A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020....

33
1 A tale of two tails - efficient 1 profiling of protein degraders 2 by specific functional and 3 target engagement readouts 4 Alexey L. Chernobrovkin, Cindy Cázares-Körner, Tomas Friman, Isabel Martin 5 Caballero, Daniele Amadio and Daniel Martinez Molina 6 Pelago Bioscience, Sweden 7 Corresponding authors: 8 Alexey L. Chernobrovkin, [email protected] 9 Daniel Martinez Molina, [email protected] 10 Keywords: 11 Cellular thermal shift assay; CETSA; TPP; drug target; molecular glue; IMiDS; 12 PROTACs; 13 14 . CC-BY-NC-ND 4.0 International license perpetuity. It is made available under a preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in The copyright holder for this this version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926 doi: bioRxiv preprint

Transcript of A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020....

Page 1: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

1

A tale of two tails - efficient 1

profiling of protein degraders 2

by specific functional and 3

target engagement readouts 4

Alexey L. Chernobrovkin, Cindy Cázares-Körner, Tomas Friman, Isabel Martin 5

Caballero, Daniele Amadio and Daniel Martinez Molina 6

Pelago Bioscience, Sweden 7

Corresponding authors: 8

Alexey L. Chernobrovkin, [email protected] 9

Daniel Martinez Molina, [email protected] 10

Keywords: 11

Cellular thermal shift assay; CETSA; TPP; drug target; molecular glue; IMiDS; 12

PROTACs; 13

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 2: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

2

Abstract (253 words, only 250 allowed) 1

Targeted protein degradation represents an area of great interest, potentially offering 2

improvements with respect to dosing, side effects, drug resistance and reaching 3

‘undruggable’ proteins compared to traditional small molecule therapeutics. A major 4

challenge in the design and characterization of degraders acting as molecular glues is that 5

binding of the molecule to the protein of interest (PoI) is not needed for efficient and 6

selective protein degradation, instead one needs to understand the interaction with the 7

responsible ligase. Similarly, for proteasome targeting chimeras (PROTACs) understanding 8

the binding characteristics of the PoI alone is not sufficient. Therefore, simultaneously 9

assessing the binding to both PoI and the E3 ligase as well as the resulting degradation profile 10

is of great value. The Cellular Thermal Shift Assay (CETSA) is an unbiased cell-based 11

method, designed to investigate the interaction of compounds with their cellular protein 12

targets by measuring compound-induced changes in protein thermal stability. In combination 13

with mass spectrometry (MS) CETSA can simultaneously evaluate compound induced 14

changes in the stability of thousands of proteins. We have used CETSA MS to profile a 15

number of protein degraders, including molecular glues (e.g. IMiDs) and PROTACs to 16

understand mode of action and to deconvolute off-target effects in intact cells. Within the 17

same experiment we were able to monitor both target engagement by observing changes in 18

protein thermal stability as well as efficacy by simultaneous assessment of protein 19

abundances. This allowed us to correlate target engagement (i.e. binding to the PoI and 20

ligases) and functional readout (i.e. degrader induced protein degradation). 21

22

23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 3: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

3

Introduction 1

The mainstream in drug discovery is developing chemical modulators of various protein 2

targets. Chemical modulators, typically small molecules that bind to an enzyme or receptor 3

active site, function by locking their target protein in a state that augments or prevents it from 4

performing its intended function. However, around 80% of the human proteome is estimated 5

to lack favorable features for such drug development schemes, i.e. considered undruggable 1 6

and therefore strategies for modulating the function of the bulk of the proteome is warranted. 7

A possible approach to such undruggable proteins has been to regulate target protein 8

abundance or availability, this has been achieved in a preclinical setting by means of gene 9

editing (CRISPR/Cas9) 2, blocking transcription 3,4, or selectively destroying target proteins. 10

The latter approach gained substantial attention recently due to the increased understanding 11

of the cellular protein disposal machinery via the ubiquitination – proteasome pathway 1,5–7. 12

So far, only a handful of such modalities have reached clinical trials, albeit without any 13

reports on the clinical outcome. 14

The ubiquitin proteasome system consists of a cascade of enzymes that ultimately results 15

in the conjugation of the 76-amino acid protein ubiquitin onto lysine residues of a target 16

protein. Because ubiquitin contains several lysine residues itself, a chain of polyubiquitin can 17

be assembled: chains coupled to different ubiquitin lysine residues act as recognition motifs 18

for various processes. Most apropos, certain linkages send the protein to the 26S proteasome, 19

a large protease complex that recognizes, unfolds, and degrades ubiquitinated proteins. The 20

molecular determinants of which proteins are targeted for ubiquitination are defined by a 21

class of enzymes known as E3 ubiquitin ligases. Ubiquitin ligases are comprised of several 22

protein subunits with enzymatic functions that result in ubiquitination of a target protein, but 23

the ligase also needs non-enzymatic subunits for target protein recognition in order to ensure 24

a regulated breakdown of proteins 6. The specificity of the substrate recognition subunit can 25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 4: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

4

be modulated with small molecules, specifically with the phthalimide class of compounds 1

known as immunomodulatory drugs (IMiDs). First described in the 1950s and 1960s as a 2

sedative, the IMiD thalidomide was later discovered to be a potent teratogen 8 causing severe 3

phocomelic side effects to newborns. However, since then, thalidomide and its close analogs 4

have been repurposed as potent anticancer agents 9,10. Given the excitement regarding 5

thalidomide’s anticancer activity, particularly for multiple myeloma, medicinal chemistry 6

efforts were undertaken to develop related compounds preserving these beneficial activities 7

11. In 2010, a major step towards understanding IMiD action was made when cereblon 8

(CRBN) was identified as a major target driving the thalidomide teratogenicity 12. Using a 9

chemoproteomic probe of immobilized thalidomide, the authors identified CRBN as a 10

substrate adapter for the CRL4a ubiquitin ligase complex, whose auto-ubiquitination is 11

inhibited by thalidomide. Importantly, mutations in CRBN that block thalidomide binding 12

also abolish thalidomide teratogenicity in chicken and zebrafish 12. Another major 13

breakthrough in the understanding of IMiDs was the identification of the transcription factors 14

Ikaros and Aiolos as proteins that were ubiquitylated upon IMiD treatment 13–16. Whereas 15

IMiDs decrease CRBN auto-ubiquitination, they also increase Ikaros ubiquitination. 16

Similarly, cells expressing an IMiD-resistant Ikaros mutant (Q147H) are resistant to IMiD-17

induced cytotoxicity 13,15. More recently, casein kinase 1α (CK1α) was also identified as a 18

protein selectively degraded by the IMiD(/thalidomide analogue) lenalidomide 17,18. Finally, a 19

number of proteome-wide studies extended the list of IMiDs-induced neosubstrates of CRBN 20

16,19,20. 21

Although IMiDs have found clinical success, the applicability of the system is currently 22

limited. As mentioned before, rationally designing a thalidomide analog to target specific 23

proteins for degradation would be difficult given the small structural determinant on the 24

potential substrate, making it challenging to predict and exploit. A strategy to go around this 25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 5: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

5

problem was presented by Sakamoto and colleagues that utilized bi-functional molecules, in 1

this case comprised of a small molecule binding the target protein MetAP2 and a peptide that 2

bound the SCF-β-TRCP E3 ubiquitin ligase. This bifunctional molecule was successful in 3

bringing MetAP2 in close proximity to the E3 ubiquitin ligase, which resulted in increased 4

MetAP2 ubiquitination and subsequent degradation 7. These types of molecules were later 5

denoted PROTACs (Proteolysis Targeting Chimeras). Also IMiD molecules have been 6

adopted as E3 ubiquitin ligase binding domains and selective ubiquitination and degradation 7

of PoIs was achieved when IMiDs were coupled via a specific linker to a PoI-binding moiety 8

