A32B59D4d01

13
1  ® PCM1702 BiCMOS Advanced Sign Magnitude 20-Bit DIGITAL-TO-ANALOG CONVERTER DESCRIPTION FEATURES q ULTRA LOW –96dB max THD+N (No External Adjustment Required) q NEAR-IDEAL LOW LEVEL OPERATION q GLITCH-FREE OUTPUT q 120dB SNR TYP (A-Weight Method) q INDUSTRY STD SERIAL INPUT FORMAT q FAST (200ns) CURRENT OUTPUT (±1.2mA) q CAPABLE OF 16X OVERSAMPLING q COMPLETE WITH REFERENCE q LOW POWER (150mW typ) 49% FPO The PCM1702 is a precision 20-bit digital-to-analog converter with ultra-low distortion (–96dB typ with a full scale output). Incorporated into the PCM1702 is an advanced sign magnitude architecture that elimi- nates unwanted glitches and other nonlinearities around bipolar zero. The PCM1702 also features a very low noise (120dB typ SNR: A-weighted method) and fast settling current output (200ns typ, 1.2mA step) which is capable of 16X oversampling rates. Applications include very low distortion frequency synthesis and high-end consumer and professional digital audio applications. International Airport Industrial Park Mailing Address: PO Box 11400 Tucson, AZ 85734 Street Address: 6730 S. Tucson Blvd. Tucson, AZ 85706 Tel: (520) 746-1111 Twx: 910-952- 1111 Cable: BBRCORP Telex: 066-6491 FAX: (520) 889-1510 Immediate Product Info: (800) 548-6132 Reference and Servo I OUT DCOM LE Data Clock BPO DC Bipolar Offset Balanced Current Segment DAC A Input Shift Register and Control Logic Balanced Current Segment DAC B SERV DC RF DC ACOM +V CC  –V CC PCM1702P PCM1702U © 1993 Burr-Brown Corporation PDS-1175B Printed in U.S.A. June, 1995  ® SBAS026

Transcript of A32B59D4d01

Page 1: A32B59D4d01

8/3/2019 A32B59D4d01

http://slidepdf.com/reader/full/a32b59d4d01 1/13

1

®

PCM1702

BiCMOS Advanced Sign Magnitude 20-BitDIGITAL-TO-ANALOG CONVERTER

DESCRIPTIONFEATURES

q ULTRA LOW –96dB max THD+N(No External Adjustment Required)

q NEAR-IDEAL LOW LEVEL OPERATION

q GLITCH-FREE OUTPUT

q 120dB SNR TYP (A-Weight Method)

q INDUSTRY STD SERIAL INPUT FORMAT

q FAST (200ns) CURRENT OUTPUT(±1.2mA)

q CAPABLE OF 16X OVERSAMPLING

q COMPLETE WITH REFERENCE

q LOW POWER (150mW typ)

49%FPO

The PCM1702 is a precision 20-bit digital-to-analogconverter with ultra-low distortion (–96dB typ with a

full scale output). Incorporated into the PCM1702 is

an advanced sign magnitude architecture that elimi-

nates unwanted glitches and other nonlinearities around

bipolar zero. The PCM1702 also features a very low

noise (120dB typ SNR: A-weighted method) and fast

settling current output (200ns typ, 1.2mA step) which

is capable of 16X oversampling rates.

Applications include very low distortion frequency

synthesis and high-end consumer and professional

digital audio applications.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

Reference

and

Servo

IOUT

DCOM

LE

Data

Clock

BPO DC

Bipolar Offset

Balanced Current

Segment DAC A

Input Shift Register

and Control Logic

Balanced Current

Segment DAC B

SERV DCRF DC

ACOM+VCC

–VCC

PCM1702PPCM1702U

© 1993 Burr-Brown Corporation PDS-1175B Printed in U.S.A. June, 1995

®

SBAS026

Page 2: A32B59D4d01

8/3/2019 A32B59D4d01

http://slidepdf.com/reader/full/a32b59d4d01 2/13

2

®

PCM1702

SPECIFICATIONSAll specifications at 25°C, ±V

CCand +V

DD= ±5V unless otherwise noted.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes

no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change

without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant

any BURR-BROWN product for use in life support devices and/or systems.

PCM1702P/U, -J, -K

PARAMETER CONDITIONS MIN TYP MAX UNITS

RESOLUTION 20 Bits

DYNAMIC RANGE, THD + N at –60dB Referred to Full Scale, with A-weight 110 dB

DIGITAL INPUT

Logic Family TTL/CMOS CompatibleLogic Level: V

IH+2.4 +V

DDV

VIL

0 0.8 V

IIH

VIH

= +VDD

±10 µA

IIL

VIL

= 0V ±10 µA

Data Format Serial, MSB First, BTC(1)

Input Clock Frequency 12.5 20.0 MHz

TOTAL HARMONIC DISTORTION + N(2)

