A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

download A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

of 116

Transcript of A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    1/116

    Scilab Textbook Companion for

    A Textbook Of Engineering Physics

    by M. N. Avadhanulu, And P. G. Kshirsagar1

    Created byJumana Mp

    btechElectronics Engineering

    VNIT NAGPURCollege Teacher

    Dr.A.S.GandhiCross-Checked by

    Mukul R. Kulkarni

    August 10, 2013

    1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the Textbook Companion Projectsection at the website http://scilab.in

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    2/116

    Book Description

    Title: A Textbook Of Engineering Physics

    Author: M. N. Avadhanulu, And P. G. Kshirsagar

    Publisher: S. Chand And Company, New Delhi

    Edition: 9

    Year: 2011

    ISBN: 81-219-0817-5

    1

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    3/116

    Scilab numbering policy used in this document and the relation to theabove book.

    Exa Example (Solved example)

    Eqn Equation (Particular equation of the above book)

    AP Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

    For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

    2

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    4/116

    Contents

    List of Scilab Codes 5

    4 Electron Ballistics 9

    5 Electron Optics 14

    6 Properties of Light 17

    7 Interference and Diffraction 19

    8 Polarization 22

    11 Architectural Acoustics 24

    12 Ultrasonics 27

    13 Atomic Physics 29

    14 Lasers 36

    15 Atomic nucleus and nuclear energy 39

    16 Structure of Solids 49

    17 The Band Theory of Solids 52

    18 Semiconductors 54

    19 PN Junction Diode 59

    3

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    5/116

    21 Magnetic Materials 61

    22 Superconductivity 64

    23 Dielectrics 66

    24 Fibre optics 71

    25 Digital electronics 76

    4

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    6/116

    List of Scilab Codes

    Exa 4.1 Calculation of acceleration time taken and distance cov-ered and kinetic energy of an accelerating proton . . . 9

    Exa 4.2 electrostatic deflection . . . . . . . . . . . . . . . . . . 10Exa 4.3 electron projected at an angle into a uniform electric field 10Exa 4.4 motion of an electron in a uniform magnetic field . . . 11Exa 4.5 motion of an electron in a uniform magnetic field acting

    at an angle . . . . . . . . . . . . . . . . . . . . . . . . 11Exa 4.6 Magnetostatic deflection . . . . . . . . . . . . . . . . . 12Exa 4.7 electric and magnetic fields in crossed configuration. . 12Exa 5.1 Electron refraction calculation of potential difference . 14Exa 5.2 Cyclotron . . . . . . . . . . . . . . . . . . . . . . . . . 14Exa 5.4 calculation of linear separation of lines formed on pho-

    tographic plates . . . . . . . . . . . . . . . . . . . . . 15

    Exa 6.1 Optical path calculation . . . . . . . . . . . . . . . . . 17Exa 6.2 Coherence length calculation . . . . . . . . . . . . . . 17Exa 7.1 plane parallel thin film. . . . . . . . . . . . . . . . . . 19Exa 7.2 wedge shaped thin film . . . . . . . . . . . . . . . . . 19Exa 7.3 Newtons ring experiment . . . . . . . . . . . . . . . . 20Exa 7.4 nonreflecting film. . . . . . . . . . . . . . . . . . . . . 20Exa 8.2 Polarizer . . . . . . . . . . . . . . . . . . . . . . . . . 22Exa 8.3 calculation of birefringence . . . . . . . . . . . . . . . 22Exa 11.1 calculation of total absorption and average absorption

    coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 24Exa 11.2 calculation of average absorption coefficient . . . . . . 24Exa 11.3 calculation of average absorption coefficient and area . 25Exa 12.1 calculation of natural frequency. . . . . . . . . . . . . 27Exa 12.2 calculation of natural frequency. . . . . . . . . . . . . 27Exa 12.3 calculation of depth and wavelength . . . . . . . . . . 28

    5

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    7/116

    Exa 13.1 calculation of rate of flow of photons . . . . . . . . . . 29

    Exa 13.2 calculation of threshold wavelength and stopping poten-tial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Exa 13.3 calculation of momentum of Xray photon undergoing

    scattering . . . . . . . . . . . . . . . . . . . . . . . . . 30Exa 13.4 calculation of wavelength of scattered radiation and ve-

    locity of recoiled electrone . . . . . . . . . . . . . . . . 31Exa 13.5 calculation of wavelength of light emitted . . . . . . . 32Exa 13.6 calculation of de Broglie wavelength . . . . . . . . . . 32Exa 13.7 calculation of uncertainty in position . . . . . . . . . . 33Exa 13.8 Energy states of an electron and grain of dust . . . . . 34Exa 14.1 calculation of intensity of laser beam . . . . . . . . . . 36

    Exa 14.2 calculation of intensity of laser beam . . . . . . . . . . 36Exa 14.3 calculation of coherence length bandwidth and line width 37Exa 14.4 calculation of frequency difference . . . . . . . . . . . 38Exa 14.5 calculation of frequency difference . . . . . . . . . . . 38Exa 15.1 calculation of binding energy per nucleon . . . . . . . 39Exa 15.2 calculation of energy . . . . . . . . . . . . . . . . . . . 39Exa 15.3 calculation of binding energy . . . . . . . . . . . . . . 40Exa 15.4 calculation of binding energy . . . . . . . . . . . . . . 41Exa 15.5 calculation of halflife . . . . . . . . . . . . . . . . . . . 41Exa 15.6 calculation of activity . . . . . . . . . . . . . . . . . . 42

    Exa 15.7 calculation of age of mineral. . . . . . . . . . . . . . . 42Exa 15.8 calculation of age of wooden piece . . . . . . . . . . . 43Exa 15.9 calculation of energy released . . . . . . . . . . . . . . 44Exa 15.10 calculation of crossection . . . . . . . . . . . . . . . . 44Exa 15.11 calculation of final energy . . . . . . . . . . . . . . . . 45Exa 15.12 calculation of amount of fuel . . . . . . . . . . . . . . 45Exa 15.13 calculation of power output . . . . . . . . . . . . . . . 46Exa 15.14 calculation of power developed . . . . . . . . . . . . . 47Exa 15.15 calculation of amount of dueterium consumed . . . . . 47Exa 16.1 calculation of density . . . . . . . . . . . . . . . . . . 49Exa 16.2 calculation of no of atoms . . . . . . . . . . . . . . . . 49

    Exa 16.3 calculation of distance . . . . . . . . . . . . . . . . . . 50Exa 16.4 calculation of interatomic spacing. . . . . . . . . . . . 51Exa 17.1 calculation of velocity of fraction of free electrone . . . 52Exa 17.2 calculation of velocity of e . . . . . . . . . . . . . . . . 52Exa 17.3 calculation of velocity of fraction of free electrones . . 53

    6

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    8/116

    Exa 18.2 calculation of probability . . . . . . . . . . . . . . . . 54

    Exa 18.3 calculation of fraction of e in CB . . . . . . . . . . . . 54Exa 18.4 calculation of fractionional change in no of e. . . . . . 55Exa 18.5 calculation of resistivity . . . . . . . . . . . . . . . . . 56Exa 18.6 calculation of conductivity of intrinsic and doped semi-

    conductors . . . . . . . . . . . . . . . . . . . . . . . . 56Exa 18.7 calculation of hole concentration . . . . . . . . . . . . 57Exa 18.8 calculation of Hall voltage . . . . . . . . . . . . . . . . 57Exa 19.1 calculation of potential barrier . . . . . . . . . . . . . 59Exa 19.2 calculation of current . . . . . . . . . . . . . . . . . . 59Exa 21.1 calculation of magnetizing force and relative permeability 61Exa 21.2 calculation of magnetization and magnetic flux density 61

    Exa 21.3 calculation of relative permeability . . . . . . . . . . . 62Exa 22.1 calculation of magnetic field. . . . . . . . . . . . . . . 64Exa 22.2 calculation of transition temperature . . . . . . . . . . 64Exa 22.3 calculation of temp at which there is max critical field 65Exa 23.1 calculation of relative permittivity . . . . . . . . . . . 66Exa 23.2 calculation of electronic polarizability . . . . . . . . . 66Exa 23.3 calculation of electronic polarizability and relative per-

    mittivity . . . . . . . . . . . . . . . . . . . . . . . . . 67Exa 23.4 calculation of electronic polarizability and relative per-

    mittivity . . . . . . . . . . . . . . . . . . . . . . . . . 68

    Exa 23.5 calculation of ionic polarizability . . . . . . . . . . . . 68Exa 23.6 calculation of frequency and phase difference . . . . . 69Exa 23.7 calculation of frequency . . . . . . . . . . . . . . . . . 69Exa 24.1 Fiber optics numerical aperture calculation . . . . . . 71Exa 24.2 calculation of acceptance angle . . . . . . . . . . . . . 72Exa 24.3 calculation of normailsed frequency. . . . . . . . . . . 72Exa 24.4 calculation of normailsed frequency and no of modes . 73Exa 24.5 calculation of numerical aperture and maximum accep-

    tance angle . . . . . . . . . . . . . . . . . . . . . . . . 73Exa 24.6 calculation of power level . . . . . . . . . . . . . . . . 74Exa 24.7 calculation of power loss . . . . . . . . . . . . . . . . . 74

    Exa 25.1 sum of two binary numbers . . . . . . . . . . . . . . . 76Exa 25.2 sum of two binary numbers . . . . . . . . . . . . . . . 77Exa 25.3 sum of two binary numbers . . . . . . . . . . . . . . . 77Exa 25.4 difference of two binary numbers . . . . . . . . . . . . 78Exa 25.5 difference of two binary numbers . . . . . . . . . . . . 78

    7

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    9/116

    Exa 25.6 difference of two binary numbers . . . . . . . . . . . . 79

    Exa 25.7 product of two binary numbers . . . . . . . . . . . . . 80Exa 25.8 binary multiplication. . . . . . . . . . . . . . . . . . . 80Exa 25.9 binary division . . . . . . . . . . . . . . . . . . . . . . 81Exa 25.10 binary division . . . . . . . . . . . . . . . . . . . . . . 82Exa 25.11 octal addition. . . . . . . . . . . . . . . . . . . . . . . 82Exa 25.12 octal multiplication . . . . . . . . . . . . . . . . . . . 83Exa 25.13 hexadecimal addition . . . . . . . . . . . . . . . . . . 83Exa 25.14 binary to decimal conversion . . . . . . . . . . . . . . 84Exa 25.15 decimal to binary conversion . . . . . . . . . . . . . . 85Exa 25.16 decimal to binary conversion . . . . . . . . . . . . . . 85Exa 25.17 decimal to octal conversion . . . . . . . . . . . . . . . 87

    Exa 25.18 octal to binary conversion . . . . . . . . . . . . . . . . 88Exa 25.19 octal to binary conversion . . . . . . . . . . . . . . . . 88Exa 25.20 binary to octal conversion . . . . . . . . . . . . . . . . 91Exa 25.21 hexa to decimal conversion . . . . . . . . . . . . . . . 94Exa 25.22 decimal to hexadecimal conversion . . . . . . . . . . . 94Exa 25.23 hexa to binary conversion . . . . . . . . . . . . . . . . 95Exa 25.24 binary to hexa conversion . . . . . . . . . . . . . . . . 96Exa 25.25 Substraction by ones complement method . . . . . . . 96Exa 25.26 Substraction by ones complement method . . . . . . . 99Exa 25.27 Substraction by ones complement method . . . . . . . 101

    Exa 25.28 finding twos complement . . . . . . . . . . . . . . . . 104Exa 25.29 Addition of negative number by twos complement method 105Exa 25.30 Substraction by twos complement method . . . . . . . 108AP 1 Binary to Decimal convertor . . . . . . . . . . . . . . 112AP 2 Decimal to Base 2 Converter . . . . . . . . . . . . . . 114

    8

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    10/116

    Chapter 4

    Electron Ballistics

    Scilab code Exa 4.1 Calculation of acceleration time taken and distancecovered and kinetic energy of an accelerating proton

    1 clc ; clear ;

    2 / / E xa mp le 4 . 13 / / C a l c u l a t i o n o f a c c e l e r a t i o n , t im e t ak en , d i s t a n c e

    c ov er ed and k i n e t i c e n er gy o f an a c c e l e r a t i n gp r o t o n

    4

    5 / / g i v e n v a l u e s6 m = 1 . 6 7 * 1 0 ^ - 2 7 ; // mass o f p ro to n i n kg7 q = 1 . 6 0 2 * 1 0 ^ - 1 9 ; / / c h a r g e o f p r o t on i n Coulomb8 v 1 = 0 ; / / i n i t i a l v e l o c i t y i n m/ s9 v 2 = 2 . 5 * 1 0 ^ 6 ; // f i n a l v e l o c i t y i n m/ s