1,5,21. An example of such a molecule is BSJ-03-204 that comprises Pomalidomide as the 9

CRBN-binding domain and Palbociclib as the PoI-binding domain22. The main PoIs, in this 10

case CDK4 and CDK6, were ubiquitinated and degraded upon administration of BSJ-03-204 11

to live cells22. Even if the degradation profile of a PROTAC is easy to observe it reports very 12

little about its target engagement profile. The bifunctional nature of a PROTAC molecule 13

could afford a broader target engagement profile than the sum of its components. The 14

opposite is also possible, i.e. that the different domains could hamper each other’s 15

interactions, and as a result decrease the strength and number of interactions. It would 16

therefore be interesting to not only elucidate the quantitative changes in the proteome 17

following PROTAC administration to live cells, but also map the molecule’s high affinity 18

binding partners in both intact cells and lysates. 19

A crucial part of any drug development program is to ensure proper and specific target 20

engagement and several strategies can be employed to investigate this matter 23. The Cellular 21

Thermal Shift Assay (CETSA) is among those methods that can be used in order to 22

investigate target engagement. CETSA is based on the same principle as classical thermal 23

shift assays with the addition that it can be employed in more complex biological systems 24

such as living cells, tissues, whole blood and lysates24. Taking advantage of the quantitative 25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 6: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

6

mass-spectrometry (MS) based proteomics, CETSA MS allows for the unbiased profiling of a 1

molecule’s interactions and downstream effects on the global proteomic scale (thermal 2

proteome profiling, or TPP), rendering it a powerful tool for target deconvolution and 3

assessment of target specificity of a molecule 25,26. We set out to employ CETSA MS and 4

quantitative proteomics to study both the target specificity of several IMiDs in intact cells 5

and cell lysates in order to deconvolute target specificity of IMiDs and to investigate the 6

degradation specificity of IMiDs by quantitative proteomics in intact cells of different origin: 7

transformed human cells (K562); iPSC and iPS derived embryoid bodies (EBs). Lastly, we 8

also compared the observed effects of IMiD treatment with the target engagement and 9

degradation specificity of an IMiD-based PROTAC (BSJ-03-204). 10

11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 7: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

7

Materials and Methods 1

Cells 2

K562 cells were obtained from ATCC and were cultured following ATCC protocols. Cell 3

cultures were kept sub-confluent and the cells were given fresh medium one day prior to 4

harvesting. For the experiment, the cells were washed and detached with 1x TrypLE (Gibco, 5

Life Technologies). The detached cells were diluted into Hank’s Balanced Salt solution 6

(HBSS), pelleted by centrifugation (300 g, 3 minutes), washed with HBSS, pelleted again and 7

re-suspended in the experimental buffer (20 mM HEPES, 138 mM NaCl, 5 mM KCl, 2 mM 8

CaCl2, 1 mM MgCl2, pH 7.4) constituting the 2x cell suspension. For the lysate experiments, 9

K562 cells were re-suspended in the experimental buffer and cells were lysed by three rounds 10

of freeze-thawing. The lysate was clarified by centrifugation at 30 000 x g for 20 minutes and 11

used immediately in the CETSA experiment constituting the 2x lysate. Reagents were 12

purchased from Sigma unless otherwise noted. 13

Cellartis® human iPSC line 22 (ChiPSC22) was obtained from Takara, expanded and 14

cultured using Cellartis DEF-CS Culture System following Cellartis protocol. 15

Embryoid bodies (EBs) were obtained by seeding ChiPSC22 in in vitro differentiation 16

medium (IVD) containing Advanced RPMI 1640, B-27 50X, GlutaMAX 100X, PEST 10,000 17

units/ml of penicillin and 10,000 µg/ml of streptomycin (Gibco, ThermoFisher Scientfic) and 18

5µM of Y-27632 (Selleckchem) at a density of 5 x 104 cells per well in a 96-well plate (non-19

treated, V bottom), centrifugation at 400 x g at room temperature for 5 minutes followed by 7 20

days incubation at 37˚C, 5% CO2 and ≥90% humidity. After 7 days, EBs were transferred 21

into coated 6-well plates (DEF-CS COAT, Takara) at a density of 30 EBs per well in IVD 22

medium and harvested after 7 days. 23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 8: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

8

Compounds 1

Thalidomide, Lenalidomide and Pomalidomide were purchased from Sigma Aldrich as 2

lyophilized powders and redissolved in DMSO to 30 mM stock solutions. BSJ03-204 was 3

purchased from Tocris (#6938) and redissolved in DMSO to a 10 mM stock solution. 4

2D CETSA MS experiment 5

The K562 cell suspension was divided into five aliquots and each was mixed with an 6

equal volume of compound solution prepared at 2x final concentration in the experimental 7

buffer (as above). The resulting final concentrations of compounds (Thalidomide, 8

Lenalidomide or Pomalidomide) were 0.03, 0.3, 3, and 30µM; 1% DMSO only was used as 9

control. Incubations were performed for 60 minutes at 37˚C with end-over-end rotation. The 10

treated cell suspensions were each divided into ten aliquots that were all subjected to a heat 11

challenge for 3 minutes, each at a different temperature between 44 and 62°C. After heating, 12

protein aggregates were pelleted by centrifugation at 20 000 x g for 20 minutes and 13

supernatants containing soluble fractions were kept for further analysis. 14

Compressed CETSA MS experiment in lysed iPSCs and EBs 15

iPSCs (ChiPSC22) and EBs were lysed by three rounds of freezing in liquid nitrogen and 16

thawing in a water bath (20˚C). Cell debris was removed by centrifugation at 30000xg for 20 17

minutes. Clarified lysate was then divided into eight aliquots and each was mixed with an 18

equal volume of compound solution prepared at 2x final concentration in the experimental 19

buffer (as above). The resulting final concentrations of Pomalidomide were 0.02, 0.2, 2, 6, 20

20, 60 and 200 µM; 1% DMSO only was used as control. Incubation was performed for 15 21

minutes at room temperature. After incubation, samples were divided into 24 aliquots and 22

subjected to a heat challenge for 3 minutes, two samples per temperature point, in a 23

temperature range 44-66˚C (in increments of 2˚C). After the heating step, samples 24

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 9: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

9

corresponding to the same compound concentration were pooled together and 16 resulting 1

samples (8 concentration points in two replicates) were centrifuged for 20 minutes at 2

30 000 x g to pellet aggregated proteins. Supernatants containing soluble fractions were kept 3

for further analysis. 4

Time-course Compressed CETSA MS experiment in intact iPSCs 5

and EBs 6

iPSCs and EBs were incubated with 30 µM of Pomalidomide or vehicle control (1% 7

DMSO) in media (DEF-CS for iPSCs and Advance RPMI and 50X B27 for EBs) for 15, 30 8

(EBs only), 60, 120 and 480 minutes at 37˚C, 5% CO2 and ≥90% humidity. At harvest, the 9

cultures were washed in dPBS [-]CaCl2 [-]MgCl2, trypsinized with TrplE, washed in dPBS, 10

centrifugated at 200 x g for 3 minutes and resuspended in the experimental buffer (as above). 11

All solutions used for harvest contained 30 µM Pomalidomide or vehicle control, 12

respectively. The cell suspensions were divided into 13 aliquots, of which twelve were 13

subjected to a heat challenge for 3 minutes, each at a different temperature between 44 and 14