P/U VO

= 0dB fS

= 352.8kHz(3), f = 1002Hz(4) –92 –88 dB

VO

= –20dB fS

= 352.8kHz(3), f = 1002Hz(4) –82 –74 dB

VO

= –60dB fS

= 352.8kHz(3), f = 1002Hz(4) –46 –40 dB

P/U, -J VO

= 0dB fS

= 352.8kHz(3), f = 1002Hz(4) –96 –92 dB

VO

= –20dB fS

= 352.8kHz(3), f = 1002Hz(4) –83 –76 dB

VO

= –60dB fS

= 352.8kHz(3), f = 1002Hz(4) –48 –42 dB

P/U, -K VO

= 0dB fS

= 352.8kHz(3), f = 1002Hz(4) –100 –96 dB

VO

= –20dB fS

= 352.8kHz(3), f = 1002Hz(4) –84 –80 dB

VO

= –60dB fS

= 352.8kHz(3), f = 1002Hz(4) –50 –44 dB

ACCURACY

Level Linearity At –90dB Signal Level ±0.5 dB

Gain Error ±0.5 ±3 %

Bipolar Zero Error(5) ±0.25 %

Gain Drift 0°C to 70°C ±25 ppm of FSR/ °C

Bipolar Zero Drift 0°C to 70°C ±5 ppm of FSR/ °C

Warm-up Time 1 minute

IDLE CHANNEL SNR(6) Bipolar Zero, A-weighted Filter 110 120 dB

ANALOG OUTPUT

Output Range ±1.2 mA

Output Impedance 1.0 kΩ

Settling Time (±0.003% of FSR, 1.2mA Step) 200 ns

Glitch Energy No Glitch Around Zero

POWER SUPPLY REQUIREMENTS

Supply Voltage Range: +VCC

= +VDD

+4.75 +5.00 +5.25 V

–VCC

= –VDD

–4.75 –5.00 –5.25 V

Combined Supply Current: +ICC +VCC = +VDD = +5V +5.00 +9.0 mACombined Supply Current: –I

CC –V

CC= –V

DD= –5V –25.00 –41.0 mA

Power Dissipation ±VCC

= ±VDD

= ±5V 150 250 mW

TEMPERATURE RANGE

Operating –25 +85 °C

Storage –55 +125 °C

NOTES: (1) Binary Two’s Complement coding. (2) Ratio of (DistortionRMS

+ NoiseRMS

) / SignalRMS

. (3) D/A converter sample frequency (8 x 44.1kHz; 8x oversampling).

(4) D/A converter output frequency (signal level). (5) Offset error at bipolar zero. (6) Measured using an OPA627 and 5k Ω feedback and an A-weighted filter.

Page 3: A32B59D4d01

8/3/2019 A32B59D4d01

http://slidepdf.com/reader/full/a32b59d4d01 3/13

3

®

PCM1702

Power Supply Voltage ..................................................................±6.5VDC

Input Logic Voltage ........................................... DGND—0.3V~+VDD

+0.3V

Operating Temperature ..................................................... –25°C to +85°C

Storage Temperature ...................................................... –55°C to +125°C

Power Dissipation .......................................................................... 300mW

Lead Temperature (soldering, 5s) .................................................... 260°C

ABSOLUTE MAXIMUM RATINGS (SOP Package)ABSOLUTE MAXIMUM RATINGS (DIP Package)

Power Supply Voltage ..................................................................±6.5VDC

Input Logic Voltage ........................................... DGND—0.3V~+VDD

+0.3V

Operating Temperature..................................................... –25°C to +85°C

Storage Temperature ...................................................... –55°C to +125°C

Power Dissipation .......................................................................... 500mW

Lead Temperature (soldering, 10s) .................................................. 260°C

PIN MNEMONIC PIN MNEMONIC

1 DATA 9 +VCC

2 CLOCK 10 BPO DC

3 +VDD

11 IOUT

4 DCOM 12 ACOM

5 –VDD

13 ACOM

6 LE 14 SERV DC

7 NC 15 REF DC

8 NC 16 –VCC

PIN ASSIGNMENTS (DIP Package)

PACKAGE INFORMATION(1)

PACKAGE DRAWING

MODEL PACKAGE NUMBER

PCM1702P 16-Pin Plastic DIP 180

PCM1702U 20-Pin Plastic SOP 248

NOTE: (1) For detailed drawing and dimension table, please see end of data

sheet, or Appendix D of Burr-Brown IC Data Book.

PIN MNEMONIC PIN MNEMONIC

1 DATA 11 +VCC

2 CLOCK 12 BPO DC

3 NC 13 NC

4 +VDD

14 IOUT

5 DCOM 15 ACOM

6 –VDD

16 ACOM

7 LE 17 SERV DC

8 NC 18 NC

9 NC 19 RFE DC

10 NC 20 –VCC

PIN ASSIGNMENTS (SOP Package)

GRADE MARKING (SOP Package)

MODEL PACKAGE

PCM1702U Marked PCM1702.

PCM1702U-J Marked with white dot by pin 10.

PCM1702U-K Marked with red dot by pin 10.

CONNECTION DIAGRAM

RNF

VOUT

CLOCK

DATA

LE

16

15

14

11

10

9

13

12

47µF

47µF

+

2

1

6

3

4

5 +

+

+5V VCC

+ +

–5V VCC

+

+

47µF

100µF22µF

–5V VDD

+5V VDD47µF

47µF

= SOP

= DIP

2

1

7

4

5

6

20

19

17

14

12

11

16

15

Page 4: A32B59D4d01

8/3/2019 A32B59D4d01

http://slidepdf.com/reader/full/a32b59d4d01 4/13

4

®

PCM1702

TYPICAL PERFORMANCE CURVESAll specifications at 25°C, ±V

Aand ±V

D= ±5.0V unless otherwise noted.

