A Thermo-Gas-Dynamic Model for the Bifurcation Analysis of ...

1
Leeds–Lyon Symposium on Tribology September 2–4, 2019, Lyon, France A Thermo-Gas-Dynamic Model for the Bifurcation Analysis of Refrigerant-Lubricated Gas Foil Bearing Rotor Systems Tim Leister (KIT/INSA), Benyebka Bou-Saïd (INSA), Wolfgang Seemann (KIT) KIT – The Research University in the Helmholtz Association www.kit.edu Self-Acting Gas Foil Bearings (GFBs) Bump foil Top foil Bearing sleeve Rotor journal Gasdynamic lubrication wedge Source: rotorlab.tamu.edu/tribgroup/Proj_GasFoilB.htm (adapted) Source: archive.org/details/C-2007-1879 High-speed rotor supported by gasdynamic lubrication wedge Oil-free machinery offers high energy efficiency and low wear Application: Vapor-Compression Refrigeration Condenser Evaporator Motor Turb. Comp. GFB Heat absorbed from cabin Heat expelled to environment Hot vapor Warm vapor Liquid Cold mixture (vapor–liquid) GFB R-245fa System optimized by using refrigerant as lubricating fluid Challenge: Self-Excited Vibrations Stationary operating points tend to become unstable at elevated rotational speeds Occurrence of self-excited rotor vibrations with large amplitudes (fluid whirl) ω c > ω 2 (Loss of Stability) ω 1 ω 2 > ω 1 Vibrations calmed down by deliberately introduced friction Stationary operation: Static bump deflection Moderate excitation: Stiction predominant Strong excitation: Dissipative sliding Refrigerant R-245fa C C C F H F H H F F F (1,1,1,3,3-pentafluoropropane) Vapor pressure 1.23 bar at 20 C 50 100 150 200 250 0.5 1.0 1.5 2.0 10 20 30 40 50 60 Pressure P = p /p 0 P, D, T Surface Sat. Vapor Line Sat. Liquid Line Reg. PR EoS Cub. PR EoS Critical Point Density D = ρ /ρ 0 Temp. T = ϑ /ϑ 0 Pressure P = p /p 0 T = 1.37 T = 1.46 T = 1.55 Cubic Peng–Robinson equation of state (PR EoS) P PR ( D, T ) = 1 p 0 R m ϑ 0 T M m ρ 0 D - b - a ( ϑ 0 T ) M m ρ 0 D 2 + 2b M m ρ 0 D - b 2 Equilibrium vapor pressure (coexistence curve) by fitting simplified Clausius–Clapeyron solution P sat ( T )= exp C 0 - C 1 T -1 - C 2 ln T Regularization of PR EoS by algebraic solution of cubic equation P PR ( D, T )= P sat ( T ) with roots D v ( T ) < D m ( T ) < D l ( T ) Mass fraction of liquid W l ( D, T )= D - D v ( T ) D l ( T ) - D v ( T ) Fluid film thickness H ( ϕ, τ )= Clearance 1 Structure deformation - Q( ϕ, τ ) Rotor journal displacement - ε ( τ ) cos h ϕ - γ ( τ ) i Reynolds equation ∂τ ( DH )+ Couette flow Λ 2 ∂ϕ ( DH ) = Poiseuille flow ∂ϕ DH 3 2V P ∂ϕ ! + κ 2 Z DH 3 2V P Z ! Energy equation Θ c p DH 2 " T ∂τ + T ∂ϕ Λ 2 - H 2 2V P ∂ϕ ! + κ 2 T Z - H 2 2V P Z !# = Θ α TH 2 " P ∂τ + P ∂ϕ Λ 2 - H 2 2V P ∂ϕ ! + κ 2 P Z - H 2 2V P Z !# + 2V " Λ 2 12 + H 4 4V 2 P ∂ϕ 2 + κ 2 H 4 4V 2 P Z 2 # Viscous dissipation + 2Θ k H ( T a - T ) Heat transfer Fluid Dynamics P ( ϕ, Z, τ ) Structure Dynamics Q( ϕ, τ ), Q 0 ( ϕ, τ ) Rotor Dynamics ε ( τ ), ε 0 ( τ ), γ ( τ ), γ 0 ( τ ) Fluid Dynamics P ( ϕ, Z, τ ) e x e y e z m B u 0 ( t ) w 0 ( t ) z 0 ( t ) u 1 ( t ) u 2 ( t ) u N B -2 ( t ) u N B -1 ( t ) l S k B σ z , σ ˙ z , σ ˙ u k W F 0 ( t ) l H F 1 ( t ) F 2 ( t ) F N B -2 ( t ) F N B -1 ( t ) k T l S - 2l B Triangular spring–mass–rod arrangement with superposed elastic beam model Elasto-plastic bristle friction Z 0 n ( τ )= U 0 n ( τ ) - α n ( τ ) β n ( τ ) U 0 n ( τ ) σ Z Z n ( τ ) μ n ( τ ) f , n ( τ ) Elastic horizontal rotor symmetrically mounted on two GFBs Small proportion α / 2 of total mass shifted to each journal L g ω 0 e ξ e η e ζ Fluid α 2 m b (1 - α) m k u 0 Foil structure Rotor disk Constant vertical load and unbalanced disk Rotational speed (bearing number) Λ = 6μ 0 ω 0 p 0 R C 2 Unbalance transformation s 0 Λ ( τ )=+Λc Λ ( τ ) - s Λ ( τ ) h s Λ ( τ ) 2 + c Λ ( τ ) 2 - 1 i c 0 Λ ( τ )= -Λs Λ ( τ ) - c Λ ( τ ) h s Λ ( τ ) 2 + c Λ ( τ ) 2 - 1 i Computational Analysis Finite difference discretization on computational grid N ϕ × N Z = 469 × 15 Simultaneous subproblem solution by means of collective state vector Nonlinear ODE system s 0 ( τ )= k s ( τ ), Λ with k : R n × R R n s ( τ )= " ··· D i , j ( τ ) ··· T i , j ( τ ) ··· ··· U n ( τ ) U 0 n ( τ ) Z n ( τ ) ··· X ( τ ) X 0 ( τ ) ··· X D ( τ ) X 0 D ( τ ) ··· # > R n Results and Conclusions 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 -π - π 2 0 + π 2 +π 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06 Nondim. Pressure and Density Nondim. Temp. and Vapor Frac. Circumferential Coordinate ϕ Pressure P Density D Temperature T Vapor Fraction W v 1 Stable stationary operation under two-phase flow conditions Friction Force -30 -10 10 30 Low Friction Coefficient Friction Force -30 -10 10 30 Moderate Friction Coefficient Friction Force Time τ -30 -10 10 30 0 5 10 15 20 25 30 35 40 45 50 High Friction Coefficient 2 Detailed investigation of stick–slip transitions in foil contacts -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 Vertical Rotor Journal Position Y Rotational Speed Λ HB HB LP LP LP LP Friction Coeff. μ 0 μ = 0.4 μ (Limit Point of Cycles) (Subcrit. Hopf Bifurcation) (Supercrit. Hopf Bifurcation) 3 Bifurcation diagram giving insights into coexisting solutions Γ( t ) e ( t ) e ξ e η r R q ( ϕ, t ) h ( ϕ, t ) ω 0 e ζ O P ˜ h ( ϕ, t ) e y R ϕ e x e z Q Fluid Model for Non-Ideal Gases Foil Structure Friction Model Jeffcott–Laval Rotor Model