66°C (increment of 2˚C), while one aliquot remained unheated. After heating, samples 15

corresponding to the same treatment were pooled together. In all samples, protein aggregates 16

were pelleted by centrifugation at 30 000 x g for 20 minutes and supernatants containing 17

soluble fractions were kept for further analysis. 18

LC-MS sample preparation and LC-MS/MS analysis 19

The total protein concentration of the soluble fractions was measured by DC protein 20

colorimetric assay (BioRad). The same protein amount from each sample was taken and 21

subjected to reduction and denaturation with tris(2-carboxyethyl)phosphine (TCEP) (Bond-22

breaker, Thermo Scientific) and RapiGest SF (Waters), followed by alkylation with 23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 10: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

10

chloroacetamide. Proteins were digested with Lys-C (Wako Chemicals) overnight and trypsin 1

(Trypsin Gold, Promega) for 6 hours. 2

After complete digestion had been confirmed, samples were labelled with 10-plex 3

Tandem Mass Tag reagents (TMT10, Thermo Scientific) according to the manufacturer’s 4

protocol. Labelling was performed for 3 hours at room temperature and ~30% ACN in the 5

buffer. Labelling reactions were quenched by addition of hydroxylamine to the final 6

concentration of 0.1%. For the 2D CETSA MS experiment, concentration series from two 7

consecutive temperatures were combined in one TMT10-plex sample. For the eight-8

concentration point compressed CETSA MS in lysed iPSCs, eight CETSA samples were 9

combined with two non-heated (treated with highest concentration of compound and 10

corresponding DMSO control) within same TMT10-plex sample. For the time-course 11

experiment samples from the same time point were combined together (6 CETSA samples + 12

4 non-heated samples). 13

The labelled samples were subsequently acidified and desalted using polymeric reversed 14

phase (Strata X, Phenomenex or Oasis HLB, Waters). LC-MS grade liquids and low-protein 15

binding tubes were used throughout the purification. Samples were dried using a centrifugal 16

evaporator. 17

For each TMT10-plex set, the dried labelled samples were dissolved in 20 mM 18

ammonium hydroxide (pH 10.8) and subjected to reversed-phase high pH fractionation using 19

an Agilent 1260 Bioinert HPLC system (Agilent Technologies) over a 1 x 150 mm C18 20

column (XBridge Peptide BEH C18, 300 Å, 3.5 μm particle size, Waters Corporation, 21

Milford, USA). Peptide elution was monitored by UV absorbance at 215 nm and fractions 22

were collected every 30 seconds into polypropylene plates. The 60 fractions covering the 23

peptide elution range were evaporated to dryness, ready for LC-MS/MS analysis. 24

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 11: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

11

Thirty individual fractions were analyzed by high resolution Q-Exactive HF or Q-1

Exactive HF-X mass spectrometers (Thermo Scientific) coupled to high performance nano-2

LC systems (Evosep One, Evosep, or Ultimate 3000, Thermo Scientific). 3

MS/MS data was collected using higher energy collisional dissociation (HCD) and full 4

MS data was collected using a resolution of 120 K with an AGC target of 3e6 over the m/z 5

range 375 to 1650. The top 12 most abundant precursors were isolated using a 1.2 Da 6

isolation window and fragmented at normalized collision energy values of 35. The MS/MS 7

spectra (45 K resolution) were allowed a maximal injection time of 120 ms with an AGC 8

target of 1e5 to avoid coalescence. Dynamic exclusion duration was 30 s. 9

Protein identification and quantitation 10

Protein identification was performed by database search against 95 607 canonical and 11

isoform human protein sequences in Uniprot (UP000005640, download date: 2019-02-21) 12

using the Sequest HT algorithm as implemented in the ProteomeDiscoverer 2.2 software 13

package. Data was re-calibrated using the recalibration function in PD2.2. and final search 14

tolerance setting included a mass accuracy of 10 ppm and 50 mDa for precursor and fragment 15

ions, respectively. A maximum of 2 missed cleavage sites was allowed using fully tryptic 16

cleavage enzyme specificity (K\, R\, no P). Oxidation of methionine, deamidation of 17

asparagine and glutamine, and acetylation of protein N-termini were also allowed as variable 18

modification. Carbamidomethylation of Cys, TMT-modification of Lysine and peptide N-19

termini were set as static modifications. 20

Peptide-spectrum-matches (PSM) were filtered at 1% FDR level by employing target-21

decoy search strategy and Perolator rescoring 27. 22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 12: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

12

For quantification, a maximum co-isolation of 50 % was allowed. Reporter ion 1

integration was done at 20 ppm tolerance and the integration result was verified by manual 2

inspection to ensure the tolerance setting was applicable. For individual spectra, an average 3

reporter ion signal-to-noise of ≥20 was required. Only unique peptide sequences were used 4

for quantification. 5

Data analysis 6

Protein intensities were normalized ensuring the same total ion current in each 7

quantification channel. Intensity values were then log2-transformed and normalized between 8

treatments and replicates, so the median protein intensity is the same in all treatments and 9

replicates. 10

The fold-changes of any given protein across the concentration range is quantified by 11

using the vehicle condition as the reference (i.e., a constant value of 1). Fold-changes are also 12

transformed to log2 values, to achieve a normal distribution around 0. 13

To estimate effect size (amplitude) and p-value (significance) of the protein hits in eight-14

concentration point compressed CETSA MS experiments, the individual protein 15

concentration-response curve is fitted via non-linear least squares algorithm using the 16

following formula: 17

𝑉𝑎𝑙𝑢𝑒 ∼ 𝐴 +𝐵 − 𝐴

1 + 𝑒!!"!#$%&'

(1)

18

where 𝑉𝑎𝑙𝑢𝑒 — log2-transformed protein intensity, C — log10-transformed compound 19

concentration, A, B, 𝐶( and 𝑠𝑐𝑎𝑙𝑒 — curve parameters for the fit. Using the values from the 20

model fit, the effective concentration corresponding to 50% of maximal signal is estimated: 21

𝑝𝐸𝐶)* = −𝐶(. 22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 13: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

13

To estimate effect size (amplitude) and p-value (significance) of the protein hits in 2D 1

CETSA MS experiments, protein log-fold changes over Temperature and Concentration 2

domain were fitted via non-linear least squares algorithm using the 2D-surface equation 3

formula: 4

𝑙𝑜𝑔𝐹𝐶 ∼ 𝐴 ∗ 𝑒𝑥𝑝(−[

(𝑇 − 𝑇()+

𝜎,++(𝐶 < 𝐶#%-) ∗ (𝐶 − 𝐶#%-)+

𝜎!+])

(2)

5

where 𝑙𝑜𝑔𝐹𝐶— log2-transformed protein fold change relative to the vehicle control at the 6

same temperature, C — log10-transformed compound concentration, A, 𝑇(, 𝐶#%-, 𝜎, and 7

𝜎!— fitting parameters. Using the values from the model fit, the effective concentration 8

corresponding to 50% of maximal signal is estimated: 𝑝𝐸𝐶)* = −𝐶(. 9

To estimate the significance of time-dependent compound induced changes in either protein 10

abundance or protein thermal stability, following mixed effect a linear model was built: 11

𝑉𝑎𝑙𝑢𝑒~𝑝𝑜𝑙𝑦(log(𝑇𝑖𝑚𝑒) , 2) + 𝐶𝑜𝑛𝑐 + 𝑇𝑒𝑚𝑝 (3) 12

where poly(log(Time),2) – is the second-order polynomic expression using log2-transformed 13

Time value, Conc – two-level factor equal either 1 for Pomalidomide-treated samples or 0 for 14

non-treated samples, and Temp – two-level factor value equal either “CETSA” or “non-15

CETSA” for heated and non-heated samples respectively. 16

Significance of the effect for each protein is assessed using ANOVA F-test comparing fit 17

results with the trivial model fit. Benjamini-Hochberg correction is applied to F-test-derived 18

p-values to adjust for multiple comparison. 19

20

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 14: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