THD+N vs FREQUENCY

–40

–60

–100

–120

–80

20 100 1k 10k

Output Frequency (Hz)

T H D + N ( d B )

–60dB

–40dB

–20dB

0dB

16-BIT LEVEL LINEARITY

(Dithered Fade-to-Noise)

8

6

4

2

0

–2

–4

–6

–8

D e v i a t i o n f r o m I d

e a l L e v e l ( d

B )

–120

Output Signal Level (dB)

–110 –100 –90 –80 –70 –60

16-BIT MONOTONICITY

8.83ms/div

1.5

1

0.5

0

–0.5

–1

–1.5

O u t p u t V o l t a g e ( m V )

–90dB SIGNAL SPECTRUM

(100Hz Bandwidth)

–80

–100

–120

–140

–160

P o w e r S p e c t r u m ( d B )

0 4k 8k 12k 16k 20k

Frequency (Hz)

–90dB SIGNAL

(10Hz to 20kHz Bandwidth)

200

100

0

–100

–200

O u t p

u t L e v e l ( µ V )

0 400 800 1200 1600 2000

Time (µs)

–110dB SIGNAL

(10Hz to 20kHz Bandwidth)

40

20

0

–20

–40

O u t p u t L e v e l ( µ V )

0 400 800 1200 1600 2000

Time (µs)

Page 5: A32B59D4d01

8/3/2019 A32B59D4d01

http://slidepdf.com/reader/full/a32b59d4d01 5/13

5

®

PCM1702

DISCUSSION OFSPECIFICATIONSDYNAMIC SPECIFICATIONS

Total Harmonic Distortion + NoiseThe key specifications for the PCM1702 is total harmonic

distortion plus noise (THD+N).

Digital data words are read into the PCM1702 at eight times

the standard compact disk audio sampling frequency of

44.1kHz (352.8kHz) so that a sine wave output of 1002Hz

is realized.

For production testing, the output of the DAC goes to an

I to V converter, then through a 40kHz low pass filter, and

then to a programmable gain amplifier to provide gain at

lower signal output test levels before being fed into an

analog-type distortion analyzer. Figure 1 shows a block

diagram of the production THD+N test setup.

For the audio bandwidth, THD+N of the PCM1702 is

essentially flat for all frequencies. The typical performance

curve, “THD+N vs Frequency”, shows four different output

signal levels: 0dB, –20dB, –40dB, and –60dB. The test

signals are derived from a special compact test disk (the

CBS CD-1). It is interesting to note that the –20dB signal

falls only about 10dB below the full scale signal instead of

the expected 20dB. This is primarily due to the superior low

level signal performance of the advanced sign magnitude

architecture of the PCM1702.

In terms of signal measurement, THD+N is the ratio of

DistortionRMS + NoiseRMS / SignalRMS expressed in dB. For the

PCM1702, THD+N is 100% tested at all three specified

output levels using the test setup shown in Figure 1. It is

significant to note that this test setup does not include any

output deglitching circuitry. All specifications are achieved

without the use of external deglitchers.

Dynamic Range

Dynamic range in audio converters is specified as the mea-

sure of THD+N at an effective output signal level of –60dB

referred to 0dB. Resolution is commonly used as a theoreti-

cal measure of dynamic range, but it does not take into

account the effects of distortion and noise at low signal

levels. The advanced sign magnitude architecture of the

PCM1702, with its ideal performance around bipolar zero,

provides a more usable dynamic range, even using the strict

audio definition, than any previously available D/A con-

verter.

THEORY OF OPERATIONADVANCED SIGN MAGNITUDE

Digital audio systems have traditionally used laser-trimmed,

current-source DACs in order to achieve sufficient accuracy.

However, even the best of these suffer from potential low-

level nonlinearity due to errors at the major carry bipolar

zero transition. More recently, DACs employing a different

architecture which utilizes noise shaping techniques andvery high over-sampling frequencies, have been introduced

(“Bitstream”, “MASH”, or 1-bit DAC). These DACs over-

come the low level linearity problem, but only at the expense

of signal-to-noise performance, and often to the detriment of

channel separation and intermodulation distortion if the

succeeding circuitry is not carefully designed.

The PCM1702 is a new solution to the problem. It combines

all the advantages of a conventional DAC (excellent full

scale performance, high signal-to-noise ratio and ease of

use) with superior low-level performance. Two DACs are

combined in a complementary arrangement to produce an

extremely linear output. The two DACs share a common

reference, and a common R-2R ladder for bit current sources

by dual balanced current segments to ensure perfect tracking

under all conditions. By interleaving the individual bits of

each DAC and employing precise laser trimming of resis-

tors, the highly accurate match required between DACs is

achieved.

This new, complementary linear or advanced sign magni-

tude approach, which steps away from zero with small steps

in both directions, avoids any glitching or “large” linearity

errors and provides an absolute current output. The low level

performance of the PCM1702 is such that real 20-bit reso-

lution can be realized, especially around the critical bipolar

zero point.

Table 1 shows the conversion made by the internal logic of

the PCM1702 from binary two’s complement (BTC). Also,

the resulting internal codes to the upper and lower DACs

(see front page block diagram) are listed. Notice that only

the LSB portions of either internal DAC are changing

around bipolar zero. This accounts for the superlative per-

formance of the PCM1702 in this area of operation.

INPUT CODE LOWER DAC CODE UPPER DAC CODE

ANALOG OUTPUT (20-bit Binary Two's Complement) (19-bit Straight Binary) (19-bit Straight Binary)

+Full Scale 011...111 111...111+1LSB(1) 111...111

+Full Scale –1LSB 011...110 111...111+1LSB(1) 111...110

Bipolar Zero +2LSB 000...010 111...111+1LSB(1) 000...010

Bipolar Zero +1LSB 000...001 111...111+1LSB(1) 000...001

Bipolar Zero 000...000 111...111+1LSB(1) 000...000

Bipolar Zero –1LSB 111...111 111...111 000...000

Bipolar Zero –2LSB 111...110 111...110 000...000

–Full Scale +LSB 100...001 000...001 000...000

–Full Scale 100...000 000...000 000...000

NOTE: (1) The extra weight of 1LSB is added at this point to make the transfer function symmetrical around bipolar zero.

TABLE I. Binary Two's Complement to Sign Magnitude Conversion Chart.