    10 E = 5 0 0 ; // e l e c t r i c f i e l d st r e ng t h i n V/m11 // c a l c u l a t i o n12 a = E * q / m ; // a c c e l e r a t i o n13 disp (a , a c c e l e r a t i o n o f p ro to n i n (m/ s 2) i s : ) ;

    14 t = v 2 / a ; / / t i m e15 disp (t , t im e ( i n s ) t ak e n by p r ot o n t o r e a ch t h e

    f i n a l v e l o c i t y i s : ) ;16 x = a * t ^ 2 / 2 ; / / d i s t a n c e17 disp (x , d i s t a n c e ( i n m) c o ve re d by p ro to n i n t h i s

    9

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    11/116

    t im e i s : ) ;

    18 K E = E * q * x ; // k i n e t i c e ne rg y19 disp ( K E , k i n e t i c e ne rg y ( i n J ) a t t he t im e i s : ) ;

    Scilab code Exa 4.2 electrostatic deflection

    1 clc ; clear ;

    2 / / E xa mp le 4 . 23 // e l e c t r o s t a t i c d e f l e c t i o n

    4 / / g i v e n v a l u e s5 V 1 = 2 0 0 0 ; // i n v o l t s , p o t e n t i a l d i f f e r e n c e t hr ou ghwhi ch e l e c t r o n beam i s a c c e l e r a t e d

    6 l = . 0 4 ; // l e ng t h o f r e c t a ng u l a r p l a t e s7 d = . 0 1 5 ; // d i s t a n c e b et we en p l a t e s8 V = 5 0 ; // p o t e n t i a l d i f f e r e n c e be t we en p l a t e s9 // c a l c u l a t i o n s

    10 a l p h a = atan ( l * V / ( 2 * d * V 1 ) ) * ( 1 8 0 / % p i ) ; / / i n d e g r e e s11 disp ( a l p h a , a ng l e o f d e f l e c t i o n o f e l e c t r o n beam i s :

    ) ;12 v = 5 . 9 3 * 1 0 ^ 5 * sqrt ( V 1 ) ; // h o r i z o n t a l v e l o c i t y i n m/ s

    13 t = l / v ; / / i n s14 disp (t , t r a n s i t t i m e t h r o u g h e l e c t r i c f i e l d i s : )

    Scilab code Exa 4.3 electron projected at an angle into a uniform electricfield

    1 clc ; clear ;

    2 / / E xa mp le 4 . 3

    3 / / e l e c t r o n p r o j e c t e d a t an a n gl e i n t o a u ni fo rme l e c t r i c f i e l d

    4 / / g i v e n v a l u e s5 v 1 = 4 . 5 * 1 0 ^ 5 ; // i n i t i a l spe e d i n m/ s6 a l p h a = 3 7 * % p i / 1 8 0 ; // a ng l e o f p r o j e c t i o n i n d e g r e e s

    10

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    12/116

    7 E = 2 0 0 ; / / e l e c t r i c f i e l d i n t e n s i t y i n N/C

    8 e = 1 . 6 * 1 0 ^ - 1 9 ; / / i n C9 m = 9 . 1 * 1 0 ^ - 3 1 ; / / i n k g10 a = e * E / m ; // a c c e l e r a t i o n i n m/ s 211 t = 2 * v 1 * sin ( a l p h a ) / a ; // t im e i n s12 disp (t , t i m e t a ke n by e l e c t r o n t o r e t u r n t o i t s

    i n i t i a l l e v e l i s : )13 H = ( v 1 ^ 2 * sin ( a l p h a ) * sin ( a l p h a ) ) / ( 2 * a ) ; // h e i g h t i n m14 disp (H , maximum h e i g h t r e a ch e d by e l e c t r o n i s : )15 s = ( v 1 ^ 2 ) * ( 2 * sin ( a l p h a ) * cos ( a l p h a ) ) / ( 2 * a ) ; //

    d i s pl a c em e n t i n m16 disp (s , h o r i z o n t a l d i s p l a c e me n t ( i n m) when i t r e a c h e s

    maximum h e i g h t i s : )

    Scilab code Exa 4.4 motion of an electron in a uniform magnetic field

    1 clc ; clear ;

    2 / / E xa mp le 4 . 43 // m ot io n o f an e l e c t r o n i n a u ni fo rm m ag ne ti c f i e l d4 / / g i v e n v a l u e s5 V = 2 0 0 ; // p o t e n t i a l d i f f e r e n c e t hr ou gh whi ch e l e c t r o n

    i s a c c e l e r a t e d i n v o l t s6 B = 0 . 0 1 ; / / m a g n e t i c f i e l d i n wb /m 27 e = 1 . 6 * 1 0 ^ - 1 9 ; / / i n C8 m = 9 . 1 * 1 0 ^ - 3 1 ; / / i n k g9 v = sqrt ( 2 * e * V / m ) ; // e l e c t r o n v e l o c i t y i n m/ s

    10 disp (v , e l e c t r o n v e l o c i t y i s : )11 r = m * v / ( e * B ) ; / / i n m12 disp (r , r a d i u s o f p at h ( i n m) i s : )

    Scilab code Exa 4.5 motion of an electron in a uniform magnetic fieldacting at an angle

    11

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    13/116

    1 clc ; clear ;

    2 / / E xa mp le 4 . 53 // m ot io n o f an e l e c t r o n i n a u ni fo rm m ag ne ti c f i e l da c ti n g a t a n a ng l e

    4 / / g i v e n v a l u e s5 v = 3 * 1 0 ^ 7 ; // e l e c t r o n s pe ed6 B = . 2 3 ; / / m a g n e t i c f i e l d i n wb /m 27 q = 4 5 * % p i / 1 8 0 ; // i n d e gr ee s , a n g le i n wh ich e l e c t r o n

    e n t e r f i e l d8 e = 1 . 6 * 1 0 ^ - 1 9 ; / / i n C9 m = 9 . 1 * 1 0 ^ - 3 1 ; / / i n k g

    10 R = m * v * sin ( q ) / ( e * B ) ; / / i n m

    11 disp (R , r a di u s o f h e l i c a l pat h i s : )12 p = 2 * % p i * m * v * cos ( q ) / ( e * B ) ; / / i n m13 disp (p , p i t ch o f h e l i c a l pa th ( i n m) i s : )

    Scilab code Exa 4.6 Magnetostatic deflection

    1 clc ; clear ;

    2 / / E xa mp le 4 . 6

    3 // M a gn e to s ta t i c d e f l e c t i o n4 / / g i v e n v a l u e s5 D = . 0 3 ; // d e f l e c t i o n i n m6 m = 9 . 1 * 1 0 ^ - 3 1 ; / / i n k g7 e = 1 . 6 * 1 0 ^ - 1 9 ; / / i n C8 L = . 1 5 ; / / d i s t a n c e b et we en CRT a nd a no de i n m9 l = L / 2 ;

    10 V = 2 0 0 0 ; // i n v o l t s i n wb/11 B = D * sqrt ( 2 * m * V ) / ( L * l * sqrt ( e ) ) ; // i n wb/m212 disp (B , t r a n s v e r s e m a g ne t ic f i e l d a c t i n g ( i n wb/m 2 )

    i s : )

    Scilab code Exa 4.7 electric and magnetic fields in crossed configuration

    12

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    14/116

    1 clc ; clear ;

    2 / / E xa mp le 4 . 73 / / e l e c t r i c a nd m a g n e t i c f i e l d s i n c r o s s e dc o n f i g u r a t i o n

    4 / / g i v e n v a l u e s5 B = 2 * 1 0 ^ - 3 ; / / m a g n e t i c f i e l d i n wb /m 26 E = 3 . 4 * 1 0 ^ 4 ; // e l e c t r i c f i e l d i n V/m7 m = 9 . 1 * 1 0 ^ - 3 1 ; / / i n k g8 e = 1 . 6 * 1 0 ^ - 1 9 ; / / i n C9 v = E / B ; // i n m/ s

    10 disp (v , e l e c t r o n s pe ed i s : )11 R = m * v / ( e * B ) ; / / i n m

    12 disp (R , r a d i u s o f c i r c u l a r p at h ( i n m) when e l e c t r i cf i e l d i s s w it c he d o f f )

    13

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    15/116

    Chapter 5

    Electron Optics

    Scilab code Exa 5.1 Electron refraction calculation of potential difference

    1 clc ; clear ;

    2 / / E xa mp le 5 . 13 // E l e c t r o n r e f r a c t i o n , c a l c u l a t i o n o f p o t e n t i a l

    d i f f e r e n c e4

    5 / / g i v e n v a l u e s6 V 1 = 2 5 0 ; // p o t e n t i a l by which e l e c t r o n s a r e

    a c c e l e r a t e d i n V ol ts7 a l p h a 1 = 5 0 * % p i / 1 8 0 ; / / i n d e g r e e8 a l p h a 2 = 3 0 * % p i / 1 8 0 ; / / i n d e g r e e9 b = sin ( a l p h a 1 ) / sin ( a l p h a 2 ) ;

    10 // c a l c u l a t i o n11 V 2 = ( b ^ 2 ) * V 1 ;

    12 a = V 2 - V 1 ;

    13 disp (a , p o t e n t i a l d i f f e r e n c e ( i n v o l t s ) i s : ) ;

    Scilab code Exa 5.2 Cyclotron

    14

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    16/116

    1 clc ; clear ;

    2 / / E xa mp le 5 . 2 & 5 . 33 / / C y cl ot ro n , c a l c u l a t i o n o f m ag ne ti c i n du c ti o n ,maximum en er gy

    4

    5 / / g i v e n v a l u e s6 f = 1 2 * ( 1 0 ^ 6 ) ; / / o s c i l l a t o r f r e q u e n c y i n H e r t z7 r = . 5 3 ; // r a d i u s o f t he d ee i n me t r e8 q = 1 . 6 * 1 0 ^ - 1 9 ; // D e ut er on c h a rg e i n C9 m = 3 . 3 4 * 1 0 ^ - 2 7 ; // mass o f d e ut er o n i n kg

    10 // c a l c u l a t i o n11 B = 2 * % p i * f * m / q ; //

    12 disp (B , m a gn et i c i n d u c t i o n ( i n T e sl a ) i s : ) ;13 E = B ^ 2 * q ^ 2 * r ^ 2 / ( 2 * m ) ;

    14 disp (E , maximum e n e r g y t o w hi ch d e u t e r o n s c an b ea c c e l e r a t e d ( i n J ) i s )

    15 E 1 = E * 6 . 2 4 * 1 0 ^ 1 8 / 1 0 ^ 6 ; / / c o n v e r s i o n o f e n er g y i n t o MeV16 disp ( E 1 , maximum e n e r g y t o w hi ch d e u t e r o n s c an b e

    a c c e l e r a t e d ( i n MeV) i s ) ;

    Scilab code Exa 5.4 calculation of linear separation of lines formed onphotographic plates

    1 clc ; clear ;

    2 / / E xa mp le 5 . 43 / /Mass s pe ct ro gr ap h , c a l c u l a t i o n o f l i n e a r

    s e p a r at i o n o f l i n e s fo rmed o n p h ot og r ap hi c p l a t e s4

    5 / / g i v e n v a l u e s6 E = 8 * 1 0 ^ 4 ; // e l e c t r i c f i e l d i n V/m

    7 B = . 5 5 / / m a g n et i c i n d u c t i o n i n Wb/m28 q = 1 . 6 * 1 0 ^ - 1 9 ; // c ha r ge o f i o n s9 m 1 = 2 0 * 1 . 6 7 * 1 0 ^ - 2 7 ; // a t o mi c mass o f an i s o t o p e o f

    neon10 m 2 = 2 2 * 1 . 6 7 * 1 0 ^ - 2 7 ; // a t o mi c m ass o f o t h e r i s o t o p e o f

    15

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    17/116

    neon

    11 // c a l c u l a t i o n12 x = 2 * E * ( m 2 - m 1 ) / ( q * B ^ 2 ) ; //13 disp (x , s e p a r a t i o n o f l i n e s ( i n me t r e ) i s : )

    16

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    18/116

    Chapter 6

    Properties of Light

    Scilab code Exa 6.1 Optical path calculation

    1 clc ; clear ;

    2 / / E xa mp le 6 . 13 // O p t ic a l p ath c a l c u l a t i o n4

    5 / / g i v e n v a l u e s6 n = 1 . 3 3 ; // r e f r a c t i v e i n de x o f medium7 x = . 7 5 ; / / g e o m e t r i c a l p at h i n m i cr o me tr e8 // c a l c u l a t i o n9 y = x * n ; //

    10 disp (y , o p t i c a l p at h ( i n m ic ro me tr e ) i s : )

    Scilab code Exa 6.2 Coherence length calculation

    1 clc ; clear ;