14

Results 1

Profiling of the three classical IMiDs in intact K562 cells (Figure 1a) was performed using a 2

two-dimensional thermal proteome profiling approach (2D CETSA MS). Here, each protein 3

can be characterized by a heatmap (Figure 1b), where protein fold change (relative to vehicle-4

control for each temperature) is represented by the color. Alternatively, each protein can be 5

characterized by the observed maximum/minimum log-fold-change (Amplitude) and 6

significance derived from an ANOVA-based F-test to present the results as volcano plots 7

(Figure 1c). Only a handful out of ~7,000 proteins quantified in the experiments were found 8

to be significantly affected by the IMiDs treatment. Among them we could observe a clear 9

temperature- and concentration-dependent stabilization of CRBN for all three compounds, 10

confirming binding to the endogenous target 12,28,29. Notably, for proteins ZFP91, IKZF1 and 11

RNF166 the same concentration dependent reduction of soluble protein amount was observed 12

for all sample temperatures, suggesting compound-induced protein degradation rather than 13

destabilization, which is well in line with previous findings 14,16,30. When the same 14

experiment was performed for Pomalidomide in lysed cells (Figure 1c), even fewer proteins 15

showed significant compound-induced thermal stability changes, suggesting that the majority 16

of changes we detected in the intact cells were downstream events, while stabilization of 17

CRBN and glutaredoxin-3 (GLRX3) are caused by direct protein-ligand interactions. 18

Notably, GLRX3 is specifically stabilized only by Pomalidomide, both in intact and lysed 19

cells with a substantial difference in stabilization amplitude (intensity) between intact cells 20

and lysates. 21

The results presented above in the transformed human cell line K562 encouraged us to 22

investigate target engagement and degradation profiles in other sample matrices. In addition 23

to antineoplastic effects, IMiDs are also infamous for their teratogenic effects which are best 24

studied in immature cells. Human induced pluripotent stem cells (iPSC), three-dimensional 25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 15: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

15

iPSC aggregates, EBs, in which cells spontaneously differentiate into a heterogenous mix of 1

derivatives of the three germ layers31 , are the golden standard in in vitro teratogenic 2

assessment. iPSCs and EBs were treated with Pomalidomide and target engagement was 3

assessed by CETSA MS and quantitative proteomics was applied to measure protein 4

degradation (Figure 2a). 5

By applying the recently developed one-pot, or compressed format 32–34 we have explored 6

a wider concentration range (lysate experiment), as well as the time-dependence of the 7

binding and degradation profile (Figure 2). Figure 2b shows the results of the eight-8

concentration Pomalidomide profiling in lysed iPSCs and EBs. In this experiment 7,593 9

protein groups where quantified. Each protein is represented by its amplitude (relative 10

stability change) and significance (-log10 transformed p-value). CRBN and GLRX3 were the 11

only two proteins that showed a significant concentration dependent change in thermal 12

stability upon treating either lysed iPSCs or EBs with Pomalidomide, supporting the 13

observations in lysed K562 cells (Figure 1c). Notably, stabilization of GLRX3 happens at 14

one-log higher concentrations compared to CRBN (Figure 2c). When treating lysed cells with 15

even higher concentrations of Pomalidomide, we observe changes in stability of more redox-16

related proteins, including for example stabilization of peroxiredoxins 1,2 and 3, and 17

destabilization of glutathione peroxidases 1 and 4 (Supplementary figure 1). 18

The previous experiments showed that a single concentration of Pomalidomide of 20-19

30 µM allows for nearly complete stabilization of cellular targets of Pomalidomide, without 20

causing major off-target binding events. In order to study binding events over time, human 21

iPSC and EBs were incubated with either 30 µM Pomalidomide or vehicle control for 22

15 min, 30 min (EBs only), 1 h, 2 h, and 8 h. We’ve combined heat-and-pool (CETSA 23

compressed) and non-heated (protein abundance) samples within one TMT-multiplexed 24

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 16: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

16

sample which allowed us to apply a mixed-effect linear model to the protein measurements to 1

retrieve Pomalidomide-induced Abundance and Stability change contributions into the 2

measured Pomalidomide-induced protein intensity changes (Figure 2c). 3

In this experiment 7,084 and 8,011 protein groups were quantified in iPSCs and EBs 4

respectively. The higher number of detected protein groups in EBs correlates well with the 5

increased cellular diversity from three germ layers. In line with the 2D CETSA MS results in 6

K562 cells, a clear degradation of the known targets ZFP91, and DTWD1 is observed already 7

after 1 hour of incubation in both iPSCs and EBs cells (Figure 1b, Ikaros protein was not 8

identified in iPSCs and EBs). Additionally, time-dependent degradation of SALL4, RAB28 9

and CSNK1A1 was observed in two cell systems. Profiling in EBs identified even more 10

Pomalidomide-induced CRBN neosubstrates, including ZBTB16, ZBTB39 and GZF1 11

(Figure 2c and 2d). Other proteins like GSTA2, SDC4, SLC2A3 or TTN also showed 12

significant alteration of protein abundance, however, the time-course profile of these proteins 13

(Figure 2e) suggest that these are not degradation events. These slightly noisier proteome 14

responses are more pronounced in EB data compared to iPSCs and might reflect the fact that 15

EB samples are heterogenous and prone to have more sample-to-sample variation. 16

Stabilization of CRBN is observed at all time points studied (Figure 2d). Moreover, time-17

dependent increase in CRBN abundance can be also seen, likely caused by the inhibition of 18

autoubiquitination. Also, for the majority of CRBN neosubstrates, degradation is 19

accompanied with an increase in protein stability, which is most prominent for the DTWD1. 20

Such protein stabilization has not been detected in lysed cells and might indicate protein 21

stabilization by forming a ternary complex with Pomalidomide and CRBN only in intact 22

cells. 23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 17: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

17

We next explored the effect of the IMiD-based PROTAC BSJ-03-204 on the proteome of 1

K562 cells. In order to evaluate the compound-induced proteome stability changes, intact and 2

lysed K562 cells were incubated with seven concentrations of compound (0.02, 0.067, 0.2, 3

0.67, 2, 6.7 and 20 µM) for 1 hour and 15 minutes, respectively. The same samples used for 4

intact CETSA MS profiling were also subjected to soluble protein abundance measurements 5

without any heat treatment applied either directly (0, 0.67µM) or after additional 5 hours of 6

incubation (0, 0.2, 0.67 and 2µM) to trace drug-induced protein degradation (Figure 4d, f). 7

In this experiment heat-treated (CETSA) samples and non-heated samples were measured 8

as different TMT-multiplexed samples. In the heat-treated samples 5,122 and 5,209 protein 9

groups were quantified in lysed and intact K562 cells respectively. Among the proteins that 10

changed stability in lysate were the E3 ubiquitin ligase CRBN and PoIs CDK4 and CDK6, 11

but also other kinases (CSNK2A2, PIP4K2B, PLK1), as well as ferrochelatase (FECH), a 12

common kinase-inhibitor off-target 35,36 (Figure 4b). Intriguingly, at first glance no CDKs 13

were found to be affected in the data from intact cells (Figure 4c). This is likely due to the 14

compressed CETSA MS signal consisting of a combination of changes in protein abundance 15

and changes in protein stability. In the intact cell experiment BSJ-03-204 causes both 16

degradation of CDK4 and CDK6 as well as thermal stabilization (as is evident in the lysate 17

experiment). These two effects have opposing results on the protein level in the soluble 18

fraction, i.e. degradation is masked by thermal stabilization and vice-versa. However, when 19

the concentration of BSJ-03-204 is high enough to ligate CDK4/6 and CRBN into separate 20

binary complexes, ubiquitination of the PROTAC substrates is diminished and no 21

degradation occurs (so called “hook effect”, previously described for several PROTACs 21) 22

(Figure 4e). 23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 18: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