Transcript of A Thermo-Gas-Dynamic Model for the Bifurcation Analysis of ...

Leeds–Lyon Symposium on TribologySeptember 2–4, 2019, Lyon, France

A Thermo-Gas-Dynamic Model for the Bifurcation Analysisof Refrigerant-Lubricated Gas Foil Bearing Rotor Systems

Tim Leister (KIT/INSA), Benyebka Bou-Saïd (INSA), Wolfgang Seemann (KIT)

KIT – The Research University in the Helmholtz Association www.kit.edu

Self-Acting Gas Foil Bearings (GFBs)Bump foilTop foil

Bearing sleeveRotor journal

Gasdynamiclubrication wedge

Source: rotorlab.tamu.edu/tribgroup/Proj_GasFoilB.htm (adapted) Source: archive.org/details/C-2007-1879

High-speed rotor supported by gasdynamic lubrication wedge

Oil-free machinery offers high energy efficiency and low wear

Application: Vapor-Compression Refrigeration

Condenser

Evaporator

MotorTurb. Comp.

GFB

Heat absorbedfrom cabin

Heat expelledto environment

Hotvapor

Warmvapor

Liquid

Coldmixture(vapor–liquid)

GFB

R-245fa

System optimized by using refrigerant as lubricating fluid

Challenge: Self-Excited Vibrations

Stationary operating pointstend to become unstable atelevated rotational speeds

Occurrence of self-excitedrotor vibrations with largeamplitudes (fluid whirl)

ωc > ω2 (Loss of Stability)

ω1

ω2 > ω1

Vibrations calmed down by deliberately introduced friction

Stationary operation:Static bump deflection

Moderate excitation:Stiction predominant

Strong excitation:Dissipative sliding

Refrigerant R-245fa C C C FH

F

H

H

FF

F

(1,1,1,3,3-pentafluoropropane)

Vapor pressure 1.23 bar at 20 ◦C

50 100 150 200 2500.51.0

1.52.0

10

20

30

40

50

60

Pre

ssur

eP=

p /p 0

P, D, T SurfaceSat. Vapor LineSat. Liquid Line

Reg. PR EoSCub. PR EoSCritical Point

Density D = ρ/ρ0

Temp. T=

ϑ/ϑ0

Pre

ssur

eP=

p /p 0

T=

1.37

T=

1.46

T=

1.55

Cubic Peng–Robinson equation of state (PR EoS)

PPR(D, T)

=1p0

Rmϑ0T(Mmρ0D

)− b− a(ϑ0T)(Mm

ρ0D

)2+ 2b

(Mmρ0D

)− b2

Equilibrium vapor pressure (coexistence curve)by fitting simplified Clausius–Clapeyron solution