    2 / / E xa mp le 6 . 23 // C o he re nc e l e n g t h c a l c u l a t i o n4

    5 / / g i v e n v a l u e s

    17

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    19/116

    6 l = 1 * 1 0 ^ - 1 4 ; // l i n e w id th i n m et re

    7 x = 1 0 . 6 * 1 0 ^ - 6 ; / /IR e m i s s i o n w a ve l en g th i n m et re8 // c a l c u l a t i o n9 y = x ^ 2 / l ; //

    10 disp (y , c o h e r e n c e l e n g t h ( i n m et re ) i s : )

    18

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    20/116

    Chapter 7

    Interference and Diffraction

    Scilab code Exa 7.1 plane parallel thin film

    1 clc ; clear ;

    2 / / E xa mp le 7 . 13 / / p la ne p a r a l l e l t hi n f i l m4

    5 / / g i v e n v a l u e s6 x = 5 8 9 0 * 1 0 ^ - 1 0 ; // w av el en gt h o f l i g h t i n m etr e7 n = 1 . 5 ; // r e f r a c t i v e i nd ex8 r = 6 0 * % p i / 1 8 0 ; // a ng l e o f r e f r a c t i o n i n d eg r e e9 // c a l c u l a t i o n

    10 t = x / ( 2 * n * cos ( r ) ) ;

    11 disp ( t * 1 0 ^ 6 , t h i c k n e s s o f p l a t e ( i n m ic ro me tr e ) i s : ) ;

    Scilab code Exa 7.2 wedge shaped thin film

    1 clc ; clear ;

    2 / / E xa mp le 7 . 23 / / wedge s ha pe d t h i n f i l m

    19

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    21/116

    4

    5 / / g i v e n v a l u e s6 x = 5 8 9 3 * 1 0 ^ - 1 0 ; // w av el en gt h o f l i g h t i n m etr e7 n = 1 . 5 ; // r e f r a c t i v e i nd ex8 y = . 1 * 1 0 ^ - 3 ; // f r i n g e s p a c in g9 // c a l c u l a t i o n

    10 z = x / ( 2 * n * y ) ; / / a n g l e o f wed ge11 a l p h a = z * 1 8 0 / % p i ; // c o n ve r si o n o f r ad i an i n t o d e g r e e12 disp ( a l p h a , a n g l e o f wedg e ( i n d e g r e e ) i s : ) ;

    Scilab code Exa 7.3 Newtons ring experiment

    1 clc ; clear ;

    2 / / E xa mp le 7 . 33 / / Newto n s r i n g e x p e r i m e n t c a l c u l a t i o n o f

    r e f r a c t i v e i nd ex4

    5 / / g i v e n v a l u e s6 D 1 = 1 . 5 ; // d i am et re ( i n cm ) o f t en t h d ar k r i n g i n a i r7 D 2 = 1 . 2 7 ; / / d i a me t r e ( i n cm ) o f t e n th d ar k r i n g i n

    l i q u i d8

    9

    10 // c a l c u l a t i o n11 n = D 1 ^ 2 / D 2 ^ 2 ;

    12 disp (n , r e f r a c t i v e i n d e x o f l i q u i d i s ) ;

    Scilab code Exa 7.4 nonreflecting film

    1 clc ; clear ;

    2 / / E xa mp le 7 . 43 // n o n r e f l e c t i n g f i l m4

    20

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    22/116

    5 / / g i v e n v a l u e s

    6 l = 5 5 0 0 * 1 0 ^ - 1 0 ; // w av el en gt h o f l i g h t7 n 1 = 1 . 3 3 ; // r e f r a c t i v e i nd ex o f w a te r8 n 2 = 1 . 5 2 ; // r e f r a c t i v e i nd ex o f g l a s s window pane9 x = sqrt ( n 1 ) ; // t o c h e c k i f i t i s n o n r e f l e c t i n g

    10

    11 // c a l c u l a t i o n12 t = l / ( 4 * n 1 ) ; // t h i c k n e s s o f w at er f i l m r e q u i r e d13 disp ( t * 1 0 ^ 6 , minimum t h i c k n e s s o f f i l m ( i n m et re ) i s

    ) ;

    21

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    23/116

    Chapter 8

    Polarization

    Scilab code Exa 8.2 Polarizer

    1 clc ; clear ;

    2 / / E xa mp le 8 . 23 // P o l a r i z e r , c a l c u l a t i o n o f a n gl e4

    5 / / g i v e n v a l u e s6 I o = 1 ; // i n t e n s i t y o f p o l a r i s e d l i g h t7 I 1 = I o / 2 ; // i n t e n s i t y o f beam p o l a r i s e d by f i r s t by

    f i r s t p o l a r i s e r8 I 2 = I o / 3 ; // i n t e n s i t y o f l i g h t p o l a r i s e d by s ec o nd

    p o l a r i s e r9

    10

    11 // c a l c u l a t i o n12 a = acos ( sqrt ( I 2 / I 1 ) ) ;

    13 a l p h a = a * 1 8 0 / % p i ; // c o n ve r si o n o f a n gl e i n t o d e g r ee14 disp ( a l p h a , a ng l e be t we en c h a r a c t e r i s t i c d i r e c t i o n s

    ( i n d e gr e e ) i s ) ;

    Scilab code Exa 8.3 calculation of birefringence

    22

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    24/116

    1 clc ; clear ;

    2 / / E xa mp le 8 . 33 // c a l c u l a t i o n o f b i r e f r i n g e n c e4

    5 / / g i v e n v a l u e s6

    7 l = 6 * 1 0 ^ - 7 ; // w av el en gt h o f l i g h t i n m et re8 d = 3 * 1 0 ^ - 5 ; // t h i c k n e ss o f c r y s t a l9

    10

    11 // c a l c u l a t i o n12 x = l / ( 4 * d ) ;

    13 disp (x , t h e b i r e f r i n g a n c e o f t h e c r y s t a l i s ) ;

    23

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    25/116

    Chapter 11

    Architectural Acoustics

    Scilab code Exa 11.1 calculation of total absorption and average absorp-tion coefficient

    1 clc ; clear ;

    2 / / E x am pl e 1 1 . 13 / / c a l c u l a t i o n o f t o t a l a b s or p t i o n and a ve ra ge

    ab so rp ti on c o e f f i c i e n t4

    5 / / g i v e n v a l u e s6

    7 V = 2 0 * 1 5 * 5 ; // v olume o f h a l l i n m38 t = 3 . 5 ; // r e v e r b e r a t i o n t im e o f empty h a l l i n s e c9

    10

    11 // c a l c u l a t i o n12 a 1 = . 1 6 1 * V / t ; // t o t a l a b s or p t i o n o f empty h a l l13 k = a 1 / ( 2 * ( 2 0 * 1 5 + 1 5 * 5 + 2 0 * 5 ) ) ;

    14 disp (k , t h e a v e r a g e a b s o r p t i o n c o e f f i c i e n t i s ) ;

    Scilab code Exa 11.2 calculation of average absorption coefficient

    24

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    26/116

    1 clc ; clear ;

    2 / / E x am pl e 1 1 . 23 / / c a l c u l a t i o n o f a v e r a g e a b s o r p t i o n c o e f f i c i e n t4

    5 / / g i v e n v a l u e s6

    7 V = 1 0 * 8 * 6 ; // v olume o f h a l l i n m38 t = 1 . 5 ; // r e v e r b e r a t i o n t im e o f empty h a l l i n s e c9 A = 2 0 ; // a r e a o f c u r t a i n c l o t h i n m2

    10 t 1 = 1 ; // new r e v e r b e r a t i o n t im e i n s e c11

    12 // c a l c u l a t i o n

    13 a 1 = . 1 6 1 * V / t ; // t o t a l a b s or p t i o n o f empty h a l l14 a 2 = . 1 6 1 * V / t 1 ; // t o t a l a b so r p t i o n a f t e r a c u r t a i n

    c l o t h i s s us pe nd ed15

    16 k = ( a 2 - a 1 ) / ( 2 * 2 0 ) ;

    17 disp (k , t h e a v e r a g e a b s o r p t i o n c o e f f i c i e n t i s ) ;

    Scilab code Exa 11.3 calculation of average absorption coefficient and area

    1 clc ; clear ;

    2 / / E x am pl e 1 1 . 33 / / c a l c u l a t i o n o f a v e r a g e a b s o r p t i o n c o e f f i c i e n t and

    a r e a4

    5 / / g i v e n v a l u e s6

    7 V = 2 0 * 1 5 * 1 0 ; // v olume o f h a l l i n m38 t = 3 . 5 ; // r e v e r b e r a t i o n t im e o f empty h a l l i n s e c

    9 t 1 = 2 . 5 ; // r e du c ed r e v e r b e r a t i o n t im e10 k 2 = . 5 ; / / a b s o r p t i o n c o e f f i c i e n t o f c u r t a i n c l o t h11 // c a l c u l a t i o n12 a 1 = . 1 6 1 * V / t ; // t o t a l a b s or p t i o n o f empty h a l l13 k 1 = a 1 / ( 2 * ( 2 0 * 1 5 + 1 5 * 1 0 + 2 0 * 1 0 ) ) ;

    25

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    27/116

    14 disp ( k 1 , t h e a v e r a g e a b s o r p t i o n c o e f f i c i e n t i s ) ;

    15 a 2 = . 1 6 1 * V / t 1 ; // t o t a l a b s or p t i o n when w a ll i s c ov er edw it h c u r t a i n16 a = t 1 * ( a 2 - a 1 ) / ( t 1 * k 2 ) ;

    17 disp (a , a re a o f w a ll t o be c ov er ed w i th c u r t a i n ( i n m 2 ) i s : )

    26

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    28/116

    Chapter 12

    Ultrasonics

    Scilab code Exa 12.1 calculation of natural frequency

    1 clc ; clear ;

    2 / / E x am pl e 1 2 . 13 // c a l c u l a t i o n o f n a t u r a l f re qu e nc y , m a g n e t o s t r i c t i o n4

    5 / / g i v e n v a l u e s6

    7 l = 4 0 * 1 0 ^ - 3 ; // l e ng t h o f p ur e i r o n r od8 d = 7 . 2 5 * 1 0 ^ 3 ; // d e n s i t y o f i r o n i n kg /m39 Y = 1 1 5 * 1 0 ^ 9 ; //Young s modulus in N/m2

    10

    11 // c a l c u l a t i o n12 f = ( 1 * sqrt ( Y / d ) ) / ( 2 * l ) ;

    13 disp ( f * 1 0 ^ - 3 , t h e n a t u r a l f r e q u e n cy ( i n kHz ) i s ) ;

    Scilab code Exa 12.2 calculation of natural frequency

    1 clc ; clear ;

    2 / / E x am pl e 1 2 . 2

    27

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    29/116

    3 / / c a l c u l a t i o n o f n a t ur a l f r eq u en c y

    45 / / g i v e n v a l u e s6

    7 t = 5 . 5 * 1 0 ^ - 3 ; // t h i c k n e s s i n m8 d = 2 . 6 5 * 1 0 ^ 3 ; / / d e n s i t y i n k g /m 39 Y = 8 * 1 0 ^ 1 0 ; //Young s modulus in N/m2

    10

    11

    12 // c a l c u l a t i o n13 f =( sqrt ( Y / d ) ) / ( 2 * t ) ; // f r e qu e n cy i n h e r t z14 disp ( f * 1 0 ^ - 3 , t h e n a t u r a l f r e q u e n cy ( i n kHz ) i s ) ;

    Scilab code Exa 12.3 calculation of depth and wavelength

    1 clc ; clear ;

    2 / / E x am pl e 1 2 . 33 // c a l c u l a t i o n o f d ep th and w av el en gt h4

    5 / / g i v e n v a l u e s6

    7 f = . 0 7 * 1 0 ^ 6 ; / / f r e q u e n c y i n Hz8 t = . 6 5 ; // t im e t a ke n f o r p u l s e t o r e t u r n9 v = 1 7 0 0 ; // v e l o c i t y o f sound i n s e a w at er i n m/ s

    10

    11 // c a l c u l a t i o n12 d = v * t / 2 ; //13 disp (d , t h e d ep th o f s e a ( i n m) i s ) ;14 l = v / f ; // w av el en gh t o f p u l s e i n m15 disp ( l * 1 0 ^ 2 , w a ve l en g th o f p u l s e ( i n cm ) i s ) ;

    28

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    30/116

    Chapter 13

    Atomic Physics

    Scilab code Exa 13.1 calculation of rate of flow of photons

    1 clc ; clear ;

    2 / / E x am pl e 1 3 . 13 / / c a l c u l a t i o n o f r a t e o f f lo w o f p h ot o ns4