18

BSJ-03-204 has additional hits in both lysate and intact cells, some of which overlap 1

between sample matrices. TIAL1, TIA1, PLK1, HNRNPUL1 and HNRNPDL were identified 2

as hits in both lysate and intact cell samples, which suggests that these are direct binders to 3

the PROTAC molecule. However, hits that are only occurring in intact cells may constitute 4

pathway effects, induced by the biological effects of CDK4/6 degradation and/or inhibition. 5

One of these proteins with altered thermal stability in response to BSJ-03-204 treatment was 6

RB1 which is a direct substrate of CDK4 and CDK6 37,38. Other proteins affected in the intact 7

cell setting included several proteins involved in transcriptional regulation, RRP1B, RRP1, 8

ZNF638, DNTTIP2, and RIF1. Apart from the stabilization of CRBN, no other similarities 9

were observed between the Pomalidomide and BSJ-03-204 CETSA MS profiles in either 10

intact or lysed K562 cells. 11

CDK4, CDK6 showed a consistent, time-dependent degradation while CRBN and 12

KLHL8 were rescued from degradation upon the treatment (Figure 4d, f). 13

14

15

16

17

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 19: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

19

Discussion 1

In this study we show the target deconvolution capabilities of CETSA MS with regards to 2

delineating the target engagement profiles of the classical IMiDs: Thalidomide, Lenalidomide 3

and Pomalidomide. Moreover, we designed our experiments in such a way that we also could 4

simultaneously monitor both target engagement and pharmacological effect (protein 5

degradation), which resulted in a comprehensive profiling of the investigated IMiDs in 6

relatively short and efficient LC-MS experiments. We took this concept further by applying 7

the same experimental design on the IMiD-based PROTAC BSJ-03-204 enabling us to 8

determine target engagement as well as degradation profiles of BSJ-03-204 in K562 cells. 9

Target deconvolution by CETSA MS revealed that all IMiDs are relatively selective 10

drugs; CRBN stands out as the high affinity target whose functional modulation is in turn 11

responsible for downstream cellular effects (Figure 1). Other proteins displayed altered 12

thermal stability in intact cells, but only CRBN and GLRX3 did so in lysate. A higher 13

concentration of Pomalidomide was needed to shift GLRX3 compared to CRBN in both 14

K562 and iPSC. In the lysate format most of the biology is turned off, i.e. thermal shifts are 15

more likely to be caused by direct target – ligand interactions and not by signaling events. 16

GLRX3 is an [2Fe-2S] iron-sulphur-complex binding chaperone 39, which is interesting when 17

considering another frequent off-target for small molecule drugs: Ferrochelatase (FECH). 18

FECH has also been reported to bind [2Fe-2S] iron-sulphur complexes40. We found that BSJ-19

03-204 stabilized FECH in both intact cells and lysate and FECH has been reported by others 20

as an off-target for many small molecules, including kinase inhibitors 34–36. Moreover, even 21

higher Pomalidomide concentrations altered the thermal stability of several other redox-22

associated proteins. This may be in line with early reports of IMiD’s teratogenic mode of 23

action, in which increased levels of reactive oxygen species were detected upon Thalidomide 24

treatment 41. 25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 20: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

20

Three of the proteins that had affected thermal stability in response to IMiD treatment 1

belonged to the inosine synthesis pathway: IMPDH1, IMPDH2, and PFAS. The two formers 2

being the therapeutic targets of the immunosuppressant drug Mycophenolic acid 42. Our 3

finding that the thermal stability of IMPDH1 and IMPDH2 were affected downstream of 4

IMiD treatment might account for the immunomodulatory effects of IMiDs. Also, IMPDH 5

expression is increased in neoplasms 42, which indicates that the antineoplastic effects of 6

IMiDs could in part stem from modulation of IMPDH function. 7

We were able to confirm many of the previously identified IMiD neosubstrates in our 8

experiments with iPSC, EBs, and K562 cells. However, not all known neosubstrates were 9

detected in the cell types under investigation. Notably, Ikaros protein (IKZF1) was found to 10

be degraded upon Pomalidomide treatment in immortalized cancer cell line K562 (Figure 1) 11

but was not detected neither in iPSC nor EBs. Aiolos (IKZF3) is a protein related to Ikaros 12

and is also reported to be a neosubstrate 13,15, but Aiolos was not identified at all in any of our 13

experiments. 14

The time dependent degradation profile revealed degradation of the intended targets of 15

BSJ-03-204: CDK4 and CDK6. CRBN on the other hand showed a slight increase that goes 16

in line with the notion that IMiDs inhibit CRBN’s auto-ubiquitination. BSJ-03-204 also had a 17

large impact on the levels of KLHL8 (Kelch-like protein 8) whose levels increased over time. 18

In the nematode (C. elegans) a paralog of human KLHL8 (KEL-8) has been reported to 19

function as a substrate adaptor together with Culin 3 (CUL3) containing E3 ligase (BTB-20

CUL3-RBX1) that controls ubiquitination and degradation of the protein Rapsyn 43. Our data 21

suggest that CRBN in turn may regulate ubiquitination and degradation of KLHL8. However, 22

we did not detect the suggested KHLH8 substrate Rapsyn in K562 cells. 23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 21: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

21

When comparing the PROTAC BSJ-03-204 with Pomalidomide alone (Figure 1 and 4) it 1

is striking that there is very little overlap in terms of altered thermal stability and protein 2

abundance, except for the thermal stabilization of CRBN. No degradation of Pomalidomide-3

induced neosubstrates of CRBN was observed. This in turn indicates that CRBN has been 4

completely hijacked into doing the PROTAC’s bidding, which is degrading CDK4/6. 5

In conclusion, we have used CETSA MS in combination with quantitative proteomics to 6

study both the induced stability changes of protein targets for different small molecule 7

degraders, as well as the resulting degradation. This has proven to be effective as it allows us 8

to keep track of both target engagement as well as the downstream efficacy. For the IMiDs, 9

our straight-forward approach has allowed us to identify the same primary target as well as 10

downstream preys as have been described collectively during the last 20 years of IMiD 11

research, utilizing a plethora of different techniques. There is currently a large interest in the 12

PROTACs modality and therefore, the need for tools to distinguish between productive 13

binding (i.e those inducing degradation) and silent PROTAC targets, (i.e those that only bind 14

the molecule but don’t form a ternary complex) is much needed. 15

16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 22: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

22

References 1

2

(1) Neklesa, T. K.; Winkler, J. D.; Crews, C. M. Targeted Protein Degradation by 3

PROTACs. Pharmacology and Therapeutics 2017, 174, 138–144. 4

https://doi.org/10.1016/j.pharmthera.2017.02.027. 5

(2) Zhao, X.; Liu, L.; Lang, J.; Cheng, K.; Wang, Y.; Li, X.; Shi, J.; Wang, Y.; Nie, G. A 6

CRISPR-Cas13a System for Efficient and Specific Therapeutic Targeting of Mutant 7

KRAS for Pancreatic Cancer Treatment. Cancer Letters 2018, 431, 171–181. 8

https://doi.org/10.1016/j.canlet.2018.05.042. 9

(3) Kole, R.; Krainer, A. R.; Altman, S. RNA Therapeutics: Beyond RNA Interference 10

and Antisense Oligonucleotides. Nature Reviews Drug Discovery 2012, 11 (2), 125–11

140. https://doi.org/10.1038/nrd3625. 12

(4) Nijman, S. M. B. Functional Genomics to Uncover Drug Mechanism of Action. 13

Nature Chemical Biology 2015, 11 (12), 942–948. 14

https://doi.org/10.1038/nchembio.1963. 15

(5) Deshaies, R. J. Prime Time for PROTACs. Nature Chemical Biology 2015, 11 (9), 16

