

97

756,9

91.&

i332.5

241374

61497

75

6.1

9S

97

41

0 MIN

.51560

.373.

-132

.36

M4

30

6a2

99

37

2’

616I

2719502

flo23.4

34

44

63

53

22

16

i7r3

64

70

13

0w

7U

U.i

(3t0

MA

X•3

fl±

d-2

32

36

-Ji

14

-91.

145

QC

Page 202: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I

Fig. A16. Frequency distribution for rate—of—change of

chemical potential of rainfall. A) January;

B) April; C) July; D) October.

Page 203: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

a ‘ii

Ii..

-%

e.w

n4V

jtR

Ø4

6 Li

Ir

—*

r

40

A

ci Li

Li2

0

B

a Li

L

0 III

‘.1%

A

00

aso

.00

.50

20

02.

503.

003.

504.0

04.

50o

.00

1.50

20

0?

5031

)03

50400

45

05.0

0

C

flflHn

H0.0

0.5

0.0

0.5

0

0.50

1.00

1.50

2W

40

-

20 0 M

IN

MA

X

60

-

40

-

20-

0 MIt

j0

.0

MA

X050

609 -i

40-i

20

-

0 Mli

iC

.0

MA

X0.

50

p

200

2,50

3.00

3.50

40

045

4)5.

00250

300

3.5

04G

04.5

05

.00 0

L.n_

05

01.

00.5

02.0

02

.50

00

3.50

400

4.50

S,O

J10

01.

502.

002

.50

300

3.50

4.00

4.5

05W

050

.00

.00

.54)

15

0203

25

030

03.

504)3

.4

50

02

00

2.50

3W

2.50

4W

+50

50

0

Page 204: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

REFERENCES

Agricultural Statistics. 1977. U.S.D.A. Gov’t Printing Office.Washington, D.C.

Andrewartha, J.G. and L.C. Birch. 1976. The Distribution and Abundanceof Animals. Univ. of Chicago Press. Chicago, Illinois.

Arakawa, A., A. Katayama, and Y. Mintz. 1968. Numerical simultion ofthe general circulation of the atmosphere. Proc. WHO (IUBB Symp.National Weather Prediction). Tokyo, Japan.

Barr, A.J., J.H. Goodnight, J.P. Sail and J.T. Helwig. 1976. A User’sGuide to SAS. SAS Institute, Inc., Raleigh, North Carolina.

Budyko, H.!. 1974. Climate and Life. Academic Press. New York,

Burnett, M.S. 1978. Energy Analysis of Intermediate Technology ofAgricultural Systems. Unpub. Master’s Thesis. U. of Florida.

Byers, H.A. 1974. General Meteorology (6th Ed.). McGraw—Hill. New York.

Carroll, 0. 1962. Rainwater as a chemical agent of geologic processes.U.S. Geol. Surv. Water Supply Paper, 15350G. U.S. Gov’t PrintingOffice Paper. Washington, D.C.

Conrad, V. and L.W. Pollak. 1950. Methods in Climatology. Harvard Univ.Press. Cambridge, Massachusetts.

Considine, n.M. (ed.). 1976. Van Nostrand’s Scientific Encyclopedia(5th Ed.). Van Nostrand Reinhold Co. New Yrok.

Constanza, IL 1977. Energy Quality Calculation for Freshwater ChemicalPotential, in, Energy Analysis of Nodels of the United States,H.T. Odum and J. Alexander (eds.), Univ. of Florida, pp. 311—32.

DeBellevue, E.B. 1976. Energy basis for an agricultural region: HendryCounty, Florida. Unpublished Master’s Thesis. Dept. of EnvironmentalEngineering. U. of Florida. Gainesville, Florida.

DeVries, P.A. and N.H. Afgan (eds.). 1975. Heat and Mass Transfer in theBiosphere. John Wiley. New York.

Dougenik, J.A. and n.E. Sheehan. 1975. tSYHAP User’s Reference Manual(5th Ed.). Laboratory for Computer Graphics and Spatial Analysis.Graduate School of Design. Harvard University. Cambridge, Massachusetts.

Eagleson, P.S. 1970. Dynamic Hydrology. McGraw—Hill. New York.

194

Page 205: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

195

Energy and U.S. Agriculture: 1974 Data Base. Vol. 1. 1976. EconomicResearch Service. U.S.D.A. Washington, D.C.

Fairbridge, R.W. (ed.). 1972. Encyclopedia of Geochemistry and Environmental Sciences. Van Nostrand Reinhold Co. New York.

Haltiner, G.J. 1971. Numerical Weather Prediction. John Wiley andSons. New York.