    5 / / g i v e n v a l u e s6

    7 l = 5 8 9 3 * 1 0 ^ - 1 0 ; // w av el en gt h o f l i g h t i n m8 P = 4 0 ; / / po wer o f s od iu m lamp i n W9 d = 1 0 ; // d i s t a n c e from t he s o ur c e i n m

    10 s = 4 * % p i * d ^ 2 ; // s u r f a c e a r e a o f r a d i us i n m211 c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t i n m/ s12 h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck s c o n s t a n t i n J s13 // c a l c u l a t i o n14 E = P * 1 ; //15 disp (E , t o t a l e n er g y e m i tt e d p e r s e co n d ( i n J o u l e ) i s

    ) ;

    16 n = E * l / ( c * h ) ; // t o t a l no o f p ho to ns17 R = n / s ;

    18 disp (R , r a t e o f f l o w o f p ho to ns p er u n it a re a ( i n /m 2) i s )

    29

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    31/116

    Scilab code Exa 13.2 calculation of threshold wavelength and stoppingpotential

    1 clc ; clear ;

    2 / / E x am pl e 1 3 . 23 // c a l c u l a t i o n o f t h r e s h o l d w av el en gt h and s t op p in g

    p o t e n t i a l4

    5 / / g i v e n v a l u e s6

    7 l = 2 0 0 0 ; // w av el en gt h o f l i g h t i n a rm st ro ng8 e = 1 . 6 * 1 0 ^ - 1 9 ; // c ha rg e o f e l e c t r o n9 W = 4 . 2 ; // work f u n c t i o n i n eV

    10 c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t i n m/ s11 h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck s c o n s t a n t i n J s12 // c a l c u l a t i o n13 x = 1 2 4 0 0 / ( W ) ; // h c = 12400 eV14 disp (x , t h r e s h o l d w a v e l e n g t h ( i n A rm s tr on g ) i s ) ;15 V s = ( 1 2 4 0 0 / l - W ) ; //

    16 disp ( V s , s t o p p i n g p o t e n t i a l ( i n VOLTS ) i s )

    Scilab code Exa 13.3 calculation of momentum of Xray photon undergo-ing scattering

    1 clc ; clear ;

    2 / / E x am pl e 1 3 . 33 / / c a l c u l a t i o n o f momentum o f Xr ay p ho to n u n d er g o in g

    s c a t t e r i n g4

    5 / / g i v e n v a l u e s6

    7 a l p h a = 6 0 * % p i / 1 8 0 ; // s c a t t e r i n g a n gl e i n r ad i an

    30

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    32/116

    8 e = 1 . 6 * 1 0 ^ - 1 9 ; // c h ar g e o f e l e c t r o n e

    9 W = 1 2 2 7 3 ; // work f u n c t i o n i n eV10 c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t i n m/ s11 h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck s c o n s t a n t i n J s12 h c = 1 2 4 0 0 ; // i n eV13 m = 9 . 1 * 1 0 ^ - 3 1 // r e st m a ss o f p ho to n i n kg14 // c a l c u l a t i o n15 x = h c / ( W ) ; / / w a v el e n g th o f p ho to n u n d e r g o i n g m o d of i ed

    s c a t t e r i n g i n a rm st ro ng16 y = x - ( h / ( m * c ) ) * ( 1 - cos ( a l p h a ) ) ;

    17 p = h / y * 1 0 ^ 1 0 ;

    18 disp (p ,momentum o f photon ( in kgm/ s ) i s ) ;

    Scilab code Exa 13.4 calculation of wavelength of scattered radiation andvelocity of recoiled electrone

    1 clc ; clear ;

    2 / / E x am pl e 1 3 . 43 // c a l c u l a t i o n o f w a ve l en gt h o f s c a t t e r e d r a d i a t i o n

    and v e l o c i t y o f r e c o i l e d e l e c t r o n4

    5 / / g i v e n v a l u e s6

    7 a l p h a = 3 0 * % p i / 1 8 0 ; // s c a t t e r i n g a n gl e i n r ad i an8 e = 1 . 6 * 1 0 ^ - 1 9 ; // c h ar g e o f e l e c t r o n9 x = 1 . 3 7 2 * 1 0 ^ - 1 0 ; // w av el en gt h o f i n c i d e n t r a d i a t i o n i n

    m10 c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t i n m/ s11 h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck s c o n s t a n t i n J s12 m = 9 . 1 * 1 0 ^ - 3 1 // r e s t mass o f p ho to n i n kg

    13 h c = 1 2 4 0 0 ; // i n eV14 // c a l c u l a t i o n15

    16 y = ( ( x + ( h / ( m * c ) ) * ( 1 - cos ( a l p h a ) ) ) ) * 1 0 ^ 1 0 ;

    17 disp (y , w av el en gt h o f s c a t t e r e d r a d i a t i o n ( i n

    31

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    33/116

    a r m s t r o n g ) i s ) ;

    18 x 1 = x * 1 0 ^ 1 0 ; // c o n v e r ti n g i n c i d e n t w av el en gt h i n t oa r m s t r o n g19 K E = h c * e * ( ( 1 / x 1 ) - ( 1 / y ) ) ; // k i n e t i c e ne rg y i n J ou l e20 disp ( K E , k i n e t i c e n e r g y i n j o u l e i s ) ;21 v = sqrt ( 2 * K E / m ) ;

    22 disp (v , v e l o c i t y o f r e c o i l e d e l e c t r o n ( i n m/ s 2) i s );

    Scilab code Exa 13.5 calculation of wavelength of light emitted

    1 clc ; clear ;

    2 / / E x am pl e 1 3 . 53 / / c a l c u l a t i o n o f w av el en gt h o f l i g h t e mi tt ed4

    5 / / g i v e n v a l u e s6 e = 1 . 6 * 1 0 ^ - 1 9 ; // c ha rg e o f e l e c t r o n e7 c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t8 h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck s c o n s t a n t i n J s9 E 1 = 5 . 3 6 ; / / e n er g y o f f i r s t s t a t e i n eV

    10 E 2 = 3 . 4 5 ; // e ne rg y o f s ec on d s t a t e i n eV11

    12

    13 // 1 ) c a l c u l a t i o n14

    15 l = h * c * 1 0 ^ 1 0 / ( ( E 1 - E 2 ) * e ) ;

    16 disp (l , w a ve l en g th o f s c a t t e r e d l i g h t ( i n A rm st ro ng )i s ) ;

    Scilab code Exa 13.6 calculation of de Broglie wavelength

    1 clc ; clear ;

    2 / / E x am pl e 1 3 . 6

    32

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    34/116

    3 // c a l c u l a t i o n o f de B r o g l i e w av el en gt h

    45 / / 1 ) g i v e n v a l u e s6 e = 1 . 6 * 1 0 ^ - 1 9 ;

    7 h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck s c o n s t a n t i n J s8 V = 1 8 2 ; // p o t e n t i a l d i f f e r e n c e i n v o l t s9 m = 9 . 1 * 1 0 ^ - 3 1 ; // mass o f e i n kg

    10

    11

    12 // 1 ) c a l c u l a t i o n13

    14 l = h / sqrt ( 2 * e * m * V ) ;

    15 disp (l , d e B r o g l i e w a v e l e n g t h ( i n m) i s ) ;16

    17

    18 / / 2 ) g i v e n v a l u e s19 m 1 = 1 ; // mass o f o b j e ct i n kg20 v = 1 ; // v e l o c i t y o f o b j e ct i n m/ s21 l 1 = h / ( m 1 * v ) ;

    22 disp ( l 1 , d e br o g ie w av el en gt h o f o b j e c t i n m) i s ) ;

    Scilab code Exa 13.7 calculation of uncertainty in position

    1 clc ; clear ;

    2 / / E x am pl e 1 3 . 73 / / c a l c u l a t i o n o f u n ce r ta i nt y i n p o s i t i o n4

    5 / / 1 ) g i v e n v a l u e s6

    7 h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck s c o n s t a n t i n J s

    8 v 1 = 2 2 0 ; // v e l o c i t y o f e i n m/ s9 m = 9 . 1 * 1 0 ^ - 3 1 ; // mass o f e i n kg

    10 A = 0 . 0 6 5 / 1 0 0 ; / / a c c u r a c y11

    12

    33

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    35/116

    13 // 1 ) c a l c u l a t i o n

    14 v 2 = v 1 * A ; // u n c e r t a i n t y i n s pe ed15 x 1 = h / ( 2 * % p i * m * v 2 ) ; //16 disp ( x 1 , u n c er t a i n t y i n p o s i t i o n o f e ( i n m) i s ) ;17

    18

    19 / / 2 ) g i v e n v a l u e s20 m 1 = 1 5 0 / 1 0 0 0 ; // mass o f o b j e c t i n kg21 x 2 = h / ( 2 * % p i * m 1 * v 2 ) ;

    22 disp ( x 2 , u n c er t a i n t y i n p o s i t i o n o f b a s e b a l l ( i n m)i s ) ;

    Scilab code Exa 13.8 Energy states of an electron and grain of dust

    1 clc ; clear ;

    2 / / E x am pl e 1 3 . 83 / / c a l c u l a t i o n o f e n er gy s t a t e s o f an e l e c t r o n and

    g r a i n o f d us t and c om pa ri ng4

    5 / / 1 ) g i v e n v a l u e s6 L 1 = 1 0 * 1 0 ^ - 1 0 ; // w i dt h o f p o t e n t i a l w e l l i n whi ch e i s

    c o n f i n e d7 L 2 = . 1 * 1 0 ^ - 3 ; // w i d t h o f p o t e n t i a l w e l l i n which g r a i n

    o f d u s t i s c on f i n e d8 h = 6 . 6 2 6 * 1 0 ^ - 3 4 ; / / Pl an ck s c o n s t a n t i n J s9 v 1 = 1 0 ^ 6 ; // v e l o c i t y o f g a ri n o f d u st i n m/ s

    10 m 1 = 9 . 1 * 1 0 ^ - 3 1 ; // mass o f e i n kg11 m 2 = 1 0 ^ - 9 ; // mass o f g r a i n i n kg12

    13 // 1 ) c a l c u l a t i o n

    1415 E e 1 = 1 ^ 2 * h ^ 2 / ( 8 * m 1 * L 1 ^ 2 ) ; // f i r s t e n er g y s t a t e o f

    e l e c t r o n16 disp ( E e 1 , f i r s t e ne rg y s t a t e o f e i s ) ;17 E e 2 = 2 ^ 2 * h ^ 2 / ( 8 * m 1 * L 1 ^ 2 ) ; // s ec on d e ne rg y s t a t e o f

    34

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    36/116

    e l e c t r o n

    18 disp ( E e 2 , s e c o n d e n er g y s t a t e o f e i s ) ;19 E e 3 = 3 ^ 2 * h ^ 2 / ( 8 * m 1 * L 1 ^ 2 ) ; // t h i r d e ne rg y s t a t e o f e l e c t r o n

    20 disp ( E e 3 , t hi r d e n e r g y s t a t e o f e i s ) ;21 disp ( E ne rg y l e v e l s o f an e l e c t r o n i n an i n f i n i t e

    p o t e n t i a l w e l l a r e q u an t is e d a nd t he e ne rg yd i f f e r e n c e be t we en t h e s u c c e s s i v e l e v e l s i s q u i t e

    l a r g e . E l e c tr o n c an no t jump fro m o ne l e v e l t oo t h e r on s t r e n g t h o f t h er m al e n er g y . Henceq u a n t i z a t i o n o f e n e r g y p l a y s a s i g n i f i c a n t r o l ei n c as e o f e l e c t r o n )

    2223 E g 1 = 1 ^ 2 * h ^ 2 / ( 8 * m 2 * L 2 ^ 2 ) ; // f i r s t e n er g y s t a t e o f

    g r a i n o f d u st24 disp ( E g 1 , f i r s t e ne rg y s t a t e o f g r a i n o f d us t i s ) ;25 E g 2 = 2 ^ 2 * h ^ 2 / ( 8 * m 2 * L 2 ^ 2 ) ; // s ec on d e ne rg y s t a t e o f

    g r a i n o f d u st26 disp ( E g 2 , s e c o n d e n er g y s t a t e o f g r a i n o f d u s t i s )

    ;

    27 E g 3 = 3 ^ 2 * h ^ 2 / ( 8 * m 2 * L 2 ^ 2 ) ; // t h i r d e ne rg y s t a t e o f g r a i n o f d u st

    28 disp ( E g 3 , t hi r d e n e r g y s t a t e o f g r a in o f d u s t i s );29 K E = m 2 * v 1 ^ 2 / 2 ; // k i n e t i c e ne rg y o f g r a in o f d us t ;30 disp ( K E , k i n e t i c e n er g y o f g r a i n o f d u s t i s ) ;31 disp ( The e n e r g y l e v e l s o f a g r a i n o f d u s t a re s o

    n ea r t o e a c h o t h er t ha t t h ey c o n s t i t u t e aco nt in uum . These e ne rg y l e v e l s a r e f a r s m a l l e rt han t he k i n e t i c e ne rg y p o ss e ss e d b y t h e g r ai n o f

    d us t . I t can move t hr ou gh a l l t h es e e ne rg y l e v e l sw i th o ut an e x t e r n a l s u p pl y o f e n er g y . Thus

    q u a n t i z a t i o n o f e n e r g y l e v e l s i s n o t a t a l l

    s i g n i f i c a n t i n c as e o f m ac ro sc op ic b o d i e s . )

