A14_316

download A14_316

of 6

Transcript of A14_316

  • 7/25/2019 A14_316

    1/6

  • 7/25/2019 A14_316

    2/6

    13th World Congress in Mechanism and Machine Science, Guanajuato, Mxico, 19-25 June, 2011 A14_316

    2

    [ ] [ ] [ ][ ] [ ][ ] [ ][ ] [ ] [ ][ ]

    =

    QJQASQ

    QSAmMq

    11 TTT

    T1

    O

    , (10)

    the kinetic energy of body 1 becomes [1, 2, 7]

    { } [ ]{ }1T1 121T qMq q&= , (11)the Lagrange equations read [4, 5, 6, 8] as

    { }1

    11

    TT

    d

    dqF

    qq=

    &t

    , (12)

    in whichT

    1 61q

    T

    q

    TT

    =

    &L

    &&q, (13)

    T

    1 61q

    T

    q

    TT

    =

    L

    q, (14)

    { } Tqqq 6211 FFF L=qF , (15)

    where within the generalized forces1

    qF are both the

    given forces and the bond forces.On the other hand, we can write [7]

    [ ]{ }11

    1

    TqM

    qq &

    &=

    , (16)

    { }

    [ ]{ } { }

    [ ]{ }

    =

    11

    T

    11

    T

    1

    1

    1

    1

    1 2

    1

    T

    qM

    qqM

    q

    q

    qq&&L&&

    OX

    (17)

    and if we call

    { } [ ]{ }

    +=

    11

    T~

    11 qqMF qq &

    & , (18)

    it results the Lagrange equations [7]

    [ ]{ } { } { }111

    ~1 qqq FFqM +=&& (19)

    III. Elastic forces

    If we call the undistorted AB spring length, 0l (fig.

    1), then the force of this spring is

    ( )AB

    lABk ABF 0= (20)

    with its components

    ( )AB

    XXlABk AB

    = 0XF ,

    ( )AB

    YYlABk AB

    = 0YF ,

    ( )AB

    ZZlABk AB

    = 0ZF ,

    (21)

    where

    ( ) ( ) ( )222 ABABAB ZZYYXXAB ++= . (22)

    Given that the force F derives from the potential

    ( )202

    lABk

    V = , (23)

    and denoting

    { } [ ]TAAAA zyx=r , [ ]

    =

    0

    0

    0

    AA

    AA

    AA

    A

    xy

    xz

    yz

    r ,(24)

    { } [ ]TBBBB zyx=r , [ ]

    =

    0

    0

    0

    BB

    BB

    BB

    A

    xy

    xz

    yz

    r ,(25)

    it results the generalized forces column matrix [7]:

    { } ( ) [ ]

    [ ] [ ][ ]

    =

    AB

    AB

    AB

    A ZZ

    YY

    XX

    AB

    lABkT

    1

    T0

    ArQ

    IF , (26)

    where

    [ ]{ }AO

    O

    O

    A

    A

    A

    Z

    Y

    X

    Z

    Y

    X

    rA1

    1

    1

    1

    +

    =

    , (27)

    [ ]{ }BO

    O

    O

    B

    B

    B

    Z

    Y

    X

    Z

    Y

    X

    rA2

    2

    2

    2

    +

    =

    . (28)

    In the case of n springs, the equation (26) is rewritten as

    { } ( )

    [ ][ ] [ ][ ] .T1T

    1

    0

    ==

    ii

    ii

    ii

    iAB

    AB

    AB

    A

    n

    i ii

    iiii

    ZZ

    YY

    XX

    BA

    lBAk

    ArQ

    I

    F

    . (29)

    IV. Small oscillations around the equilibrium position

    In fig. 2 the rigid is represented in equilibrium position

    with continuous line. It is connected by several springs

    iiBA (in fig. 2 is represented only one, AB ) with the

    base which is also represented in continuous line.

    O Y

    X

    Z

    C

    Amg

    uC

    u

    k

    BO0

    Base

    O'Y'

    X'

    Z'

    A'

    B'O'0

    A

    B

    Fig. 2. The small oscillations.