Handbook of Agricultural Charts. 1977. (Agriculture Handbook No. 524).U.S.D.A. Gov’t Printing Office. Washington, D.C.

Hem) J.D. 1970. Study and interpretation of the chemical characteristicsof natural water. U.S. Geol. Surv. Water Supply Paper. No. 1473.U.S. Gov’t Printing Office. Washington, D.C.

Hess, 5.1.. 1959. Introduction to Theoretical Meteorology. C.P. Holt Co.New York.

Hewson, E.W. and Langley, R.W. 1944. Meteorology, Theoretical and Applied.John Wiley and Sons. New York.

Hirst, E. 1974. Food—related energy requirements. Science. 184(4133):134—138.

Holdridge, L.R. 1947. Determination of world plant formations from simpleclimatic data. Science. 105: 367—368.

Holdridge, L.R. 1959. Simple method for determining potential evapotrans—paration from temperature data Science 130 572

Hyams,E S 1952 Soil and Civilization Dover Books, London, England

Jackson, I.J. 1977. Climate, Weather and Agriculture in the Tropics.Longman’s Publishing Co. London, England.

.Junge, G.E. and R.T. Werby. 1958. The concentration of chloride, sodium,potassium, calcium and sulfate in rainwater over the United States.Journal of Meteorology. 15:417—425.

Kung, E.G., R.A. Bryson, and D.H. Lenschow. 1964. Study of a continentalsurface albedo on the basis of flight measurements and structure ofthe Earth’s surface cover over North America. Monthly Weather Review.92(12) :543—564.

Leach, C. 1976. Energy and Food Production. IPC Science and TechnologyPress, Ltd. Cuildford, Surrey, England. -

Lieth, H. and ILL. Whittaker. 1975. Primary Productivity of the Biosphere.Springer—Verlag. New York.

Livingstone, D.A. 1963. The data of geochemistry (6th Ed.). U.S. Geological Surv. Professional Paper. No. 440—C. U.S. Cov’t Printing Off.Washington, D.C.

Page 206: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

196

Lumley, J.A. and H.A. Panofsky. 1964. The Structure of AtmosphericTurbulence. Interscience Publishers. New York.

Merchant., N.J. and J.R. Sturgul. 1977. Applied FORTRAN Programmingwith Standard F0RTRA1, WATFOR, WATFIV, and Structured WATFIV.WadsworthPublishing Co., Inc. Belmont, California.

Monin, A.S. 1972. Weather Forecasting as a Problem in Physics. NITPress. Cambridge, Massachusetts.

Monteith, J.L. 1965. Light distribution and photosynthesis in fieldcrops. Ann. Bot. 29(113):17—37.

Munn, R.E. 1970. Biometeorological Methods. Academic Press. New York.

National Climate Cente*. 1975. Climatological Data — National Summary —

1975. Asheville, North Carolina.

Odum, H.T. 1967. Energetics of Food Production in Vol. 3: The WorldFood Problem Report. President’s Science Advisory Committee Panelon World Food Supply. Whitehouse. Washington, D.C. 55—94.

Odum, H.T. 1970. Environment, Power and Society. John Wiley. New York.

Odum, fl.T. 1972. An energy circuit language for ecological and socialsystems: its physical basis. Systems Analysis and Simulationin Ecology, V. II. B. Patten, ed., Academic Press. New York.

Odum, H.T., C. Kyistra, J. Alexander, N. Sipe, and P. Lem. 1976. NetEnergy Analysis of Alternatives for the United States. Preparedfor the Committee on Energy and Power of the U.S. Congress. ERDAcontract E(40—1)—4398. Dept. of Environmental Engineering Sciences.University of Florida. Gainesville, Florida.

Odum, J.T. and J. Alexander (eds.). 1977. Energy Analysis of Models ofthe United States. Annual Report to the Dept. of Energy. ContractNo. EY—76—S—O5—4398. U. of Florida. Gainesville, Florida.

Penman, ILL. 1948. Natural evaporation from open water, bare soil, andgrass. Proc. Roy. Soc., Al94:220.

Pimentel, D., L.E. Hurd, A.C. Bellotti, N.J. Forster, I.N. Oka, 0.0. Sholes,and R.J. Whitman. 1973. Food production and the energy crisis.Science. 182 (6111) :443—449.

Present and Future Energy Needs on ramily Farms. 1977. Hearings beforethe Subcommittee on Family Farms, Rural Development, and SpecialStudies of the Coimuittee on Agricutlure. House of Representatives.95th Congress. U.S. Gov’t Printing Office. Washington, D.C.

Rosenberg, N.J. 1974. Microclimate: The Biological Environment.John Wiley and Sons. New York.