    35

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    37/116

    Chapter 14

    Lasers

    Scilab code Exa 14.1 calculation of intensity of laser beam

    1 clc ; clear ;

    2 / / E x am pl e 1 4 . 13 / / c a l c u l a t i o n o f i n t e n s i t y o f l a s e r beam4

    5 / / g i v e n v a l u e s6 P = 1 0 * 1 0 ^ - 3 ; / / P ow er i n Watt7 d = 1 . 3 * 1 0 ^ - 3 ; / / d i a m e t r e i n m8 A = % p i * d ^ 2 / 4 ; / / a r e a i n m 29

    10

    11 // c a l c u l a t i o n12 I = P / A ;

    13 disp (I , i n t e n s i t y ( i n W/m 2 ) i s ) ;

    Scilab code Exa 14.2 calculation of intensity of laser beam

    1 clc ; clear ;

    2 / / E x am pl e 1 4 . 2

    36

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    38/116

    3 / / c a l c u l a t i o n o f i n t e n s i t y o f l a s e r beam

    45 / / g i v e n v a l u e s6 P = 1 * 1 0 ^ - 3 ; / / P ow er i n Watt7 l = 6 3 2 8 * 1 0 ^ - 1 0 ; / / w a v el e n g th i n m8 A = l ^ 2 ; / / a r e a i n m 29

    10

    11 // c a l c u l a t i o n12 I = P / A ;

    13 disp (I , i n t e n s i t y ( i n W/m 2 ) i s ) ;

    Scilab code Exa 14.3 calculation of coherence length bandwidth and linewidth

    1 clc ; clear ;

    2 / / E x am pl e 1 4 . 33 // c a l c u l a t i o n o f c o h er e nc e l en g th , ba nd wid th and l i n e

    w i dt h4

    5 / / g i v e n v a l u e s6 c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t i n m/ s7 t = . 1 * 1 0 ^ - 9 ; // t i m e d i v i s i o n i n s8 l = 6 2 3 8 * 1 0 ^ - 1 0 ; / / w a v el e n g th i n m9

    10 // c a l c u l a t i o n11 x = c * t ;

    12 disp (x , c o h er e n ce l e n g th ( i n m) i s ) ;13 d = 1 / t ;

    14 disp (d , b an dw id th ( i n Hz ) i s ) ;

    15 y = l ^ 2 * d / c ; // l i n e wi dt h i n m16 disp ( y * 1 0 ^ 1 0 , l i n e w id th ( i n a r ms tr o ng ) i s ) ;

    37

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    39/116

    Scilab code Exa 14.4 calculation of frequency difference

    1 clc ; clear ;

    2 / / E x am pl e 1 4 . 43 // c a l c u l a t i o n o f f re q u e n c y d i f f e r e n c e4

    5 / / g i v e n v a l u e s6 c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t i n m/ s7 l = . 5 ; // d i s t a n c e i n m8

    9 // c a l c u l a t i o n10 f = c / ( 2 * l ) ; / / i n h e r t z

    11 disp ( f / 1 0 ^ 6 , f r e qu e n cy d i f f e r e n c e ( i n MHz) i s ) ;

    Scilab code Exa 14.5 calculation of frequency difference

    1 clc ; clear ;

    2 / / E x am pl e 1 4 . 53 / / c a l c u l a t i o n o f no o f c a v i t y modes4

    5 / / g i v e n v a l u e s6 c = 3 * 1 0 ^ 8 ; // v e l o c i t y o f l i g h t i n m/ s7 n = 1 . 7 5 ; // r e f r a c t i v e i nd ex8 l = 2 * 1 0 ^ - 2 ; // l e ng t h o f ruby r o d i n m9 x = 6 9 4 3 * 1 0 ^ - 1 0 ; / / w a v el e n g th i n m

    10 y = 5 . 3 * 1 0 ^ - 1 0 ; // s p re ad o f w av el en gt h i n m11

    12 // c a l c u l a t i o n13 d = c / n / l ;

    14 f = c * y / x ^ 2 ;

    15 m = f / d ;16 disp (m , no o f modes i s ) ;

    38

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    40/116

    Chapter 15

    Atomic nucleus and nuclear

    energy

    Scilab code Exa 15.1 calculation of binding energy per nucleon

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 13 // c a l c u l a t i o n o f b i nd i ng e ne rg y p er n uc le on4

    5 / / g i v e n v a l u e s6 M p = 1 . 0 0 8 1 4 ; / / mass o f p r ot o n i n amu7 M n = 1 . 0 0 8 6 6 5 ; // m ass o f n u c le o n i n amu8 M = 7 . 0 1 8 2 2 ; / / mass o f L it hi um n u c l e u s i n amu9 a m u = 9 3 1 ; //amu i n MeV

    10 n = 7 - 3 ; // no o f n e u tr on s i n l i t hi u m n u cl e u s11

    12 // c a l c u l a t i o n13 E T = ( 3 * M p + 4 * M n - M ) * a m u ; / / t o t a l b i n d i n g e n er g y i n MeV14 E = E T / 7 ; / / 7 1 s t h e ma ss number

    15 disp (E , B i nd i ng e n er g y p er n u c le o n i n MeV i s ) ;

    39

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    41/116

    Scilab code Exa 15.2 calculation of energy

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 23 // c a l c u l a t i o n o f e ne rg y4

    5 / / g i v e n v a l u e s6 M 1 = 1 5 . 0 0 0 0 1 ; / / a t o m ic m as s o f N15 i n amu7 M 2 = 1 5 . 0 0 3 0 ; / / a t o m ic m as s o f O15 i n amu8 M 3 = 1 5 . 9 9 4 9 ; / / a t o m ic m as s o f O16 i n amu9 a m u = 9 3 1 . 4 ; //amu in MeV

    10 m p = 1 . 0 0 7 2 7 6 6 ; / / r e s t m a s s o f p r ot o n

    11 m n = 1 . 0 0 8 6 6 5 4 ; / / r e s t m a s s o f n e ut r on12

    13 // c a l c u l a t i o n14 Q 1 = ( M 3 - m p - M 1 ) * a m u ;

    15 disp ( Q 1 , e n er g y r e q u i r e d t o rem ov e o ne p r ot o n fr omO16 i s ) ;

    16 Q 2 = ( M 3 - m n - M 2 ) * a m u ;

    17 disp ( Q 2 , e n er g y r e q u i r e d t o rem ov e o ne n e ut r on f ro mO16 i s ) ;

    Scilab code Exa 15.3 calculation of binding energy

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 33 // c a l c u l a t i o n o f b i nd i ng e ne rg y4

    5 / / g i v e n v a l u e s6 M p = 1 . 0 0 7 5 8 ; / / mass o f p r ot o n i n amu

    7 M n = 1 . 0 0 8 9 7 ; / / mass o f n u c le o n i n amu8 M = 4 . 0 0 2 8 ; // m ass o f H el iu m n u c l e u s i n amu9 a m u = 9 3 1 . 4 ; //amu in MeV

    10

    11 // c a l c u l a t i o n

    40

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    42/116

    12 E 1 = ( 2 * M p + 2 * M n - M ) * a m u ; // t o t a l b i n di n g e ne rg y

    13 disp ( E 1 , B i n di n g e n e r g y i n MeV i s ) ;14 E 2 = E 1 * 1 0 ^ 6 * 1 . 6 * 1 0 ^ - 1 9 ;15 disp ( E 2 , b i nd i n g e ne rg y i n J ou l e i s ) ;

    Scilab code Exa 15.4 calculation of binding energy

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 4

    3 // c a l c u l a t i o n o f amount o f u nch ang ed m a t e r i a l45 / / g i v e n v a l u e s6 T = 2 ; // h a l f l i f e i n y e a rs7 k = . 6 9 3 1 / T ; / / d ec ay c o n s t a n t8 M = 4 . 0 0 2 8 ; // m ass o f H el iu m n u c l e u s i n amu9 a m u = 9 3 1 . 4 ; //amu in MeV

    10 N o = 1 ; // i n i t i a l amount in g11

    12 // c a l c u l a t i o n13 N = N o * ( % e ^ ( - k * 2 * T ) ) ;

    14 disp (N , a mount o f m a t e r i a l r e ma i n i ng u nc ha ng ed a f t e rf o u r y e a r s ( i n gram ) i s ) ;

    Scilab code Exa 15.5 calculation of halflife

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 53 / / c a l c u l a t i o n o f amount o f h a l f l i f e

    45 / / g i v e n v a l u e s6 t = 5 ; // t im e p e ri o d i n y e a r s7 a m u = 9 3 1 . 4 ; //amu in MeV8 N o = 5 ; // i n i t i a l amount in g

    41

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    43/116

    9 N = 5 - ( 1 0 . 5 * 1 0 ^ - 3 ) ; // amount p r e s e n t a f t e r 5 y e a rs

    1011

    12 // c a l c u l a t i o n13 k = log ( N / N o ) / t ; // d e ca y c o n s t a n t14 T = - . 6 9 3 / k ;

    15 disp (T , h a l f l i f e i n y e a r s i s ) ;

    Scilab code Exa 15.6 calculation of activity

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 63 / / c a l c u l a t i o n o f a c t i v i t y4

    5 / / g i v e n v a l u e s6 t = 2 8 ; // h a l f l i f e i n y e a r s7 m = 1 0 ^ - 3 ; / / ma ss o f s a mp l e8 M = 9 0 ; / / a to m ic mass o f s t r o n ti u m9 N A = 6 . 0 2 * 1 0 ^ 2 6 ; // av ogadr o s numbe r

    10

    1112 // c a l c u l a t i o n13 n = m * N A / M ; // no o f n u c l e i i n 1 mg s am pl e14 k = . 6 9 3 / ( t * 3 6 5 * 2 4 * 6 0 * 6 0 ) ; // d e ca y c o n s t a n t15 A = k * n ;

    16 disp (A , a c t i v i t y o f s am pl e ( i n d i s i n t e g r a t i o n s p ers e co n d ) i s ) ;

    Scilab code Exa 15.7 calculation of age of mineral

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 73 // c a l c u l a t i o n o f a ge o f m i n er al

    42

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    44/116

    4

    5 / / g i v e n v a l u e s6 t = 4 . 5 * 1 0 ^ 9 ; // h a l f l i f e i n y e a rs7 M 1 = 2 3 8 ; // a t o mi c mass o f Uranium i n g8 m = . 0 9 3 ; // mass o f l e a d i n 1 g o f uranium i n g9 N A = 6 . 0 2 * 1 0 ^ 2 6 ; // av ogadr o s numbe r

    10 M 2 = 2 0 6 ; // a t o mi c m ass o f l e ad i n g11

    12 // c a l c u l a t i o n13 n = N A / M 1 ; // no o f n u c l e i i n 1 g o f uranium sa mp le14 n 1 = m * N A / M 2 ; // no o f n u c l e i i n m mass o f l e a d15 c = n 1 / n ;

    16 k = . 6 9 3 / t ; // d e ca y c o n s t a n t17 T = ( 1 / k ) * log ( 1 + c ) ;

    18 disp (T , a g e o f m in er al i n y ea r s i s ) ;

    Scilab code Exa 15.8 calculation of age of wooden piece

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 83 // c a l c u l a t i o n o f a ge o f wooden p i e c e4

    5 / / g i v e n v a l u e s6 t = 5 7 3 0 ; // h a l f l i f e o f C14 i n y e a rs7 M 1 = 5 0 ; // mass o f wooden p i e c e i n g8 A 1 = 3 2 0 ; // a c t i v i t y o f wooden p i e c e ( d i s i n t e g r a t i o n

    p er m in ut e p er g )9 A 2 = 1 2 ; // a c t i v i t y o f l i v i n g t r e e

    10

    11 // c a l c u l a t i o n

    12 k = . 6 9 3 / t ; // d e ca y c o n s t a n t13 A = A 1 / M 1 ; // a c t i v i t y a f t e r d ea th14

    15 T = ( 1 / k ) * log ( A 2 / A ) ;

    16 disp (T , a g e o f m in er al i n y ea r s i s ) ;

    43

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    45/116

    Scilab code Exa 15.9 calculation of energy released

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 93 // c a l c u l a t i o n o f e n er gy r e l e a s e d4