634–635. https://doi.org/10.1038/nchembio.1887. 17

(6) Deng, L.; Meng, T.; Chen, L.; Wei, W.; Wang, P. The Role of Ubiquitination in 18

Tumorigenesis and Targeted Drug Discovery. Signal Transduction and Targeted 19

Therapy 2020, 5 (11). https://doi.org/10.1038/s41392-020-0107-0. 20

(7) Sakamoto, K. M.; Kim, K. B.; Kumagai, A.; Mercurio, F.; Crews, C. M.; Deshaies, 21

R. J. Protacs: Chimeric Molecules That Target Proteins to the Skp1-Cullin-F Box 22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 23: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

23

Complex for Ubiquitination and Degradation. Proceedings of the National Academy of 1

Sciences 2001, 98 (15), 8554–8559. https://doi.org/10.1073/pnas.141230798. 2

(8) Vargesson, N. Thalidomide-Induced Teratogenesis: History and Mechanisms. Birth 3

Defects Research Part C - Embryo Today: Reviews 2015, 105 (2), 140–156. 4

https://doi.org/10.1002/bdrc.21096. 5

(9) Singhal, S.; Mehta, J.; Desikan, R.; Ayers, D.; Roberson, P.; Eddlemon, P.; Munshi, 6

N.; Anaissie, E.; Wilson, C.; Dhodapkar, M.; Zeldis, J.; Siegel, D.; Crowley, J.; 7

Barlogie, B. Antitumor Activity of Thalidomide in Refractory Multiple Myeloma. New 8

England Journal of Medicine 1999, 341 (21), 1565–1571. 9

https://doi.org/10.1056/NEJM199911183412102. 10

(10) Vallet, S.; Witzens-Harig, M.; Jaeger, D.; Podar, K. Update on Immunomodulatory 11

Drugs (IMiDs) in Hematologic and Solid Malignancies. Expert Opinion on 12

Pharmacotherapy 2012, 13 (4), 473–494. 13

https://doi.org/10.1517/14656566.2012.656091. 14

(11) Asatsuma-Okumura, T.; Ito, T.; Handa, H. Molecular Mechanisms of the 15

Teratogenic Effects of Thalidomide. Pharmaceuticals 2020, 13 (5). 16

https://doi.org/10.3390/ph13050095. 17

(12) Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; 18

Handa, H. Identification of a Primary Target of Thalidomide Teratogenicity. Science 19

2010, 327, 1345–1350. https://doi.org/10.1126/science.1177319. 20

(13) Krönke, J.; Udeshi, N. D.; Narla, A.; Grauman, P.; Hurst, S. N.; McConkey, M.; 21

Svinkina, T.; Heckl, D.; Comer, E.; Li, X.; Ciarlo, C.; Hartman, E.; Munshi, N.; 22

Schenone, M.; Schreiber, S. L.; Carr, S. A.; Ebert, B. L. Lenalidomide Causes 23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 24: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

24

Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells. Science 2014, 1

343 (6168), 301–305. https://doi.org/10.1126/science.1244851. 2

(14) Lu, G.; Middleton, R. E.; Sun, H.; Naniong, M. V.; Ott, C. J.; Mitsiades, C. S.; 3

Wong, K. K.; Bradner, J. E.; Kaelin, W. G. The Myeloma Drug Lenalidomide 4

Promotes the Cereblon-Dependent Destruction of Ikaros Proteins. Science 2014, 343 5

(6168), 305–309. https://doi.org/10.1126/science.1244917. 6

(15) Krönke, J.; Hurst, S. N.; Ebert, B. L. Lenalidomide Induces Degradation of IKZF1 7

and IKZF3. OncoImmunology 2014, 3 (7). 8

https://doi.org/10.4161/21624011.2014.941742. 9

(16) Donovan, K. A.; An, J.; Nowak, R. P.; Yuan, J. C.; Fink, E. C.; Berry, B. C.; Ebert, 10

B. L.; Fischer, E. S. Thalidomide Promotes Degradation of SALL4, a Transcription 11

Factor Implicated in Duane Radial Ray Syndrome. eLife 2018. 12

https://doi.org/10.7554/eLife.38430.001. 13

(17) Petzold, G.; Fischer, E. S.; Thomä, N. H. Structural Basis of Lenalidomide-Induced 14

CK1α Degradation by the CRL4CRBN Ubiquitin Ligase. Nature 2016, 532 (7597), 15

127–130. https://doi.org/10.1038/nature16979. 16

(18) Krönke, J.; Fink, E. C.; Hollenbach, P. W.; MacBeth, K. J.; Hurst, S. N.; Udeshi, N. 17

D.; Chamberlain, P. P.; Mani, D. R.; Man, H. W.; Gandhi, A. K.; Svinkina, T.; 18

Schneider, R. K.; McConkey, M.; Järås, M.; Griffiths, E.; Wetzler, M.; Bullinger, L.; 19

Cathers, B. E.; Carr, S. A.; Chopra, R.; Ebert, B. L. Lenalidomide Induces 20

Ubiquitination and Degradation of CK1α in Del(5q) MDS. Nature 2015, 523 (7559), 21

183–188. https://doi.org/10.1038/nature14610. 22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 25: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

25

(19) An, J.; Ponthier, C. M.; Sack, R.; Seebacher, J.; Stadler, M. B.; Donovan, K. A.; 1

Fischer, E. S. PSILAC Mass Spectrometry Reveals ZFP91 as IMiD-Dependent 2

Substrate of the CRL4 CRBN Ubiquitin Ligase. Nature Communications 2017, 8. 3

https://doi.org/10.1038/ncomms15398. 4

(20) Matyskiela, M. E.; Couto, S.; Zheng, X.; Lu, G.; Hui, J.; Stamp, K.; Drew, C.; Ren, 5

Y.; Wang, M.; Carpenter, A.; Lee, C. W.; Clayton, T.; Fang, W.; Lu, C. C.; Riley, M.; 6

Abdubek, P.; Blease, K.; Hartke, J.; Kumar, G.; Vessey, R.; Rolfe, M.; Hamann, L. G.; 7

Chamberlain, P. P. SALL4 Mediates Teratogenicity as a Thalidomide-Dependent 8

Cereblon Substrate. Nature Chemical Biology 2018, 14 (10), 981–987. 9

https://doi.org/10.1038/s41589-018-0129-x. 10

(21) An, S.; Fu, L. Small-Molecule PROTACs: An Emerging and Promising Approach 11

for the Development of Targeted Therapy Drugs. EBioMedicine 2018, 36, 553–562. 12

https://doi.org/10.1016/j.ebiom.2018.09.005. 13

(22) Jiang, B.; Wang, E. S.; Donovan, K. A.; Liang, Y.; Fischer, E. S.; Zhang, T.; Gray, 14

N. S. Development of Dual and Selective Degraders of Cyclin‐Dependent Kinases 4 15

and 6. Angewandte Chemie International Edition 2019, 58 (19), 6321–6326. 16

https://doi.org/10.1002/anie.201901336. 17

(23) Kubota, K.; Funabashi, M.; Ogura, Y. Target Deconvolution from Phenotype-Based 18

Drug Discovery by Using Chemical Proteomics Approaches. Biochimica et Biophysica 19

Acta - Proteins and Proteomics 2019, 1867 (1), 22–27. 20

https://doi.org/10.1016/j.bbapap.2018.08.002. 21

(24) Molina, D. M.; Jafari, R.; Ignatushchenko, M.; Seki, T.; Larsson, E. A.; Dan, C.; 22

Sreekumar, L.; Cao, Y.; Nordlund, P. Monitoring Drug Target Engagement in Cells 23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 26: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

26

and Tissues Using the Cellular Thermal Shift Assay. Science 2013, 341 (6141), 84–87. 1

https://doi.org/10.1126/science.1233606. 2

(25) Friman, T. Mass Spectrometry-Based Cellular Thermal Shift Assay (CETSA®) for 3