Page 6: A32B59D4d01

8/3/2019 A32B59D4d01

http://slidepdf.com/reader/full/a32b59d4d01 6/13

6

®

PCM1702

Level Linearity

Deviation from ideal versus actual signal level is sometimes

called “level linearity” in digital audio converter testing. Seethe “–90dB Signal Spectrum” plot in the Typical Perfor-

mance Curves section for the power spectrum of a PCM1702

at a –90dB output level. (The “–90dB Signal” plot shows the

actual –90dB output of the DAC). The deviation from ideal

for PCM1702 at this signal level is typically less than

±0.3dB. For the “–110dB Signal” plot in the Typical Perfor-

mance Curves section, true 20-bit digital code is used to

generate a –110dB output signal.

This type of performance is possible only with the low-

noise, near-theoretical performance around bipolar zero of

the PCM1702 advanced sign magnitude.

A commonly tested digital audio parameter is the amount of

deviation from ideal of a 1kHz signal when its amplitude isdecreased form –60dB to –120dB. A digitally dithered input

signal is applied to reach effective output levels of

–120dB using only the available 16-bit code from a special

compact disk test input. See the “16-bit Level Linearity” plot

in the Typical Performance Curves section for the results of

a PCM1702 tested using this 16-bit dithered fade-to-noise

signal. Note the very small deviation from ideal as the signal

goes from –60dB to –100dB.

DC SPECIFICATION

Idle Channel SNR

Another appropriate specification for a digital audio con-

verter is idle channel signal-to-noise ratio (idle channel

SNR). This is the ratio of noise on the DAC output at bipolar

zero in relation to the full scale range of the DAC. To make

this measurement, the digital input is continuously fed the

code for bipolar zero, while the output of the DAC is band-

limited from 20Hz to 20kHz and an A-weighted filter is

applied. The idle channel SNR for the PCM1702 is typically

greater than 120dB, making it ideal for low-noise applica-

tions.

MonotonicityBecause of the unique advanced sign magnitude architecture

of the PCM1702, increasing values of digital input willalways result in increasing values of DAC output as the

signal moves away from bipolar zero in one-LSB steps (in

either direction). The “16-bit Monotonicity” plot in the

Typical Performance Curves section was generated using

16-bit digital code from a test compact disk. The test starts

with 10 periods of bipolar zero. Next are 10 periods of

alternating 1LSBs above and below zero, and then 10

periods of alternating 2LSBs above and below zero, and so

on until 10LSBs above and below zero are reached. The

signal pattern then begins again at bipolar zero.

With PCM1702, the low-noise steps are clearly defined and

increase in near-perfect proportion. This performance is

achieved without any external adjustments. By contrast,

sigma-delta (“Bit-stream”, “MASH”, or 1-bit DAC) archi-

tectures are too noisy to even see the first 3 or 4 bits change

(at 16 bits), other than by a change in the noise level.

Absolute Linearity

Even though absolute integral and differential linearity specs

are not given for the PCM1702, the extremely low THD+N

performance is typically indicative of 17-bit integral linearity

in the DAC. The relationship between THD+N and linearity,

however, is not such that an absolute linearity specification

for every individual output code can be guaranteed.

Offset, Gain, and Temperature Drift

Although the PCM1702 is primarily meant for use in dy-

namic applications, specifications are also given for moretraditional DC parameters such as gain error, bipolar zero

offset error, and temperature gain and offset drift.

DIGITAL INPUT

Timing Considerations

The PCM1702 accepts TTL compatible logic input levels.

The data format of the PCM1702 is binary two’s comple-

ment (BTC) with the most significant bit (MSB) being first

FIGURE 1. Production THD+N Test Setup.

Timing

Logic

Binary

Counter

Digital Code

(EPROM)

Parallel-to-Serial

Conversion

DUT

(PCM1702)

I to V

Converter

OPA627

Distortion

Analyzer

Programmable

Gain Amp

0dB to 60dB

Low-Pass Filter

40kHz 3rd Order

GIC Type

DATA

(Shiba Soku Model

725 or Equivalent)

Use 400Hz High-Pass

Filter and 30kHz

Low-Pass Filter

Meter Settings

Sampling Rate = 44.1kHz x 8(352.8kHz)

Output Frequency = 1002Hz

LE (Latch Enable)

CLOCK

Page 7: A32B59D4d01

8/3/2019 A32B59D4d01

http://slidepdf.com/reader/full/a32b59d4d01 7/13

7

®

PCM1702

in the serial input bit stream. Table II describes the exact

relationship of input data to voltage output coding. Any

number of bits can precede the 20 bits to be loaded, since

only the last 20 will be transferred to the parallel DAC

register after Latch Enable (Pin6 <PCM1702P>, Pin7

<PCM1702U>, LE) has gone low.

All DAC serial input data (Pin1, DATA) bit transfers are

triggered on positive clock (Pin2, CLOCK), edges. The

serial-to-parallel data transfer to the DAC occurs on thefalling edge of Latch Enable. The change in the output of the

DAC occurs at a rising edge of the 4th clock of the CLOCK

after the falling edge of Latch Enable. Refer to Figure 2 for

graphical relationships of these signals.

Maximum Clock RateA typical clock rate of 16.9MHz for the PCM1702 is derived

by multiplying the standard audio sample rate of 44.1kHz by

sixteen times (16X over-sampling) the standard audio word

bit length of 24 bits (44.1kHz x 16 x 24 = 16.9MHz). Note

that this clock rate accommodates a 24-bit word length, even

though only 20 bits are actually being used. The setup and

hold timing relationships are shown in Figure 3.