    5 / / g i v e n v a l u e s6 M 1 = 1 0 . 0 1 6 1 2 5 ; / / a to m ic mass o f Boron i n amu

    7 M 2 = 1 3 . 0 0 7 4 4 0 ; / / a to m ic mass o f C13 i n amu8 M 3 = 4 . 0 0 3 8 7 4 ; / / a t o m ic m as s o f H el iu m i n amu9 m p = 1 . 0 0 8 1 4 6 ; // m ass o f p r ot o n i n amu

    10 a m u = 9 3 1 ; //amu i n MeV11

    12 // c a l c u l a t i o n13 Q = ( M 1 + M 3 - ( M 2 + m p ) ) * a m u ; // t o t a l b i n di n g e ne rg y i n M14 disp (Q , B i nd i ng e n er g y p er n u c le o n i n MeV i s ) ;

    Scilab code Exa 15.10 calculation of crossection

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 1 03 / / c a l c u l a t i o n o f c r o s s s e c t i o n4

    5 / / g i v e n v a l u e s6 t = . 0 1 * 1 0 ^ - 3 ; // t h i c k n e s s i n m7 n = 1 0 ^ 1 3 ; // no o f p r ot o ns bo mb ard ing t a r g e t p er s

    8 N A = 6 . 0 2 * 1 0 ^ 2 6 ; // av ogadr o s numbe r9 M = 7 ; // a t o mi c mass o f l i t hi u m i n kg10 d = 5 0 0 ; // d e n s i t y o f l i t h i u m i n kg /m311 n 0 = 1 0 ^ 8 ; // no o f n e ut r on s p ro du ce d p er s12 // c a l c u l a t i o n

    44

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    46/116

    13 n 1 = d * N A / M ; // no o f t a r g e t n u c l e i p er u n it volume

    14 n 2 = n 1 * t ; // no o f t a r ge t n u c l e i p er a re a15 A = n 0 / ( n * n 2 ) ;16 disp (A , c r o s s s e c t i o n ( i n m 2) f o r t h i s r e a c t i o n i s ) ;

    Scilab code Exa 15.11 calculation of final energy

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 1 1

    3 / / c a l c u l a t i o n o f f i n a l e ne rg y45 / / g i v e n v a l u e s6 B = . 4 ; //max mag net ic f i e l d in Wb/m27 c = 3 * 1 0 ^ 8 ;

    8 e = 1 . 6 * 1 0 ^ - 1 9 ;

    9 d = 1 . 5 2 ; / / d i a m e t r e i n m10 r = d / 2 ;

    11

    12 // c a l c u l a t i o n13 E = B * e * r * c ; //E=pc , p=mv=Ber

    14 disp (E , f i n a l e ne rg y o f e ( i n J ) i s ) ;15 E 1 = ( E / e ) / 1 0 ^ 6 ;

    16 disp ( E 1 , f i n a l e ne rg y o f e ( i n MeV) i s ) ;

    Scilab code Exa 15.12 calculation of amount of fuel

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 1 2

    3 // c a l c u l a t i o n o f amount o f f u e l4

    5 / / g i v e n v a l u e s6 P = 1 0 0 * 1 0 ^ 6 ; // p ower r e q u i r e d by c i t y7 M = 2 3 5 ; / / a to m ic mass o f Uranium i n g

    45

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    47/116

    8 e = 2 0 / 1 0 0 ; // c o n ve r si o n e f f i c i e n c y

    9 N A = 6 . 0 2 * 1 0 ^ 2 6 ; / / a v o g a d r o s n um be r10 E = 2 0 0 * 1 0 ^ 6 * 1 . 6 * 1 0 ^ - 1 9 ; / / e n e r g y r e l e a s e d p e r f i s s i o n11 t = 8 . 6 4 * 1 0 ^ 4 ; // day i n s e co n d s12

    13

    14 // c a l c u l a t i o n15 E 1 = P * t ; / / e n e r g y r e q u i r e m e n t16 m = E 1 * M / ( N A * e * E ) ; / / no o f n u c l e i N=NAm/M, e ne rg y

    r e l e a s e d by m kg i s NE , e n e r g y r e q u i r e m e n t =eNE17 disp (m , amount o f f u e l ( i n kg ) r e q u i r e d i s ) ;

    Scilab code Exa 15.13 calculation of power output

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 1 33 // c a l c u l a t i o n o f power o ut pu t4

    5 / / g i v e n v a l u e s6 M = 2 3 5 ; / / a to m ic mass o f Uranium i n kg7 e = 5 / 1 0 0 ; // r e a c t o r e f f i c i e n c y8 m = 2 5 / 1 0 0 0 ; / / amount o f u ra ni um co ns um ed p e r d ay i n kg9 E = 2 0 0 * 1 0 ^ 6 * 1 . 6 * 1 0 ^ - 1 9 ; / / e n e r g y r e l e a s e d p e r f i s s i o n

    10 t = 8 . 6 4 * 1 0 ^ 4 ; // day i n s e co n d s11 N A = 6 . 0 2 * 1 0 ^ 2 6 ; / / a v o g a d r o s n um be r12

    13 // c a l c u l a t i o n14 n = N A * m / M ; // no o f n u c l e i i n 25 g15 E 1 = n * E ; // e n er g y p ro du ce d by n n u c l e i16 E 2 = E 1 * e ; / / e n e r g y c o n v e r t e d t o p ow er

    17 P = E 2 / t ; / / p ow er o u tp u t i n Watt18 disp ( P / 1 0 ^ 6 , p ow er o u t p u t i n MW i s ) ;

    46

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    48/116

    Scilab code Exa 15.14 calculation of power developed

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 1 43 // c a l c u l a t i o n o f power d ev e lo p ed4

    5 / / g i v e n v a l u e s6 M = 2 3 5 ; / / a to m ic mass o f Uranium i n kg7 m = 2 0 . 4 ; / / amount o f u ra ni um co ns um ed p e r d ay i n kg8 E = 2 0 0 * 1 0 ^ 6 * 1 . 6 * 1 0 ^ - 1 9 ; / / e n e r g y r e l e a s e d p e r f i s s i o n9 t = 3 6 0 0 * 1 0 0 0 ; // t im e o f o p e ra t i on

    10 N A = 6 . 0 2 * 1 0 ^ 2 6 ; / / a v o g a d r o s n um be r

    1112 // c a l c u l a t i o n13 n = N A * m / M ; // no o f n u c l e i i n 2 0 . 4 kg14 E 1 = n * E ; // e n er g y p ro du ce d by n n u c l e i15 P = E 1 / t ; // in Watt16 disp ( P / 1 0 ^ 6 , p o we r d e v e l o p e d i n MW i s ) ;

    Scilab code Exa 15.15 calculation of amount of dueterium consumed

    1 clc ; clear ;

    2 / / E x am pl e 1 5 . 1 53 / / c a l c u l a t i o n o f amount o f d u et er i um co nsu med4

    5 / / g i v e n v a l u e s6 M 1 = 2 . 0 1 4 7 8 ; / / a t o m ic m as s o f H yd ro ge n i n amu7 M 2 = 4 . 0 0 3 8 8 ; / / a t o m ic m as s o f H el iu m i n amu8 a m u = 9 3 1 ; //amu i n MeV9 e = 3 0 / 1 0 0 ; // e f f i c i e n c y

    10 P = 5 0 * 1 0 ^ 6 ; / / o u t p u t p ow er11 N A = 6 . 0 2 6 * 1 0 ^ 2 6 ; / / a v o g a d r o n um be r12 t = 8 . 6 4 * 1 0 ^ 4 ; // s e c o n ds i n a day13

    14 // c a l c u l a t i o n

    47

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    49/116

    15 Q = ( 2 * M 1 - M 2 ) * a m u ; // e ne rg y r e l e a s e d i n a DD r e a c t i o n

    i n MeV16 O = Q * e * 1 0 ^ 6 / 2 ; / / a c t u a l o ut p ut p e r d u et e ri u m atom i neV

    17 n = P / ( O * 1 . 6 * 1 0 ^ - 1 9 ) ; // no o f D a toms r e q u i r e d18 m = n * M 1 / N A ; // e q u i v al e n t mass o f D r e q ui r e d p er s19 X = m * t ;

    20

    21 disp (X , D eu te ri um r e q u ir e m en t p e r day i n kg i s ) ;

    48

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    50/116

    Chapter 16

    Structure of Solids

    Scilab code Exa 16.1 calculation of density

    1 clc ; clear ;

    2 / / E x am pl e 1 6 . 13 // c a l c u l a t i o n o f d e ns i t y4

    5 / / g i v e n v a l u e s6 a = 3 . 3 6 * 1 0 ^ - 1 0 ; / / l a t t i c e c o n s t a n t i n m7 M = 2 0 9 ; / / a to mi cm as s o f p ol on iu m i n kg8 N = 6 . 0 2 * 1 0 ^ 2 6 ; // av ogadr o s numbe r9 z = 1 ; / / no o f atom

    10 // c a l c u l a t i o n11 d = z * M / ( N * a ^ 3 )

    12

    13 disp (d , d e n s i t y ( i n kg /m 3 ) i s ) ;

    Scilab code Exa 16.2 calculation of no of atoms

    1 clc ; clear ;

    2 / / E x am pl e 1 6 . 2

    49

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    51/116

    3 // c a l c u l a t i o n o f no o f atoms

    45 / / g i v e n v a l u e s6 a = 4 . 3 * 1 0 ^ - 1 0 ; // e dg e o f u n it c e l l i n m7 d = 9 6 3 ; / / d e n s i t y i n kg /m 38 M = 2 3 ; / / a to mi cm as s o f s od iu m i n kg9 N = 6 . 0 2 * 1 0 ^ 2 6 ; // av ogadr o s numbe r

    10

    11 // c a l c u l a t i o n12 z = d * N * a ^ 3 / M ;

    13

    14 disp (z , no o f atoms i s ) ;

    Scilab code Exa 16.3 calculation of distance

    1 clc ; clear ;

    2 / / E x am pl e 1 6 . 33 // c a l c u l a t i o n o f d i s t a n c e4

    5 / / g i v e n v a l u e s6 z = 4 ; // no o f atoms i n f c c7 d = 2 1 8 0 ; / / d e n s i t y i n k g /m 38 M = 2 3 + 3 5 . 3 ; // a to mi cm as s o f so dium c h l o r i d e i n kg9 N = 6 . 0 2 * 1 0 ^ 2 6 ; // av ogadr o s numbe r

    10

    11 // c a l c u l a t i o n12 a 1 = z * M / ( N * d ) ;

    13 a = a 1 ^ ( 1 / 3 ) ;

    14 l = a / 2 ; / / i n m15

    16 disp ( l * 1 0 ^ 1 0 , d i s t a n c e b et we en a d j a ce n t c h l o r i n e ands od iu m a to ms i n a r ms t ro n g i s ) ;

    50

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    52/116

    Scilab code Exa 16.4 calculation of interatomic spacing

    1 clc ; clear ;

    2 / / E x am pl e 1 6 . 43 / / c a l c u l a t i o n o f i n t e ra t o m i c s p ac i ng4

    5 / / g i v e n v a l u e s6 a l p h a = 3 0 * % p i / 1 8 0 ; // B ragg a n g l e i n d e g re e7 h = 1 ;

    8 k = 1 ;

    9 l = 1 ;

    10 m = 1 ; // o r d e r o f r e f l e c t i o n

    11 x = 1 . 7 5 * 1 0 ^ - 1 0 ; / / w a v el e n g th i n m12

    13 // c a l c u l a t i o n14 d = m * x / ( 2 * sin ( a l p h a ) ) ;

    15 a = d * sqrt ( h ^ 2 + k ^ 2 + l ^ 2 ) ; / / i n m16

    17 disp ( a * 1 0 ^ 1 0 , i n t e r a t o m i c s p a ci n g i n a rm st ro ng i s ) ;

    51

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    53/116

    Chapter 17

    The Band Theory of Solids

    Scilab code Exa 17.1 calculation of velocity of fraction of free electrone

    1 clc ; clear ;

    2 / / E x am pl e 1 7 . 13 // c a l c u l a t i o n o f p r o b a b i l i t y4

    5 / / g i v e n v a l u e s6 E = . 0 1 ; // e ne rg y d i f f e r e n c e i n eV7 k T = . 0 2 6 ; / / t e mp e r tu r e e q u i v a l e n t a t room temp i n e8

    9 // c a l c u l a t i o n10 P = 1 / ( 1 + ( % e ^ ( E / k T ) ) ) ;

    11

    12 disp (P , i n t e r a t o m i c s p a c i ng i s ) ;

    Scilab code Exa 17.2 calculation of velocity of e

    1 clc ; clear ;