Page 207: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

1 197

Rosenzweig, M.L. 1968. Net primary productivity of terrestrialcommunities: Prediction from.climatological data. AmericanNaturalist. 102(923):67—74. University of Chicago Press.Chicago, Illinois.

Sears, F.W., and G.L. Zemansky. 1975. Thermodynamics, Kinetic Theory,and Statistical Thermodynamics. Addison—Wesley. Reading, Massachusetts.

Sellers, W.P. 1965. Physical Climatology. University of Chicago Press.Chicago, Illinois.

Slesser, H. 1973. Energy subsidy as a criterion in food policy planning.J. Sci. Food Agric. 24:1193—1207.

Smagorinsky, 3. 1963. General circulation experiments with the primitiveequations. Monthly Weather Review. Washington, D.C. 9l(3):99—l65.

Statistical Abstract of the United States. 1977. U.S. Dept. of Commerce.Bureau of the Census. U.S.G.P.0. Washington, D.C.

Steinhart, 3.5. and C.E. Steinhart. 1974. Energy use in the U.S. foodsystem. Science. 184 (4134) :307—316.

Thompson, Louis S. 1974. Weather variability, climatic change and grainproduction. Science. 185(4188) :535—541.

Thornthwaite, C.W. and J.R. Mather. 1954. Climate in relation to crops,in, Meteorological Monographs. 2:8. -

• Thornthwaite, C.W. and J.R. Mather. 1957. Instructions and tablesfor computing potential evapotranspiration and the water valence.Drexel Inst. Tech. Lab. Climatol. Pub. Climatol. 17:231—615.

Trewartha, G.T. 1968. An Introduction to Climate. McGraw—Hill. New York.

TVA Engineering Lab, Neat and Mass Transfer Between a Water Surface andthe Atmosphere, Engineering Lab Report 14, April, 1972.

Van Bavel, C.H.M. 1966. Potential evapotranspiration: the combinationconcept and its experimental verification. Water Resource Res.

5’ 2:455—467. “.

Watt, B.K. and A.L. Merrill. 1975. Composition of Foods (AgriculturalHandbook No. 8). U.S. Gov’t Printing Office. Washington, D.C.

Webb, E.K. 1965. Aerial Microclimate, in, Meteorological Monographs.6:28.

Page 208: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

__

— - —

BIOGRAPHICAL SKETCH

Dennis Peter Swaney was born in Ashtabula, Ohio, on May 15, 1953.

He lived in Ashtabula and Kingsville, Ohio, until his graduation from

Edgewood High School. During the summer of his senior year, he parti

cipated in a National Science Foundation program in space science for

high school students. After graduation from high school in 1971, he

attended Prescott College in Prescott, Arizona, for two years, followed

by six months working as a U. S. Forest Service firefighter on the

Prescott National Forest.

In September, 1974, he returned to school, this time to New College

in Sarasota, Florida, where he majored in physics. During the summer

term of his senior year, he pursued a student research fellowship in

atmospheric physics at Argonne National Laboratory. He continued his

work there during the fall quarter, developing his research for his

senior thesis.

After completing his studies at New College in 1976, he entered the

Department of Environmental Engineering Sciences at the University of

Florida to pursue a Master of Science degree under the supervision of

Dr. 11. T. Odum.

Dennis Swaney is single and is currently living in Gainesville,

Florida.

198

Page 209: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

I certify that I have read this study and that in my opinion itconforms to acceptable standards of acholarly presentation and is fullyadequate, in scope and quality, as a thesis for the degree of Master ofScience.

Howard T. Odum, ChairmanGraduate Research Professor of

Environmental EngineeringSciences

I certify that I have read this study and that in my opinion itconforms to acceptable standards of scholarly presentation and is fullyadequate, in scope and quality, as a thesis for the degree of Master ofScience.

( )) /

Wayne C/ [TuberAssociate Professor of Environmental

Engineering Sciences

I certify that I have read this study and that in my opinion it• conforms to acceptable standards of scholarly presentation and is fully

adequate, in scope and quality, as a thesis for the degree of Master ofScience.

çRichard C. FluckProfessor of Agricultural

Engineering

This thesis was submitted to the Graduate Faculty of the College ofEngineering and to the Graduate Council, and was accepted as partialfulfillment of the requirements for the degree of Master of Science.

December, 1978

Dean, College of Engineering

Dean, Graduate School

Page 210: —a -‘a- › emergy › documents › ... · the study in the first place, and taught me not to fear large—scale research problems. Professor Richard Fluck initially inspired

• •. :

1<

DDnDrTY’V flC ThFr nV) ‘(CT[I\LR Lid I ba JkRIL1\ iURWLILfl