“Stopped Clock” Operation

The PCM1702 is normally operated with a continuous clock

input signal. If the clock is to be stopped between input data

words, the last 20 bits shifted in are not actually shifted from

the serial register to the latched parallel DAC register until

Latch Enable goes low. Latch Enable must remain low until

after the first clock cycle of the next data word to insure

proper DAC operation. In any case, the setup and hold times

for Data and LE must be observed as shown in Figure 3.

INSTALLATIONPOWER SUPPLIES

Refer to CONNECTION DIAGRAM for proper connection

of the PCM1702. The PCM1702 only requires a ±5V sup-

ply. Both positive supplies should be tied together at a single

point. Similarly, both negative supplies should be connected

together. No real advantage is gained by using separate

analog and digital supplies. It is more important that boththese supplies be as “clean” as possible to reduce coupling

of supply noise to the output. Power supply decoupling

capacitors should be used at each supply pin to maximize

power supply rejection, as shown in CONNECTION DIA-

GRAM regardless of how good the supplies are. Both

commons should be connected to an analog ground plane as

close to the PCM1702 as possible.

FILTER CAPACITOR REQUIREMENTS

As shown in CONNECTION DIAGRAM, various size

decoupling capacitors can be used, with no special tolerances

being required. The size of the offset decoupling capacitor is

not critical either, with larger values (up to 100µF) giving

slightly better SNR readings. All capacitors should be as close

to the appropriate pins of the PCM1702 as possible to reduce

noise pickup from surrounding circuitry.

> 15ns > 15ns

> 40ns

LSBData Input MSB

> 20ns > 20ns

> 15ns

> One Clock Cycle > One Clock Cycle

LatchEnable

Clock

Input

> 15ns

DIGITAL INPUT ANALOG OUTPUT CURRENT OUTPUT

1,048,576LSBs Full Scale Range 2.40000000mA

1LSB NA 2.28882054nA

7FFFFHEX

+Full Scale –1.19999771mA

00000HEX

Bipolar Zero –1LSB 0.00000000mA

80000HEX

–Full Scale +1.20000000mA

TABLE II. Digital Input/Output Relationships. FIGURE 3. Setup and Hold Timing Diagram.

FIGURE 2. Timing Diagram.

1 2 3 4 13 14 15 16 17 18 19 20 1

MSB LSB

Data

Clock

Latch

Enable

NN-1IOUT

12

DATA "N"

NOTES : (1) If clock is stopped between input of 20-bit data words, "Latch" Enable (LE) must remain low until after the first clock cycle of the next 20-bit data

word stream. (2) Data format is binary two's complement (BTC). Individual data bits are clocked in on the corresponding positive clock edge. (3) Latch Enable

(LE) must remain low at least one clock cycle after going negative. (4) Latch Enable (LE) must be high for at least one clock cycle before going negative. (5)

IOUT

changes on positive going edge of the 4th clock after negative going edge of Latch Enable (LE).

Page 8: A32B59D4d01

8/3/2019 A32B59D4d01

http://slidepdf.com/reader/full/a32b59d4d01 8/13

8

®

PCM1702

FIGURE 4. Typical Application for Stereo Audio 8X Oversampling system.