    2 / / E x am pl e 1 7 . 23 / / c a l c u l a t i o n o f v e l o c i t y o f e

    52

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    54/116

    4

    5 / / g i v e n v a l u e s6 e = 1 . 6 * 1 0 ^ - 1 9 ; // c ha rg e o f e i n C7 E = 2 . 1 * e ; // f er mi l e v e l i n J8 m = 9 . 1 * 1 0 ^ - 3 1 ; // mass o f e i n kg9

    10 // c a l c u l a t i o n11 v = sqrt ( 2 * E / m ) ;

    12

    13 disp (v , v e l o c i t y o f e ( i n m/ s ) ) ;

    Scilab code Exa 17.3 calculation of velocity of fraction of free electrones

    1 clc ; clear ;

    2 / / E x am pl e 1 7 . 33 / / c a l c u l a t i o n o f v e l o c i t y o f f r a c t i o n o f f r e e

    e l e c t r o n s4

    5 / / g i v e n v a l u e s6 E = 5 . 5 ; // f e r m i l e v e l i n eV7 k T = . 0 2 6 ; / / t e mp e r tu r e e q u i v a l e n t a t room temp i n e8

    9 // c a l c u l a t i o n10 f = 2 * k T / E ;

    11

    12 disp (f , f r a c t i o n o f f r e e e l e c t r o n e\ s u pt o w id th kTon e i t h e r s i d e o f Ef i s ) ;

    53

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    55/116

    Chapter 18

    Semiconductors

    Scilab code Exa 18.2 calculation of probability

    1 clc ; clear ;

    2 / / E x am pl e 1 8 . 23 // c a l c u l a t i o n o f p r o b a b i l i t y4

    5 / / g i v e n v a l u e s6 T = 3 0 0 ; / / temp i n K7 k T = . 0 2 6 ; / / t e mp e r tu r e e q u i v a l e n t a t room temp i n eV8 E g = 5 . 6 ; // f o r b i d d e n g ap i n eV9

    10 // c a l c u l a t i o n11 f = 1 / ( 1 + % e ^ ( E g / ( 2 * k T ) ) ) ;

    12

    13 disp (f , p r o b a b i l i t y o f an e b ei n g t h e rm a l l y prom otedt o c o nd u ct i on band i s ) ;

    Scilab code Exa 18.3 calculation of fraction of e in CB

    1 clc ; clear ;

    54

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    56/116

    2 / / E x am pl e 1 8 . 3

    3 // c a l c u l a t i o n o f f r a c t i o n o f e i n CB45 / / g i v e n v a l u e s6 T = 3 0 0 ; / / temp i n K7 k T = . 0 2 6 ; / / t e mp e r tu r e e q u i v a l e n t a t room temp i n eV8 E g 1 = . 7 2 ; / / f o r b i d d e n g ap o f g erm an ium i n eV9 E g 2 = 1 . 1 ; // f o r b i dd e n gap o f s i l i c o n i n eV

    10 E g 3 = 5 . 6 ; / / f o r b i d d e n ga p o f diamond i n eV11

    12 // c a l c u l a t i o n13 f 1 = % e ^ ( - E g 1 / ( 2 * k T ) ) ;

    14 disp ( f 1 , f r a c t i o n o f e i n c on du c ti on band o f g er ma ni um i s ) ;

    15 f 2 = % e ^ ( - E g 2 / ( 2 * k T ) ) ;

    16 disp ( f 2 , f r a c t i o n o f e i n c on du c ti on band o f s i l i c o n i s ) ;

    17 f 3 = % e ^ ( - E g 3 / ( 2 * k T ) ) ;

    18 disp ( f 3 , f r a c t i o n o f e i n c on du c ti on band o f diamond i s ) ;

    Scilab code Exa 18.4 calculation of fractionional change in no of e

    1 clc ; clear ;

    2 / / E x am pl e 1 8 . 33 // c a l c u l a t i o n o f f r a c t i o n i o n a l c ha n ge i n no o f e4

    5 / / g i v e n v a l u e s6 T 1 = 3 0 0 ; / / temp i n K7 T 2 = 3 1 0 ; / / temp i n K

    8 E g = 1 . 1 ; // f o r b i d de n gap o f s i l i c o n i n eV9 k = 8 . 6 * 1 0 ^ - 5 ; / / b o lt zm a nn s c o n s t a n t i n eV /K

    10

    11 // c a l c u l a t i o n12 n 1 = ( 1 0 ^ 2 1 . 7 ) * ( T 1 ^ ( 3 / 2 ) ) * 1 0 ^ ( - 2 5 0 0 * E g / T 1 ) ; // no o f

    55

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    57/116

    c o nd u ct i on e a t T1

    13 n 2 = ( 1 0 ^ 2 1 . 7 ) * ( T 2 ^ ( 3 / 2 ) ) * 1 0 ^ ( - 2 5 0 0 * E g / T 2 ) ; // no o f c o nd u ct i on e a t T214 x = n 2 / n 1 ;

    15 disp (x , f r a c t i o n a l c ha n g e i n no o f e i s ) ;

    Scilab code Exa 18.5 calculation of resistivity

    1 clc ; clear ;

    2 / / E x am pl e 1 8 . 53 / / c a l c u l a t i o n o f r e s i s t i v i t y4

    5 / / g i v e n v a l u e s6 e = 1 . 6 * 1 0 ^ - 1 9 ;

    7 n i = 2 . 5 * 1 0 ^ 1 9 ; / / i n t r i n s i c d e n s i t y o f c a r r i e r s p e r m 38 u e = . 3 9 ; // m o b i l i t y o f e9 u h = . 1 9 ; // m o b i l i t y o f h o l e

    10

    11

    12 // c a l c u l a t i o n

    13 c = e * n i * ( u e + u h ) ; / / c o n d u c t i v i t y14 r = 1 / c ; // r e s i s t i v i t y15 disp (r , r e s i s t i v i t y in ohm m i s ) ;

    Scilab code Exa 18.6 calculation of conductivity of intrinsic and dopedsemiconductors

    1 clc ; clear ;

    2 / / E x am pl e 1 8 . 63 / / c a l c u l a t i o n o f c o n d u c t i v i t y o f i n t r i n s i c and d op ed

    s e m i c o n d u c t o r s4

    5 / / g i v e n v a l u e s

    56

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    58/116

    6 h = 4 . 5 2 * 1 0 ^ 2 4 ; // no o f h o l e s p er m3

    7 e = 1 . 2 5 * 1 0 ^ 1 4 ; // no o f e l e c t r o n s p er m38 u e = . 3 8 ; // e m o b i l i t y9 u h = . 1 8 ; // h o l e m o b i l i t y

    10 q = 1 . 6 * 1 0 ^ - 1 9 ; // c ha rg e o f e i n C11 // c a l c u l a t i o n12 ni = sqrt ( h * e ) ; // i n t r i n s i c c o nc e n t r at i o n13 c i = q * n i * ( u e + u h ) ;

    14 disp ( c i , c o n d u c t i v i t y o f s e m i co n d u ct o r ( i n S /m) i s ) ;15 c p = q * h * u h ;

    16 disp ( c p , c o n d u c t i v i t y o f d op ed s e m ic o n d uc t o r ( i n S /m) i s ) ;

    Scilab code Exa 18.7 calculation of hole concentration

    1 clc ; clear ;

    2 / / E x am pl e 1 8 . 73 / / c a l c u l a t i o n o f h o l e c o n c e n t r a t i o n4

    5 / / g i v e n v a l u e s

    6 n i = 2 . 4 * 1 0 ^ 1 9 ; // c a r r i e r c o n c e n t r a t i o n p er m37 N = 4 * 1 0 ^ 2 8 ; / / c o n c e n t r a t i o n o f g e a to ms p e r m 38

    9 // c a l c u l a t i o n10 N D = N / 1 0 ^ 6 ; / / d on or c o c n t r t n11 n = N D ; // no o f e l e c t r o n e s12

    13 p = n i ^ 2 / n ;

    14 disp (p , c o n c e n t ar t i o n o f h o l e s p er m3 i s ) ;

    Scilab code Exa 18.8 calculation of Hall voltage

    1 clc ; clear ;

    57

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    59/116

    2 / / E x am pl e 1 8 . 8

    3 // c a l c u l a t i o n o f H al l v o l t a ge45 / / g i v e n v a l u e s6 N D = 1 0 ^ 2 1 ; // d o no r d e n s i t y p e r m 37 B = . 5 ; / / m a g n et i c f i e l d i n T8 J = 5 0 0 ; / / c u r r e n t d e n s i t y i n A/m 29 w = 3 * 1 0 ^ - 3 ; // w id th i n m

    10 e = 1 . 6 * 1 0 ^ - 1 9 ; / / c h a rg e i n C11

    12 // c a l c u l a t i o n13

    1415 V = B * J * w / ( N D * e ) ; // i n v o l t s16 disp ( V * 1 0 ^ 3 , H a ll v o l t ag e i n mv i s ) ;

    58

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    60/116

    Chapter 19

    PN Junction Diode

    Scilab code Exa 19.1 calculation of potential barrier

    1 clc ; clear ;

    2 / / E x am pl e 1 9 . 13 // c a l c u l a t i o n o f p o t e n t i a l b a r r i e r4

    5 / / g i v e n v a l u e s6 e = 1 . 6 * 1 0 ^ - 1 9 ;

    7 n = 4 . 4 * 1 0 ^ 2 8 ; // no o f a to ms p e r m 38 k T = . 0 2 6 * e ; / / temp e q v l n t a t room temp9 n i = 2 . 4 * 1 0 ^ 1 9 ; / / no o f i n t r i n s i c c a r r i e r s p e r m 3

    10 N A = n / 1 0 ^ 6 ; // no o f a c c e p t o r s11 N D = n / 1 0 ^ 6 ; // no o f d on or s12

    13 // c a l c u l a t i o n14 V = ( k T / e ) * log ( N A * N D / n i ^ 2 ) ;

    15 disp (V , p o t e n t i a l b a r r i e r i n v o l t s i s ) ;

    Scilab code Exa 19.2 calculation of current

    59

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    61/116

    1 clc ; clear ;

    2 / / E x am pl e 1 9 . 23 / / c a l c u l a t i o n o f c u r r e nt4

    5 / / g i v e n v a l u e s6 e = 1 . 6 * 1 0 ^ - 1 9 ;

    7 k T = . 0 2 6 * e ; / / temp e q v l n t a t room temp8 I o = 2 * 1 0 ^ - 7 ; // c u r r e n t f l o w i n g a t room temp i n A9 V = . 1 ; // f or wa rd b i a s v o l t a g e i n v o l t s

    10

    11 // c a l c u l a t i o n12 I = I o * ( % e ^ ( e * V / k T ) - 1 ) ; // in Ampere

    13 disp ( I * 1 0 ^ 6 , c u r r e nt f l o w i n g when f o rw ar d b i a sa p p l i e d ( i n m i c ro a m pe r e ) i s ) ;

    60

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    62/116

    Chapter 21

    Magnetic Materials

    Scilab code Exa 21.1 calculation of magnetizing force and relative perme-ability

    1 clc ; clear ;

    2 / / E x am pl e 2 1 . 13 // c a l c u l a t i o n o f m ag ne ti zi ng f o r c e and r e l a t i v e

    p e r m e a b i l i t y4

    5 / / g i v e n v a l u e s6 M = 2 3 0 0 ; / / m a g n e t i z a t i o n i n A/m7 B = . 0 0 3 1 4 ; / / f l u x d e n s i t y i n Wb/m 28 u = 1 2 . 5 7 * 1 0 ^ - 7 ; / / p e r m e a b i l i t y i n H/m9

    10 // c a l c u l a t i o n11 H = ( B / u ) - M ;

    12 disp (H , m a g n e t i z i n g f o r c e ( i n A/m) i s ) ;13 U r = B / ( u * H ) ;

    14 disp ( U r , r e l a t i v e p e rm e ab i l i t y i s )

    Scilab code Exa 21.2 calculation of magnetization and magnetic flux den-sity

    61

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    63/116

    1 clc ; clear ;

    2 / / E x am pl e 2 1 . 23 / / c a l c u l a t i o n o f m a g ne t iz a t io n and m ag ne ti c f l u xd e n s i t y

    4

    5 / / g i v e n v a l u e s6 H = 1 0 ^ 5 ; / / e x t e r n a l f i e l d i n A/m7 X = 5 * 1 0 ^ - 5 ; // s u s c e p t i b i l i t y8 u = 1 2 . 5 7 * 1 0 ^ - 7 ; / / p e r m e a b i l i t y i n H/m9

    10 // c a l c u l a t i o n11 M = X * H ;

    12 disp (M , m a g n e t i z a t i o n ( i n A/m) i s ) ;13 B = u * ( M + H ) ;