Psat(T) = exp(

C0− C1T−1− C2 ln T)

Regularization of PR EoS by algebraic solutionof cubic equation PPR(D, T) = Psat(T)with roots Dv(T) < Dm(T) < Dl(T)Mass fraction of liquid

Wl(D, T) =D− Dv(T)

Dl(T)− Dv(T)

Fluid film thickness

H(ϕ, τ) =

Clearance

1

Structure deformation

−Q(ϕ, τ)

Rotor journal displacement

− ε(τ) cos[

ϕ− γ(τ)]

Reynolds equation

∂τ(DH) +

Couette flow

Λ2

∂ϕ(DH) =

Poiseuille flow

∂ϕ

(DH3

2V∂P∂ϕ

)+ κ2 ∂

∂Z

(DH3

2V∂P∂Z

)Energy equation

ΘcpDH2

[∂T∂τ

+∂T∂ϕ

(Λ2− H2

2V∂P∂ϕ

)+ κ2∂T

∂Z

(−H2

2V∂P∂Z

)]

= ΘαTH2

[∂P∂τ

+∂P∂ϕ

(Λ2− H2

2V∂P∂ϕ

)+ κ2∂P

∂Z

(−H2

2V∂P∂Z

)]

+ 2V

[Λ2

12+

H4

4V2

(∂P∂ϕ

)2+ κ2 H4

4V2

(∂P∂Z

)2]

Viscous dissipation

+ 2ΘkH(Ta− T)

Heat transfer

FluidDynamics

P(ϕ, Z, τ)

StructureDynamicsQ(ϕ, τ),

Q′(ϕ, τ)

RotorDynamics

ε(τ), ε′(τ),

γ(τ), γ′(τ)

FluidDynamicsP(ϕ, Z, τ)

exey

ezmB

u0(t)

w0(t)z0(t)

u1(t) u2(t) uNB−2(t) uNB−1(t)lS

kB

σz, σz, σu

kW

F0(t)

lH

F1(t) F2(t) FNB−2(t) FNB−1(t)kT

lS− 2lB

Triangular spring–mass–rod arrangement with superposed elastic beam model

Elasto-plastic bristle friction Z′n(τ) = U′n(τ)− αn(τ)βn(τ)∣∣U′n(τ)∣∣ σZZn(τ)

µn(τ) f⊥,n(τ)

Elastic horizontal rotor symmetrically mounted on two GFBs

Small proportion α/2 of total mass shifted to each journal

L

g

ω0 eξ

Fluid

α2m

b

(1− α)m

k

u0 Foilstructure

Rotordisk

Constant vertical loadand unbalanced disk

Rotational speed(bearing number)

Λ =6µ0ω0

p0

(RC

)2

Unbalance transformation

s′Λ(τ) = +ΛcΛ(τ)− sΛ(τ)[sΛ(τ)

2 + cΛ(τ)2− 1

]c′Λ(τ) = −ΛsΛ(τ)− cΛ(τ)

[sΛ(τ)

2 + cΛ(τ)2− 1

]

Computational Analysis

Finite difference discretization on computational grid Nϕ× NZ = 469× 15Simultaneous subproblem solution by means of collective state vector

Nonlinear ODE system s′(τ) = k{

s(τ), Λ}

with k : Rn×R→ Rns(τ) =

[· · · Di,j(τ) · · · Ti,j(τ) · · · · · · Un(τ) U′n(τ) Zn(τ) · · · X(τ) X′(τ) · · · XD(τ) X′D(τ) · · ·

]>∈ Rn

Results and Conclusions

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

−π −π2 0 +π

2 +π

0.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

Non

dim

.Pre

ssur

ean

dD

ensi

ty

Nondim

.Temp.and

Vapor

Frac.

Circumferential Coordinate ϕ

Pressure PDensity D

Temperature TVapor Fraction Wv

1 Stable stationary operation under two-phase flow conditions

Fric

tion

For

ce

−30−10

1030 Low Friction Coefficient

Fric

tion

For

ce

−30−10

1030 Moderate Friction Coefficient

Fric

tion

For

ce

Time τ

−30−10

1030

0 5 10 15 20 25 30 35 40 45 50

High Friction Coefficient

2 Detailed investigation of stick–slip transitions in foil contacts

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

Ver

tical

Rot

orJo

urna

lPos

ition

Y

Rotational Speed Λ

HBHB

LP

LP

LP

LP

Friction Coeff.µ→ 0µ = 0.4µ→ ∞

(Limit Point of Cycles)

(Subcrit. Hopf Bifurcation)

(Supercrit. Hopf Bifurcation)

3 Bifurcation diagram giving insights into coexisting solutions

Γ(t)

e(t)eξ

r

R

q(ϕ, t)

h(ϕ, t)

ω0

O

P

h(ϕ,t)

ey

exezQ

Flu

idM

od

elfo

rN

on

-Id

ealG

ases

Fo

ilS

tru

ctu

reF

rict

ion

Mo

del Jeffco

tt–LavalR

oto

rM

od

el