1 M Ω

1 6 . 9 3 4 4 M H z

2 1

1 1

1 0

5 4 3

8 X I n t e r p o l a t i o n

D i g i t a l F i l t e r

1 7

2 2

3

+ 5 V

2 3

1 0 0 p F

1 4

2 1

1 6

4 . 7 µ F 1

2 8 2

2 6

2 5

2 4

4 . 7 µ F

6

1 0

4

D i g i t a l I n t e r f a c e

F o r m a t R e c e i v e r

1

7

+ 5 V

8

4 7 0 0 p F

3

1 4

5 6

1 2

1 5

1 7

0 . 1 µ F

2 8

4

4 . 7 µ F

Ω

1 7 . 1 k

+ 5 V

( 1 9 2 F ) S

1 0 p F

1 0 p F

I n t e r l e a v e d

D i g i t a l

I n p u t

1 5 0 Ω

φ

A

B C O

L / R D

A

Y a m a h a

Y M 3 6 2 3

P C M 1 7 0 2 P

B u r r - B r o w n

D F 1 7 0 0 P

8

D O R

B C O

W C K

D O L

4 . 7 µ F

+ 5 V

+

+

+

6

B C K

D A T A

G N D

– 5 V L E

C 4 2

3 . 3 µ F

+

C 4 4

3 . 3 µ F

+

1 3 1 2

1 6

1 4

1 5

C 5 4

1 0 0 µ F

+

C 4 8

3 . 3 µ F

+

9

+ 5 V

B P O D C

I O U T

C 5 0

1 0 0 µ F

+

C 5 2

1 0 0 µ F

+

C 4 6

3 . 3 µ F +

– 5 V V C C

+ 5 V

V C C –

5 V V C C C

5 6

2 2 0 p

R F 2

2 . 5 k Ω

– 5 V

2 1

1 1

1 0

5 4 3

P C M 1 7 0 2 P

+ 5 V

6

B C K

D A T A

G N D

– 5 V L E

C 4 1

3 . 3 µ F

+

C 4 9

3 . 3 µ F

+

1 3 1 2

1 6

1 4

1 5

C 5 4

1 0 0 µ F

+

C 4 7

3 . 3 µ F

+

9

+ 5 V

B P O D C

I O U T

C 4 9

1 0 0 µ F

+

C 5 1

1 0 0 µ F

+

C 4 5

3 . 3 µ F +

+ 5 V

V C C –

5 V V C C C

5 5

2 2 0 p

R F 2

2 . 5 k Ω

– 5 V

+ 5 V V C C

R 2 1

2 k Ω

V O

C 6 2

1 0 0 0 p F

L o w - p a s s

3 - p o l e B u t t e r w o r t h

f – 3 d B = 4 0 k H z

R 1 3

6 . 0 4 k Ω

R 1 7

4 . 0 2 k Ω

R 1 8

4 . 0 2 k Ω

C 6 0

1 0 0 0 p F

C 5 9

1 0 0 0 p F

R 1 9

5 . 3 6 k Ω

R 2 0

2 k Ω

V O

C 6 1

1 0 0 0 p F

L o w - p a s s

3 - p o l e B u t t e r w o r t h

f – 3 d B = 4 0 k H z

R 1 2

6 . 0 4 k Ω

R 1 4

4 . 0 2 k Ω

R 1 5

4 . 0 2 k Ω

C 5 8

1 0 0 0 p F

C 5 7

1 0 0 0 p F

R 1 6

5 . 3 6 k Ω

S e e A p p l i c a t i o n B u l l e t i n A B - 0 2 6

f o r i n f o r m a t i o n o n G I C f i l t e r s .

I C 3

I C 3

I C 4

I C 4

I C 1

I C 2

I C 1 - 4 : O P A 2 6 0 4 I C

2

I C 1

Page 9: A32B59D4d01

8/3/2019 A32B59D4d01

http://slidepdf.com/reader/full/a32b59d4d01 9/13

PACKAGING INFORMATION

Orderable Device Status (1) PackageType

PackageDrawing

Pins PackageQty

Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)

PCM1702P ACTIVE PDIP N 16 25 Green (RoHS &

no Sb/Br)

CU NIPDAU N / A for Pkg Type

PCM1702P-J ACTIVE PDIP N 16 25 Green (RoHS &no Sb/Br)

CU NIPDAU N / A for Pkg Type

PCM1702P-JG4 ACTIVE PDIP N 16 25 Green (RoHS &no Sb/Br)

CU NIPDAU N / A for Pkg Type

PCM1702P-K ACTIVE PDIP N 16 25 Green (RoHS &no Sb/Br)

CU NIPDAU N / A for Pkg Type

PCM1702P-KG4 ACTIVE PDIP N 16 25 Green (RoHS &no Sb/Br)

CU NIPDAU N / A for Pkg Type

PCM1702PG4 ACTIVE PDIP N 16 25 Green (RoHS &no Sb/Br)

CU NIPDAU N / A for Pkg Type

PCM1702U ACTIVE SO NS 20 38 Pb-Free(RoHS)

CU SNBI Level-2-260C-1 YEAR

PCM1702U-2/2K OBSOLETE SO NS 20 TBD Call TI Call TI

PCM1702U-2/2KE6 OBSOLETE SO NS 20 TBD Call TI Call TI

PCM1702U-J ACTIVE SO NS 20 38 Pb-Free(RoHS)

CU SNBI Level-2-260C-1 YEAR

PCM1702U-JE6 ACTIVE SO NS 20 38 Pb-Free(RoHS)

CU SNBI Level-2-260C-1 YEAR

PCM1702U-K ACTIVE SO NS 20 38 Pb-Free(RoHS)

CU SNBI Level-2-260C-1 YEAR

PCM1702U-KE6 ACTIVE SO NS 20 38 Pb-Free(RoHS)

CU SNBI Level-2-260C-1 YEAR

PCM1702U/2K ACTIVE SO NS 20 2000 Pb-Free(RoHS)

CU SNBI Level-2-260C-1 YEAR

PCM1702U/2KE6 ACTIVE SO NS 20 2000 Pb-Free(RoHS)

CU SNBI Level-2-260C-1 YEAR

PCM1702UE6 ACTIVE SO NS 20 38 Pb-Free(RoHS)

CU SNBI Level-2-260C-1 YEAR

(1)The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part ina new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please checkhttp://www.ti.com/productcontent for the latest availability information and additional product content details.TBD: The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirementsfor all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered

at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die andpackage, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHScompatible) as defined above.Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flameretardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3)MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder

temperature.

PACKAGE OPTION ADDENDUM

www.ti.com 14-Oct-2008

Addendum-Page 1

Page 10: A32B59D4d01

8/3/2019 A32B59D4d01

http://slidepdf.com/reader/full/a32b59d4d01 10/13

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it isprovided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to theaccuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to takereasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis onincoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limitedinformation may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TIto Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 14-Oct-2008

Addendum-Page 2

Page 11: A32B59D4d01

8/3/2019 A32B59D4d01

http://slidepdf.com/reader/full/a32b59d4d01 11/13

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device PackageType

PackageDrawing

Pins SPQ ReelDiameter

(mm)

ReelWidth

W1 (mm)

A0 (mm) B0 (mm) K0 (mm) P1(mm)