    14 disp (B , m a gn et i c f l u x d e n s i t y ( i n wb/m 2 ) i s )

    Scilab code Exa 21.3 calculation of relative permeability

    1 clc ; clear ;

    2 / / E x am pl e 2 1 . 33 / / c a l c u l a t i o n o f r e l a t i v e p e rm e ab i l i t y4

    5 / / g i v e n v a l u e s6

    7 X = 3 . 7 * 1 0 ^ - 3 ; // s u s c e p t i b i l i t y a t 300 k8 T = 3 0 0 ; / / temp i n K9 T 1 = 2 0 0 ; / / temp i n K

    10 T 2 = 5 0 0 ; / / temp i n K11

    12 // c a l c u l a t i o n

    13 C = X * T ; / / c u r i e c o n s t a n t14 X T 1 = C / T 1 ;

    15 disp ( X T 1 , r e l a t i v e p e r m e a b i l i t y a t T1 i s ) ;16 X T 2 = C / T 2 ;

    17 disp ( X T 2 , r e l a t i v e p e r m e ab i l i t y a t T2 i s )

    62

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    64/116

    63

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    65/116

    Chapter 22

    Superconductivity

    Scilab code Exa 22.1 calculation of magnetic field

    1 clc ; clear ;

    2 / / E x am pl e 2 2 . 13 / / c a l c u l a t i o n o f m a gn et i c f i e l d4

    5 / / g i v e n v a l u e s6

    7 T c = 7 . 2 ; // t r a n s i t i o n temp i n K8 T = 5 ; / / temp i n K9 H c = 3 . 3 * 1 0 ^ 4 ; / / m a g n e t i c f i e l d a t T i n A/m

    10

    11

    12 // c a l c u l a t i o n13 H c 0 = H c / ( 1 - ( T ^ 2 / T c ^ 2 ) ) ;

    14 disp ( H c 0 , max v a lu e o f H a t 0K ( i n A/m) i s ) ;

    Scilab code Exa 22.2 calculation of transition temperature

    1 clc ; clear ;

    64

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    66/116

    2 / / E x am pl e 2 2 . 2

    3 / / c a l c u l a t i o n o f t r a n s i t i o n t em pe ra tu re45 / / g i v e n v a l u e s6

    7 T = 8 ; / / temp i n K8 H c = 1 * 1 0 ^ 5 ; // c r i t i c a l magn e t i c f i e l d at T i n A/m9 H c 0 = 2 * 1 0 ^ 5 ; / / m a g n et i c f i e l d a t 0 K i n A/m

    10

    11 // c a l c u l a t i o n12 T c = T / ( sqrt ( 1 - H c / H c 0 ) ) ;

    13 disp ( T c , t r a n s i t i o n temp i n K i s ) ;

    Scilab code Exa 22.3 calculation of temp at which there is max criticalfield

    1 clc ; clear ;

    2 / / E x am pl e 2 2 . 33 // c a l c u l a t i o n o f temp a t whi ch t h e r e i s max

    c r i t i c a l f i e l d4

    5 / / g i v e n v a l u e s6

    7 T c = 7 . 2 6 ; // c r i t i c a l temp in K8 H c = 8 * 1 0 ^ 5 ; //max c r i t i c a l magn e t i c f i e l d at T i n A/m9 H = 4 * 1 0 ^ 4 ; // s u b j e c t e d m a gn et i c f i e l d a t i n A/m

    10

    11 // c a l c u l a t i o n12 T = T c * ( sqrt ( 1 - H / H c ) ) ;

    13 disp (T , max t emp f o r s u p e r c o n d u c t i v i t y i n K i s ) ;

    65

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    67/116

    Chapter 23

    Dielectrics

    Scilab code Exa 23.1 calculation of relative permittivity

    1 clc ; clear ;

    2 / / E x am pl e 2 3 . 13 // c a l c u l a t i o n o f r e l a t i v e p e r m i t t i v i t y4

    5 / / g i v e n v a l u e s6

    7 E = 1 0 0 0 ; // e l e c t r i c f i e l d i n V/m8 P = 4 . 3 * 1 0 ^ - 8 ; // p o l a r i z a t i o n i n C/m 29 e = 8 . 8 5 * 1 0 ^ - 1 2 ; // p e r m i t t i v i t y i n F/m

    10

    11

    12 // c a l c u l a t i o n13 e r = 1 + ( P / ( e * E ) ) ;

    14 disp ( e r , r e l a t i v e p e r m i t t i v i t y o f NaCl i s ) ;

    Scilab code Exa 23.2 calculation of electronic polarizability

    1 clc ; clear ;

    66

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    68/116

    2 / / E x am pl e 2 3 . 2

    3 / / c a l c u l a t i o n o f e l e c t r o n i c p o l a r i z a b i l i t y45 / / g i v e n v a l u e s6

    7 e = 8 . 8 5 * 1 0 ^ - 1 2 ; // p e r m i t t i v i t y i n F/m8 e r = 1 . 0 0 2 4 ; // r e l a t i v e p e r m i t t i v i t y a t NTP9 N = 2 . 7 * 1 0 ^ 2 5 ; / / a to ms p e r m 3

    10

    11

    12 // c a l c u l a t i o n13 a l p h a = e * ( e r - 1 ) / N ;

    14 disp ( a l p h a , e l e c t r o n i c p o l a r i z a b i l i t y ( i n F/m 2) i s ) ;

    Scilab code Exa 23.3 calculation of electronic polarizability and relativepermittivity

    1 clc ; clear ;

    2 / / E x am pl e 2 3 . 33 / / c a l c u l a t i o n o f e l e c t r o n i c p o l a r i z a b i l i t y and

    r e l a t i v e p e r m i t t i v i t y4

    5 / / g i v e n v a l u e s6

    7 e = 8 . 8 5 * 1 0 ^ - 1 2 ; // p e r m i t t i v i t y i n F/m8 N = 9 . 8 * 1 0 ^ 2 6 ; / / a to ms p e r m 39 r = . 5 3 * 1 0 ^ - 1 0 ; // r a d i u s i n m

    10

    11

    12 // c a l c u l a t i o n13 a l p h a = 4 * % p i * e * r ^ 3 ;

    14 disp ( a l p h a , e l e c t r o n i c p o l a r i z a b i l i t y ( i n F/m 2) i s ) ;

    15 e r = 1 + ( 4 * % p i * N * r ^ 3 ) ;

    67

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    69/116

    16 disp ( e r , r e l a t i v e p e r m i t t i v i t y i s )

    Scilab code Exa 23.4 calculation of electronic polarizability and relativepermittivity

    1 clc ; clear ;

    2 / / E x am pl e 2 3 . 43 / / c a l c u l a t i o n o f e l e c t r o n i c p o l a r i z a b i l i t y and

    r e l a t i v e p e r m i t t i v i t y

    45 / / g i v e n v a l u e s6 w = 3 2 ; // a t om ic w ei gh t o f s u l ph u r7 d = 2 . 0 8 * 1 0 ^ 3 ; / / d e n s i t y i n k g /m 38 N A = 6 . 0 2 * 1 0 ^ 2 6 ; / / a v o g a d r o s n um be r9 a l p h a = 3 . 2 8 * 1 0 ^ - 4 0 ; // e l e c t r o n i c p o l a r i z a b i l i t y i n F .m

    210 e = 8 . 8 5 4 * 1 0 ^ - 1 2 ; / / p e r m i t t i v i y11 // c a l c u l a t i o n12

    13 n = N A * d / w ;

    14 k = n * a l p h a / ( 3 * e ) ;15 e r = ( 1 + 2 * k ) / ( 1 - k ) ;

    16 disp ( e r , r e l a t i v e p e r m i t t i v i t y i s )

    Scilab code Exa 23.5 calculation of ionic polarizability

    1 clc ; clear ;

    2 / / E x am pl e 2 3 . 5

    3 / / c a l c u l a t i o n o f i o n i c p o l a r i z a b i l i t y4

    5 / / g i v e n v a l u e s6 n = 1 . 5 ; // r e f r a c t i v e i nd ex7 e r = 6 . 7 5 ; // r e l a t i v e p e r m i t t i v i t y

    68

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    70/116

    8

    9 // c a l c u l a t i o n10 P i = ( e r - n ^ 2 ) * 1 0 0 / ( e r - 1 ) ;11 disp ( P i , p e r c e nt a g e i o n i c p o l a r i z a b i l i t y ( i n %) ) i s

    )

    Scilab code Exa 23.6 calculation of frequency and phase difference

    1 clc ; clear ;

    2 / / E x am pl e 2 3 . 63 / / c a l c u l a t i o n o f f r e q ue n cy and p ha se d i f f e r e n c e4

    5 / / g i v e n v a l u e s6 t = 1 8 * 1 0 ^ - 6 ; // r e l a x a t i o n t i m e i n s7

    8 // c a l c u l a t i o n9 f = 1 / ( 2 * % p i * t ) ;

    10 disp (f , f r e qu e n cy a t wh ich r e a l and i m ag i na r y p a rto f c om pl x d i e l e c t r i c c o n s t a n t a r e e q u a l i s ) ;

    11 a l p h a = atan ( 1 ) * 1 8 0 / % p i ; // p ha se d i f f e r e n c e bet w ee n

    c u r r e nt and v o l t a g e ( 1 b e ca u se r e a l and i ma g in ryp a r t s a r e e q u a l o f t h e d i e l e c t r i c c o n s t a n t )

    12 disp ( a l p h a , p ha se d i f f e e r e n c e ( i n d e g r e e ) i s ) ;

    Scilab code Exa 23.7 calculation of frequency

    1 clc ; clear ;

    2 / / E x am pl e 2 3 . 7

    3 // c a l c u l a t i o n o f f r e q ue n cy4

    5 / / g i v e n v a l u e s6 t = 5 . 5 * 1 0 ^ - 3 ; // t h i c k n e s s o f p l a t e i n m7 Y = 8 * 1 0 ^ 1 0 ; //Young s modulus in N/m2

    69

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    71/116

    8 d = 2 . 6 5 * 1 0 ^ 3 ; / / d e n s i t y i n k g /m 3

    910

    11

    12 // c a l c u l a t i o n13 f = sqrt ( Y / d ) / ( 2 * t ) ; // i n Hz14 disp ( f / 1 0 ^ 3 , f r e q u e n c y o f f u n da m e nt a l n o t e ( i n KHz )

    i s ) ;

    70

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    72/116

    Chapter 24

    Fibre optics

    Scilab code Exa 24.1 Fiber optics numerical aperture calculation

    1 clc ; clear ;

    2 / / E x am pl e 2 4 . 13 / / F i b e r o p t i c s4

    5 / / g i v e n v a l u e s6 n = 1 . 5 ; // r e f r a c t i v e i nd ex7 x = . 0 0 0 5 ; // f r a c t i o n a l i nd ex d i f f e r e n c e8

    9 // c a l c u l a t i o n10 u = n * ( 1 - x ) ;

    11 disp (u , c l a d d in g i nd ex i s ) ;12 a l p h a = asin ( u / n ) * 1 8 0 / % p i ;

    13 disp ( a l p h a , c r i t i c a l i n t e r n a l r e f l e c t i o n a n g l e ( i nd e g r e e ) i s ) ;

    14 t h e t a = asin ( sqrt ( n ^ 2 - u ^ 2 ) ) * 1 8 0 / % p i ;

    15 disp ( t h e t a , c r i t i c a l a c c e p t a n c e a n g l e ( i n d e g r e e ) i s

    ) ;16 N = n * sqrt ( 2 * x ) ;

    17 disp (N , n u me r ic a l a p e r tu r e i s ) ;

    71

  • 5/21/2018 A Textbook of Engineering Physics_M. N. Avadhanulu, And P. G. Kshirsagar

    73/116

    Scilab code Exa 24.2 calculation of acceptance angle

    1 clc ; clear ;

    2 / / E x am pl e 2 4 . 23 // c a l c u l a t i o n o f a c c e p t a n ce a n gl e4

    5 / / g i v e n v a l u e s6 n = 1 . 5 9 ; // c l ad d i ng r e f r a c t i v e i nd ex7 u = 1 . 3 3 ;

    // r e f r a c t i v e i nd ex o f w at er8 N = . 2 0 ; // n u me r ic a l a p e r tu r e o f f i b r e9 // c a l c u l a t i o n

    10 x = sqrt ( N ^ 2 + n ^ 2 ) ; // i nd ex o f f i b r e11 N1 = sqrt ( x ^ 2 - n ^ 2 ) / u ; // n u m e ri c a l a p e r t u r e when f i b r e

    i s i n w a te r12 a l p h a = asin ( N 1 ) * 1 8 0 / % p i ;

    13 disp ( a l p h a , a c c e p t a n ce a n gl e i n d e g r e e i s ) ;

    Sc