  • 7/25/2019 A14_316

    3/6

    13th World Congress in Mechanism and Machine Science, Guanajuato, Mxico, 19-25 June, 2011 A14_316

    3

    At one moment the rigid body and the base reach to

    the positions represented with discontinuous line, points

    A and B corresponding now to points A and B .We will denote:

    k, the stiffness of the spring AB ;

    OXYZ, the rigid body reference system at the

    considered equilibrium and the general reference system;

    , the point O displacement;

    X , Y , Z , the projections onto the OX , OY ,OZaxes;

    , the rigid body angular displacement (considered

    to be small);

    X , Y , Z , the projections onto the OX , OY ,OZaxes;

    B , the base point B displacement;

    AB , the relative displacement defined by

    BAAB = ; (30) a , b , c , the AB direction unit vector uprojections

    onto the OX , OY , OZaxes;

    L , the length of the AB segment;

    L~

    , the undistorted length of the spring AB ;

    s , the equilibrium spring elongation

    LLs~

    = ; (31) Ar , the OA vector;

    AX , AY , AZ , the OA vectors projections onto the

    OX , OY , OZaxes;

    ABF , the elastic force in the spring AB ;

    ABM , the momentum defined byABAB FOAM = ; (32)

    XAB

    F ,YAB

    F ,ZAB

    F ,XAB

    M ,YAB

    M ,ZAB

    M , the

    ABF , ABM , vectors projections onto the OX , OY ,

    OZaxes;

    { }U , { }ABF , { } , { }u , { }Ar matrices given by:

    { } [ ]Tfedcba=U , (33)

    { } [ ]TZYXZYX ABABABABABABAB

    MMMFFF=F ,(34)

    { } [ ]TZYXZYX = , (35)

    { }

    =0

    0

    0

    ab

    ac

    bc

    u , { }

    =0

    0

    0

    AA

    AA

    AA

    A

    XY

    XZ

    YZ

    r ; (36)

    C, the weight centre of the rigid body;

    m , the mass of the rigid body;

    { }Cu , the unit vector of the weight force atequilibrium;

    CX , CY , CZ , the OC vector projections onto the

    OX , OY , OZaxes;

    Ca , Cb , Cc , the Cu vector projections onto the

    OX , OY , OZaxes;

    Cd , Ce , Cf , the CuOC vector projections ontothe OX , OY , OZaxes;

    { }CU , the column matrix{ } [ ]TCCCCCCC fedcba=U ; (37)

    [ ]Cu , [ ]Cr , (36) relation type matrices; [ ]0 , [ ]I , the null matrix, respectively the 3rd unity

    matrix;

    )1(BK , [ ])2( BK , [ ])3(ABK , [ ]ABK , [ ]CK , [ ]K , the

    rigidity matrices given by [3]

    [ ] { }{ }T)1( 1 UUK

    =L

    skAB ,

    [ ] [ ] [ ]

    [ ] [ ]

    =

    2

    T)2(

    AA

    AAB

    L

    ks

    rr

    rIK ,

    [ ] [ ] [ ][ ] [ ][ ] [ ][ ]

    +=

    AA

    AB

    ks

    ruur0

    00K

    2

    )3(,

    (38)

    [ ] [ ] [ ] [ ])3()2()1( ABABABAB KKK ++=K , (39)

    [ ] [ ] [ ][ ] [ ][ ] [ ][ ]

    +=

    CCCC

    C

    mg

    ruur0

    00K

    2, (40)

    [ ] [ ] [ ]=

    +=n

    i

    BAC ii1

    KKK ; (41)

    XJ , YJ , ZJ , XYJ , XZJ , YZJ , the inertial

    moments of the rigid body; [ ]OJ , [ ]M , the matrix of the inertial moments,

    respectively the inertial matrix

    [ ]

    =

    ZZYZX

    YZYYX

    XZXYX

    O

    JJJ

    JJJ

    JJJ

    J ,

    [ ] [ ] [ ][ ] [ ]

    =

    OC

    C

    rm

    rmm

    J

    IM

    T

    ;

    (42)

    , the displacement of the 0O base point;

    X , Y , Z , the projections of the vector onto

    the OX , OY , OZaxes; , the angular displacement (considered small) of

    the base;

    X , Y , Z , the vector projections onto theOX , OY , OZaxes;

    BX , BY , BZ , the BO0 vector projections onto the

    OX , OY , OZaxes;

    d~

    , e~ , f~

    , the uBO 0 vector projections onto theOX , OY , OZaxes;

    { }U , { } , { }Br , the matrices given by [3]

  • 7/25/2019 A14_316

    4/6

    13th World Congress in Mechanism and Machine Science, Guanajuato, Mxico, 19-25 June, 2011 A14_316

    4

    { } [ ]T~~~ fedcba=U , (43){ } [ ]TZYXZYX = , (44)

    { }

    =0

    0

    0

    BB

    BB

    BB

    B

    XY

    XZ

    YZ

    r ; (45)

    [ ])1(~BK , [ ])2(

    ~ABK , [ ]ABK

    ~, [ ]K~ , the matrices given by

    [ ] { }{ }T)1( ~1~ UUK

    =L

    skAB

    , (46)