W(mm) Q

PCM1702U/2K SO NS 20 2000 330.0 25.4 8.8 13.1 2.8 12.0 24.0

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Aug-2008

Pack Materials-Page 1

Page 12: A32B59D4d01

8/3/2019 A32B59D4d01

http://slidepdf.com/reader/full/a32b59d4d01 12/13

*All dimensions are nominal

Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

PCM1702U/2K SO NS 20 2000 346.0 346.0 41.0

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Aug-2008

Pack Materials-Page 2

Page 13: A32B59D4d01

8/3/2019 A32B59D4d01

http://slidepdf.com/reader/full/a32b59d4d01 13/13

I M P O R T A N T N O T I C E

T e x a s I n s t r u m e n t s I n c o r p o r a t e d a n d i t s s u b s i d i a r i e s ( T I ) r e s e r v e t h e r i g h t t o m a k e c o r r e c t i o n s , m o d i f i c a t i o n s , e n h a n c e m e n t s , i m p r o v e m e n t s , a n d o t h e r c h a n g e s t o i t s p r o d u c t s a n d s e r v i c e s a t a n y t i m e a n d t o d i s c o n t i n u e a n y p r o d u c t o r s e r v i c e w i t h o u t n o t i c e . C u s t o m e r s s h o u l d o b t a i n t h e l a t e s t r e l e v a n t i n f o r m a t i o n b e f o r e p l a c i n g o r d e r s a n d s h o u l d v e r i f y t h a t s u c h i n f o r m a t i o n i s c u r r e n t a n d c o m p l e t e . A l l p r o d u c t s a r e s o l d s u b j e c t t o T I ’ s t e r m s a n d c o n d i t i o n s o f s a l e s u p p l i e d a t t h e t i m e o f o r d e r a c k n o w l e d g m e n t .

T I w a r r a n t s p e r f o r m a n c e o f i t s h a r d w a r e p r o d u c t s t o t h e s p e c i f i c a t i o n s a p p l i c a b l e a t t h e t i m e o f s a l e i n a c c o r d a n c e w i t h T I ’ s s t a n d a r d

w a r r a n t y . T e s t i n g a n d o t h e r q u a l i t y c o n t r o l t e c h n i q u e s a r e u s e d t o t h e e x t e n t T I d e e m s n e c e s s a r y t o s u p p o r t t h i s w a r r a n t y . E x c e p t w h e r e m a n d a t e d b y g o v e r n m e n t r e q u i r e m e n t s , t e s t i n g o f a l l p a r a m e t e r s o f e a c h p r o d u c t i s n o t n e c e s s a r i l y p e r f o r m e d .

T I a s s u m e s n o l i a b i l i t y f o r a p p l i c a t i o n s a s s i s t a n c e o r c u s t o m e r p r o d u c t d e s i g n . C u s t o m e r s a r e r e s p o n s i b l e f o r t h e i r p r o d u c t s a n d a p p l i c a t i o n s u s i n g T I c o m p o n e n t s . T o m i n i m i z e t h e r i s k s a s s o c i a t e d w i t h c u s t o m e r p r o d u c t s a n d a p p l i c a t i o n s , c u s t o m e r s s h o u l d p r o v i d e a d e q u a t e d e s i g n a n d o p e r a t i n g s a f e g u a r d s .

T I d o e s n o t w a r r a n t o r r e p r e s e n t t h a t a n y l i c e n s e , e i t h e r e x p r e s s o r i m p l i e d , i s g r a n t e d u n d e r a n y T I p a t e n t r i g h t , c o p y r i g h t , m a s k w o r k r i g h t , o r o t h e r T I i n t e l l e c t u a l p r o p e r t y r i g h t r e l a t i n g t o a n y c o m b i n a t i o n , m a c h i n e , o r p r o c e s s i n w h i c h T I p r o d u c t s o r s e r v i c e s a r e u s e d . I n f o r m a t i o n p u b l i s h e d b y T I r e g a r d i n g t h i r d - p a r t y p r o d u c t s o r s e r v i c e s d o e s n o t c o n s t i t u t e a l i c e n s e f r o m T I t o u s e s u c h p r o d u c t s o r s e r v i c e s o r a w a r r a n t y o r e n d o r s e m e n t t h e r e o f . U s e o f s u c h i n f o r m a t i o n m a y r e q u i r e a l i c e n s e f r o m a t h i r d p a r t y u n d e r t h e p a t e n t s o r o t h e r i n t e l l e c t u a l p r o p e r t y o f t h e t h i r d p a r t y , o r a l i c e n s e f r o m T I u n d e r t h e p a t e n t s o r o t h e r i n t e l l e c t u a l p r o p e r t y o f T I .

R e p r o d u c t i o n o f T I i n f o r m a t i o n i n T I d a t a b o o k s o r d a t a s h e e t s i s p e r m i s s i b l e o n l y i f r e p r o d u c t i o n i s w i t h o u t a l t e r a t i o n a n d i s a c c o m p a n i e d b y a l l a s s o c i a t e d w a r r a n t i e s , c o n d i t i o n s , l i m i t a t i o n s , a n d n o t i c e s . R e p r o d u c t i o n o f t h i s i n f o r m a t i o n w i t h a l t e r a t i o n i s a n u n f a i r a n d d e c e p t i v e b u s i n e s s p r a c t i c e . T I i s n o t r e s p o n s i b l e o r l i a b l e f o r s u c h a l t e r e d d o c u m e n t a t i o n . I n f o r m a t i o n o f t h i r d p a r t i e s m a y b e s u b j e c t t o a d d i t i o n a l r e s t r i c t i o n s .

R e s a l e o f T I p r o d u c t s o r s e r v i c e s w i t h s t a t e m e n t s d i f f e r e n t f r o m o r b e y o n d t h e p a r a m e t e r s s t a t e d b y T I f o r t h a t p r o d u c t o r s e r v i c e v o i d s a l l

e x p r e s s a n d a n y i m p l i e d w a r r a n t i e s f o r t h e a s s o c i a t e d T I p r o d u c t o r s e r v i c e a n d i s a n u n f a i r a n d d e c e p t i v e b u s i n e s s p r a c t i c e . T I i s n o t r e s p o n s i b l e o r l i a b l e f o r a n y s u c h s t a t e m e n t s .