Target Deconvolution in Phenotypic Drug Discovery. Bioorganic and Medicinal 4

Chemistry 2020, 28 (1). https://doi.org/10.1016/j.bmc.2019.115174. 5

(26) Savitski, M. M.; Reinhard, F. B. M.; Franken, H.; Werner, T.; Savitski, M. F.; 6

Eberhard, D.; Molina, D. M.; Jafari, R.; Dovega, R. B.; Klaeger, S.; Kuster, B.; 7

Nordlund, P.; Bantscheff, M.; Drewes, G. Tracking Cancer Drugs in Living Cells by 8

Thermal Profiling of the Proteome. Science 2014, 346 (6205), 1255784–1255784. 9

https://doi.org/10.1126/science.1255784. 10

(27) Käll, L.; Canterbury, J. D.; Weston, J.; Noble, W. S.; MacCoss, M. J. Semi-11

Supervised Learning for Peptide Identification from Shotgun Proteomics Datasets. 12

Nature Methods 2007, 4 (11), 923–925. https://doi.org/10.1038/nmeth1113. 13

(28) Lopez-Girona, A.; Mendy, D.; Ito, T.; Miller, K.; Gandhi, A. K.; Kang, J.; Karasawa, 14

S.; Carmel, G.; Jackson, P.; Abbasian, M.; Mahmoudi, A.; Cathers, B.; Rychak, E.; 15

Gaidarova, S.; Chen, R.; Schafer, P. H.; Handa, H.; Daniel, T. O.; Evans, J. F.; Chopra, 16

R. Cereblon Is a Direct Protein Target for Immunomodulatory and Antiproliferative 17

Activities of Lenalidomide and Pomalidomide. Leukemia 2012, 26 (11), 2326–2335. 18

https://doi.org/10.1038/leu.2012.119. 19

(29) Mori, T.; Ito, T.; Liu, S.; Ando, H.; Sakamoto, S.; Yamaguchi, Y.; Tokunaga, E.; 20

Shibata, N.; Handa, H.; Hakoshima, T. Structural Basis of Thalidomide Enantiomer 21

Binding to Cereblon. Scientific Reports 2018, 8 (1). https://doi.org/10.1038/s41598-22

018-19202-7. 23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 27: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

27

(30) An, J.; Ponthier, C. M.; Sack, R.; Seebacher, J.; Stadler, M. B.; Donovan, K. A.; 1

Fischer, E. S. PSILAC Mass Spectrometry Reveals ZFP91 as IMiD-Dependent 2

Substrate of the CRL4 CRBN Ubiquitin Ligase. Nature Communications 2017, 8. 3

https://doi.org/10.1038/ncomms15398. 4

(31) Martin, G. R.; Evans, M. J. Differentiation of Clonal Lines of Teratocarcinoma 5

Cells: Formation of Embryoid Bodies in Vitro. Proceedings of the National Academy 6

of Sciences 1975, 72 (4), 1441–1445. https://doi.org/10.1073/pnas.72.4.1441. 7

(32) Liu, Y.-K.; Chen, H.-Y.; Chueh, P. J.; Liu, P.-F. A One-Pot Analysis Approach to 8

Simplify Measurements of Protein Stability and Folding Kinetics. Biochimica et 9

Biophysica Acta (BBA) - Proteins and Proteomics 2019, 1867 (3), 184–193. 10

https://doi.org/https://doi.org/10.1016/j.bbapap.2018.12.006. 11

(33) Gaetani, M.; Sabatier, P.; Saei, A. A.; Beusch, C. M.; Yang, Z.; Lundström, S. L.; 12

Zubarev, R. A. Proteome Integral Solubility Alteration (PISA): A High-Throughput 13

Proteomics Assay for Target Deconvolution. Journal of Proteome Research 2019, 0 14

(ja), null. https://doi.org/10.1021/acs.jproteome.9b00500. 15

(34) Chernobrovkin, A.; Lengqvist, J.; Caceres Körner, C.; Amadio, D.; Friman, T.; 16

Martinez Molina, D. In-Depth Characterization of Staurosporine Induced Proteome 17

Thermal Stability Changes. bioRxiv 2020. https://doi.org/10.1101/2020.03.13.990606. 18

(35) Klaeger, S.; Gohlke, B.; Perrin, J.; Gupta, V.; Heinzlmeir, S.; Helm, D.; Qiao, H.; 19

Bergamini, G.; Handa, H.; Savitski, M. M.; Bantscheff, M.; Médard, G.; Preissner, R.; 20

Kuster, B. Chemical Proteomics Reveals Ferrochelatase as a Common Off-Target of 21

Kinase Inhibitors. ACS Chemical Biology 2016, 11 (5), 1245–1254. 22

https://doi.org/10.1021/acschembio.5b01063. 23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 28: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

28

(36) Savitski, M. M.; Reinhard, F. B. M.; Franken, H.; Werner, T.; Savitski, M. F.; 1

Eberhard, D.; Molina, D. M.; Jafari, R.; Dovega, R. B.; Klaeger, S.; Kuster, B.; 2

Nordlund, P.; Bantscheff, M.; Drewes, G. Tracking Cancer Drugs in Living Cells by 3

Thermal Profiling of the Proteome. Science 2014, 346 (6205). 4

https://doi.org/10.1126/science.1255784. 5

(37) Nevins, J. R. The Rb/E2F Pathway and Cancer. Human Molecular Genetics 2001, 10 6

(7), 699–703. https://doi.org/10.1093/hmg/10.7.699. 7

(38) Knudsen, E. S.; Pruitt, S. C.; Hershberger, P. A.; Witkiewicz, A. K.; Goodrich, D. 8

W. Cell Cycle and Beyond: Exploiting New RB1 Controlled Mechanisms for Cancer 9

Therapy. Trends in Cancer 2019, 5 (5), 308–324. 10

https://doi.org/10.1016/j.trecan.2019.03.005. 11

(39) Philpott, C. C.; Ryu, M. S.; Frey, A.; Patel, S. Cytosolic Iron Chaperones: Proteins 12

Delivering Iron Cofactors in the Cytosol of Mammalian Cells. Journal of Biological 13

Chemistry 2017, 292 (31), 12764–12771. https://doi.org/10.1074/jbc.R117.791962. 14

(40) Dailey, H. A.; Finnegan, M. G.; Johnson, M. K. Human Ferrochelatase Is an Iron-15

Sulfur Protein. Biochemistry 1994, 33 (2), 403–407. 16

https://doi.org/10.1021/bi00168a003. 17

(41) Parman, T.; Wiley, M. J.; Wells, P. G. Free Radical-Mediated Oxidative DNA 18

Damage in the Mechanism of Thalidomide Teratogenicity. Nature Medicine 1999, 5 19

(5), 582–585. 20

(42) Naffouje, R.; Grover, P.; Yu, H.; Sendilnathan, A.; Wolfe, K.; Majd, N.; Smith, E. 21

P.; Takeuchi, K.; Senda, T.; Kofuji, S.; Sasaki, A. T. Anti-Tumor Potential of IMP 22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 29: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

29

Dehydrogenase Inhibitors: A Century-Long Story. Cancers 2019, 11 (9). 1

https://doi.org/10.3390/cancers11091346. 2

(43) Nam, S.; Min, K.; Hwang, H.; Lee, H. O.; Lee, J. H.; Yoon, J.; Lee, H.; Park, S.; 3

Lee, J. Control of Rapsyn Stability by the CUL-3-Containing E3 Ligase Complex. 4

Journal of Biological Chemistry 2009, 284 (12), 8195–8206. 5

https://doi.org/10.1074/jbc.M808230200. 6

(44) Belair, D. G.; Lu, G.; Waller, L. E.; Gustin, J. A.; Collins, N. D.; Kolaja, K. L. 7