    [ ] [ ] [ ][ ] [ ][ ]

    =

    BAA

    BAB

    L

    ks

    rrr

    rIK

    )2(~, (47)

    [ ] [ ] [ ])2()1( ~~~ ABABAB KKK += , (48)

    [ ] [ ]

    ==

    n

    i

    BA ii1

    ~KK ; (49)

    V. Column matrix of excitation force

    The components of the { }ABF column matrix aregiven by the partial derivatives of the BV spring potential

    energy

    ( )2~''2

    LBAk

    VAB = . (50)

    The deformed spring length is successively written:

    ( ) ( )[ ]

    ( )2

    22

    ''

    AB

    BA

    L

    BA

    u

    ABB'A'

    =

    ==(51)

    and if we proceed on series development and we keep the

    maximum second degree nonlinear terms, the following

    formula is achieved

    ( ) ( )

    ( ) ,

    122

    2

    22

    +

    +=

    AB

    ABABAB

    L

    s

    L

    sss

    kV

    uu

    (52)

    where the displacement A reads

    ( )OAOA ++=2

    1A . (53)

    Further on, taking into account that the AB vectorspartial derivatives with respect to the arguments X , Y ,

    Z , X , Y , Z , are equal to the A vectors partialderivatives with respect to the same parameters and if we

    call { }eABF the column matrix of the excitation bycomponents

    ( )

    +

    i

    AB

    i

    AB

    qL

    s

    qL

    ks uu

    1 , (54)

    where iq , 6,1=i , represent the displacements X , Y ,

    Z , X , Y , Z , we get

    { } { } [ ]{ } { }eABAB ks FKUF += . (55)The column matrix of the excitation force { }

    eAB

    F ,

    based on the expressions like

    i

    =

    X

    A ,

    ( ) ( )[ ]OAiOAiOAi

    ++=

    2

    1

    X

    A ,

    (56)

    by keeping the linear terms and taking into account the

    (43)(47) notations, it results from (54) and we can write

    { } [ ]{ }KF ABeAB~

    = . (57)

    If the base has no rotational motion ( )0= the (57)relation becomes

    { } [ ]{ }KF ABeAB = , (58)and if the equilibrium elongations are insignificant( )0s , then

    [ ] [ ] { }{ }T~ UUKK kABAB == . (59)

    VI. Vibration differential equation

    The potential energy of the gravity force is

    CCG mgV u = , (60)where [3],

    ( )CCC rr ++=2

    1, (61)

    and from here, using the partial derivatives with respectto X , Y , Z , X , Y , Z , and taking into accountthe previous relations, it results the gravity force column

    matrix

    { } { } [ ]{ }KUG CCmg = . (62)At equilibrium, the displacements { } , { } , being

    null, the following equation is obtained

    { } { } { }0UU =+=

    n

    i

    Cii mgsk

    1

    . (63)

    The movement equation is obtained from the dynamic

    equilibrium equality

    { } { } { } { }0FG =++=

    i

    n

    j

    BA jjF

    1

    , (64)

    where, for the small movements case

    { } [ ]{ }MF &&=i , (65)and taking into account the relation (63), it results the

    expression[6,7,8]

    [ ]{ } [ ]{ } [ ]{ }KKM ~=+&& , (66)

  • 7/25/2019 A14_316

    5/6

    13th World Congress in Mechanism and Machine Science, Guanajuato, Mxico, 19-25 June, 2011 A14_316

    5

    VII. Application

    For the plate of mass m (Fig. 3) is requested the

    excitation force knowing that the 0O base point has the

    displacement t= cos0 , parallel with the OX axis,

    and the base rotation is t= cos0 , about the OZaxis. Let us consider that the AB , CD springs are

    identical, by the stiffnessl

    mgk= , and at the

    equilibrium position the 0EO spring (by stiffness k~

    ) has

    zero elongation.

    AC

    E

    D B

    F

    X

    Y

    O

    mg

    k k

    k~

    3l

    l

    l

    2l

    3l

    l

    l

    2l

    2l 2l 3l 3l

    O0

    Fig. 3. Application.