T I p r o d u c t s a r e n o t a u t h o r i z e d f o r u s e i n s a f e t y - c r i t i c a l a p p l i c a t i o n s ( s u c h a s l i f e s u p p o r t ) w h e r e a f a i l u r e o f t h e T I p r o d u c t w o u l d r e a s o n a b l y b e e x p e c t e d t o c a u s e s e v e r e p e r s o n a l i n j u r y o r d e a t h , u n l e s s o f f i c e r s o f t h e p a r t i e s h a v e e x e c u t e d a n a g r e e m e n t s p e c i f i c a l l y g o v e r n i n g s u c h u s e . B u y e r s r e p r e s e n t t h a t t h e y h a v e a l l n e c e s s a r y e x p e r t i s e i n t h e s a f e t y a n d r e g u l a t o r y r a m i f i c a t i o n s o f t h e i r a p p l i c a t i o n s , a n d a c k n o w l e d g e a n d a g r e e t h a t t h e y a r e s o l e l y r e s p o n s i b l e f o r a l l l e g a l , r e g u l a t o r y a n d s a f e t y - r e l a t e d r e q u i r e m e n t s c o n c e r n i n g t h e i r p r o d u c t s a n d a n y u s e o f T I p r o d u c t s i n s u c h s a f e t y - c r i t i c a l a p p l i c a t i o n s , n o t w i t h s t a n d i n g a n y a p p l i c a t i o n s - r e l a t e d i n f o r m a t i o n o r s u p p o r t t h a t m a y b e p r o v i d e d b y T I . F u r t h e r , B u y e r s m u s t f u l l y i n d e m n i f y T I a n d i t s r e p r e s e n t a t i v e s a g a i n s t a n y d a m a g e s a r i s i n g o u t o f t h e u s e o f T I p r o d u c t s i n s u c h s a f e t y - c r i t i c a l a p p l i c a t i o n s .

T I p r o d u c t s a r e n e i t h e r d e s i g n e d n o r i n t e n d e d f o r u s e i n m i l i t a r y / a e r o s p a c e a p p l i c a t i o n s o r e n v i r o n m e n t s u n l e s s t h e T I p r o d u c t s a r e s p e c i f i c a l l y d e s i g n a t e d b y T I a s m i l i t a r y - g r a d e o r " e n h a n c e d p l a s t i c . " O n l y p r o d u c t s d e s i g n a t e d b y T I a s m i l i t a r y - g r a d e m e e t m i l i t a r y s p e c i f i c a t i o n s . B u y e r s a c k n o w l e d g e a n d a g r e e t h a t a n y s u c h u s e o f T I p r o d u c t s w h i c h T I h a s n o t d e s i g n a t e d a s m i l i t a r y - g r a d e i s s o l e l y a t t h e B u y e r ' s r i s k , a n d t h a t t h e y a r e s o l e l y r e s p o n s i b l e f o r c o m p l i a n c e w i t h a l l l e g a l a n d r e g u l a t o r y r e q u i r e m e n t s i n c o n n e c t i o n w i t h s u c h u s e .

T I p r o d u c t s a r e n e i t h e r d e s i g n e d n o r i n t e n d e d f o r u s e i n a u t o m o t i v e a p p l i c a t i o n s o r e n v i r o n m e n t s u n l e s s t h e s p e c i f i c T I p r o d u c t s a r e d e s i g n a t e d b y T I a s c o m p l i a n t w i t h I S O / T S 1 6 9 4 9 r e q u i r e m e n t s . B u y e r s a c k n o w l e d g e a n d a g r e e t h a t , i f t h e y u s e a n y n o n - d e s i g n a t e d p r o d u c t s i n a u t o m o t i v e a p p l i c a t i o n s , T I w i l l n o t b e r e s p o n s i b l e f o r a n y f a i l u r e t o m e e t s u c h r e q u i r e m e n t s .

F o l l o w i n g a r e U R L s w h e r e y o u c a n o b t a i n i n f o r m a t i o n o n o t h e r T e x a s I n s t r u m e n t s p r o d u c t s a n d a p p l i c a t i o n s o l u t i o n s :

P r o d u c t s A p p l i c a t i o n s A m p l i f i e r s a m p l i f i e r . t i . c o m A u d i o w w w . t i . c o m / a u d i o D a t a C o n v e r t e r s d a t a c o n v e r t e r . t i . c o m A u t o m o t i v e w w w . t i . c o m / a u t o m o t i v e D S P d s p . t i . c o m B r o a d b a n d w w w . t i . c o m / b r o a d b a n d C l o c k s a n d T i m e r s w w w . t i . c o m / c l o c k s D i g i t a l C o n t r o l w w w . t i . c o m / d i g i t a l c o n t r o l I n t e r f a c e i n t e r f a c e . t i . c o m M e d i c a l w w w . t i . c o m / m e d i c a l L o g i c l o g i c . t i . c o m M i l i t a r y w w w . t i . c o m / m i l i t a r y P o w e r M g m t p o w e r . t i . c o m O p t i c a l N e t w o r k i n g w w w . t i . c o m / o p t i c a l n e t w o r k M i c r o c o n t r o l l e r s m i c r o c o n t r o l l e r . t i . c o m S e c u r i t y w w w . t i . c o m / s e c u r i t y R F I D w w w . t i - r f i d . c o m T e l e p h o n y w w w . t i . c o m / t e l e p h o n y R F / I F a n d Z i g B e e ® S o l u t i o n s w w w . t i . c o m / l p r f V i d e o & I m a g i n g w w w . t i . c o m / v i d e o

W i r e l e s s w w w . t i . c o m / w i r e l e s s

M a i l i n g A d d r e s s : T e x a s I n s t r u m e n t s , P o s t O f f i c e B o x 6 5 5 3 0 3 , D a l l a s , T e x a s 7 5 2 6 5 C o p y r i g h t © 2 0 0 8 , T e x a s I n s t r u m e n t s I n c o r p o r a t e d