    From equilibrium condition it results that the AB ,

    CD spring elongations are equal and considering that

    their common value is s , it results

    22

    l

    k

    mgs == (67)

    and knowing that ,22lL = it follows .4

    1=

    L

    s

    For the AB spring the following relations were

    reached

    { } [ ]T2000112

    2l=U ,

    { } [ ]T2000112

    2~l=U , [ ]

    =

    03

    300

    00

    ll

    l

    l

    Ar ,

    [ ]

    =

    057

    500

    700

    ll

    l

    l

    Br ,

    (68)

    [ ][ ]

    =2

    22

    22

    2200

    01521

    057

    l

    ll

    ll

    BA rr , (69)

    [ ]

    =

    2

    )1(

    400022

    000000

    000000

    000000

    200011

    200011

    8

    3~

    lll

    l

    l

    kABK ,

    [ ]

    =

    2

    22

    22

    )2(

    220003

    01521300

    05700

    057100

    500010

    700001

    4

    ~

    lll

    lll

    lll

    ll

    l

    l

    kABK ,

    (70)

    and, in the same way, for the CD spring the successive

    expressions were obtained

    { } [ ]T2000112

    2l=U ,

    { } [ ]T2000112

    2~l=U , [ ]

    =

    03

    300

    00

    ll

    l

    l

    Cr ,

    [ ]

    =

    057

    500

    700

    ll

    l

    l

    Dr ,

    (71)

    [ ][ ]

    =

    2

    22

    22

    2200

    01521

    057

    l

    ll

    ll

    DC rr , (72)

    [ ]

    =

    2

    )1(

    400022

    000000

    000000

    000000

    200011

    200011

    8

    3~

    lll

    l

    l

    kCDK ,

    [ ]

    =

    2

    22

    22

    )2(

    220003

    01521300

    05700

    057100

    500010

    700001

    4

    ~

    lll

    lll

    lll

    ll

    l

    l

    k

    CDK .

    (73)

    The EFspring elongation being null, it results

    { } { } [ ]T000010~ == UU (74)

  • 7/25/2019 A14_316

    6/6

    13th World Congress in Mechanism and Machine Science, Guanajuato, Mxico, 19-25 June, 2011 A14_316

    6

    [ ]

    =

    000000

    000000

    000000

    000000

    000010

    000000

    ~~kEFK , (75)

    and the [ ]K~ matrix is[ ] [ ] [ ] [ ] [ ] [ ]EFCDCDABAB KKKKKK

    ~~~~~~ )2()1()2()1( ++++= , (76)

    wherefrom

    [ ]

    +

    =

    2

    2

    2

    3200004

    03000000014200

    0014200

    0000

    ~4

    50

    2000005

    4

    ~

    ll

    lll

    lk

    k

    l

    kK . (77)

    On the other hand, we can write

    { } [ ] t= cos0000 T00 , (78)resulting the excitation force

    { } [ ]{ } t

    ll

    l

    ke

    +

    == cos

    324

    0

    0

    0

    0

    205

    4

    ~

    02

    0

    00

    KF (79)

    VIII. Conclusions

    In our work we presented, in a specific multibody type

    form, the dynamics of a rigid body linked with linear

    elastic springs by another one, with imposed motion. Weobtained the equations of motion and we studied the case

    of small oscillations around the equilibrium position. For

    the theory described we completely solved a practical

    application. The presented method can be used in most

    general situations such as vehicle suspensions, seismicexcitations, etc.

    Acknowledgement

    The second authors contribution to this paper is based on

    the European Program Dezvoltarea colilor doctorale

    prin acordarea de burse tinerilor doctoranzi cu frecvenPOSDRU/88/1.5/S/52826.

    References

    [1] Shabana, A., A., Dynamics of Multibody Systems, 3 rd edition,

    Cambridge University Press, New York, 2005.

    [2] Amironache, F., Fundamentals of multibody Dynamics. Theory and

    Applications, Birkhuser, Boston, Basel, Berlin, 2006,

    [3] Pandrea, N., Elements of the Solids Mechanics in Plckerian

    Coordinates, The Publishing House of the Romanian Academy,

    Bucharest, 2000.

    [4] Lurie, A., I., Analytical Mechanics, Springer-Verlag, Berlin,Heidelberg, New York, 2002.

    [5] Stnescu, N.-D., Munteanu, L., Chiroiu, V., Pandrea, N.,

    Dynamical Systems. Theory and Applications, Vol. 1, ThePublishing House of the Romanian Academy, Bucharest, 2007.

    [6] Stnescu, N.-D., Munteanu, L., Chiroiu, V., Pandrea, N.,

    Dynamical Systems. Theory and Applications, Vol. 2, ThePublishing House of the Romanian Academy, Bucharest, 2010 (in

    press).

    [7] Pandrea, N., Stnescu, N.-D., Ogaru, S., Multibody Dynamics, The

    Publishing House of the Romanian Academy, Bucharest, 2011 (inpress).

    [8] Stnescu, N.-D., Pandrea, N., Theoretical Mechanics, The

    Publishing House of the Romanian Academy, Bucharest, 2011 (in

    press).