Thalidomide Inhibits Human IPSC Mesendoderm Differentiation by Modulating 8

CRBN-Dependent Degradation of SALL4. Scientific Reports 2020, 10 (1). 9

https://doi.org/10.1038/s41598-020-59542-x. 10

11

12

13

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 30: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

30

Figure legends 1

2

Figure 1. 2D CETSA MS profiling of Thalidomide, Pomalidomide and Lenalidomide in intact and lysed K562 3

cells. (a) an outline of the experiment in intact K562 cells; (b) heatmaps of compound-induced soluble protein amount 4

log-fold changes (relative to untreated control) after heating cell suspensions to different temperatures and removing 5

aggregated proteins via centrifugation; (c) volcano plots of 2D CETSA MS profiling of Thalidomide, Lenalidomide 6

and Pomalidomide in intact K562 cells, and Pomalidomide in lysed K562 cells; x-axis correspond to the CETSA 7

Amplitude (maximum or minimum log-fold change over the heatmap), y-axis corresponds to Significance, which is -8

log10 transformed p-value from ANOVA F-test (Benjamini-Hochberg adjusted) . 9

Figure 2. Compressed CETSA MS profiling of Pomalidomide in intact and lysed iPSCs and iPSC-derived EBs. 10

(a) experiment overview – cells/lysate incubation with the compound or vehicle control followed by aliquoting and 11

heat treatment, then pooling over 12 temperatures and removing aggregated proteins by centrifugation; TMT-based 12

LC-MS/MS was used to quantify proteins in soluble fractions; (b) volcano plots of significantly stabilized (positive 13

amplitudes) or destabilized (negative amplitudes) proteins in lysed iPSCs and EBs; (c) concentration-dependent 14

stabilizations of CRBN and GLRX3 in lysed iPSCs and EBs; (d) scatterplots of Pomalidomide-induced stability vs 15

abundance changes in intact iPSCs and EBs; (e) time-dependent compound-induced protein abundance changes in 16

intact iPSCs and EBs; (f) scatter-plot of stability-vs-abundance changes in Pomalidomide-treated iPSCs at different 17

time points . 18

Figure 3. Compressed CETSA MS profiling of PROTAC molecule BSJ-03-204 in intact and lysed K562 cells. (a) 19

chemical structure of BSJ-03-204; (b) volcano-plot of compressed CETSA MS results in lysed K562 cells; (c) volcano-20

plot of compressed CETSA MS results in intact K562 cells; (d) volcano-plot of time/concentration dependent protein 21

abundance changes in intact K562 cells after 1h and 6h of incubation with different concentrations of BSJ-03-204; (e) 22

compound-induced concentration-dependent protein stability changes in intact and lysed K562 cells; (f) compound-23

induced protein abundance changes in intact K562 cells after incubation with BSJ-03-204 for 1 and 6 hours. 24

25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 31: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

3 IMiDsK562 cells,

1h at 37˚C, 5 concentrations

10 temperatures 44-62˚C

30µM

3µM

0.3µM

0.03

µMDM

SO

20 min at 30 000 g

Remove aggregated proteins by

centrifugation

Soluble protein quantification and

data analysis

a b

cPomalidomide, lysed cells

ANXA1ATP1A1

ANXA2

ERI1PFASATP1B3

TOE1

PHGDH

ITM2A

TFRCIMPDH2

SORT1SH3BGRL3 SLC2A1

CRBN

CARHSP1

DDX21

AIMP1GPD1L

STAM

0

5

10

15

20

−1 0 1 2 3Amplitude

Significance PFAS

ATP1A1MARS

HGS

TFRC

COX4I1

HMGCS1PHGDHPWP1SLC38A1

EPRS

ATP5A1

CRBN

DDX21RTCA

FDX1

0

5

10

15

20

−1 0 1 2 3Amplitude

Significance ANXA2

IMPDH2

GLG1NDFIP1

UMPS

C1orf50IMPDH1

CRBN

SUMO1

KARS

STXBP2

GPD1L

FAM120A

PFAS

ATICGLRX3

ATP1A1

IKZF1

SUMO4

ZFP91

0

5

10

15

20

−1 0 1 2 3Amplitude

Significance

GLRX3

SIMC1

CRBN

ZEB1

IKBKAPSLC38A2

0

10

20

30

−1 0 1 2 3Amplitude

Significance

Thalidomide,intact K562 cells

Lenalidomide, intact K562 cells

Pomalidomide, intact K562 cells

Pomalidomide, lysed K562 cells

Thalidomide Lenalidomide Pomalidomide Pomalidomide(L)C

RBN

GLR

X3IKZF1

ZFP91R

NF166

PFASG

PD1L

IMPD

H1

IMPD

H2

KARS

0

0.03 0.3 3 30 0

0.03 0.3 3 30 0

0.03 0.3 3 30 0

0.03 0.3 3 30

62

44

62

44

62

44

62

44

62

44

62

44

62

44

62

44

62

44

62

44

Concentration, µM

Tem

pera

ture

, ºC

0 1 2logFC

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 32: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

CRBN

CSNK1A1

RAB28

DTWD1

ZFP91

SALL4

−1

0

1

2

−2 −1 0Abundance

Stability

TTN

CRBN

ZBTB39

ATP5PD

GSTA2

SLC2A3

SDC4

CSNK1A1RAB28

ZBTB16HIST2H2AB

DTWD1ARFGAP1

ZFP91

GZF1

CHMP1A

SALL4

−1

0

1

2

−2 0 2Abundance

Stability

CRBN

GLRX3

CYCS

RC3H1

ZNF589XAB2

0

1

2

3

4

−0.2 0.0 0.2CETSA Amplitude

−log

10(p

_adj

)

GPX4

CRBN

GLRX3

GPX1 VIM

NQO1

DNAJC7

FTO

0

1

2

3

4

−0.4 −0.2 0.0 0.2 0.4CETSA Amplitude

−log

10(p

_adj

)

GLRX3

CRBN

200602062

0.2

0.02

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

Concentration

logF

C MatrixEBsiPSCs

Heat ChallengeLysed iPSCs incubated with Pomalidomide

[Com

poun

d]

Samples are pooled together across the 12 temperatures

Separation: 20 min at 30 000 g

Pooling & removing aggregated proteins

200 60 20 6 2 0.2 0.02 0

15 min, RT

Intact iPSCs/EBs incubated with Pomalidomide

15 60 120 48030µM

Soluble protein quantitation and data analysis

Proteome stability changes in lysed cells Time-dependent pomalidomide-induced protein abundance changes

Pomalidomide-induced proteome change in intact iPSCs and EBs

iPS EBs

iPS EBs

a

b

d

e

SLC2A3 TTN ZBTB16 ZBTB39

GZF1 RAB28 SALL4 SDC4

CRBN CSNK1A1 DTWD1 GSTA2

0.25

1.00

2.00

8.00

0.25

1.00

2.00

8.00

0.25

1.00

2.00

8.00

0.25

1.00

2.00

8.00

−1.5

−1.0

−0.5

0.0

−1.5

−1.0

−0.5

0.0

−1.5

−1.0

−0.5

0.0

Time, h

logF

C

CellEBsiPSCs

c

[Tim

e]

VIM

NVL

DTWD1

TAGLN

ARHGDIB

ANXA2

CRBN

SALL4

DTWD1

ANXA2

CRBN

CSNK1A1

RAB28

ZFP91

SALL4

DTWD1

CRBN

CSNK1A1RAB28

ZFP91

SALL4

DTWD1

CRBN

CSNK1A1

RAB28ZFP91

0.25 1 2 8

−0.8 −0.4 0.0 0.4 −0.8 −0.4 0.0 0.4 −0.8 −0.4 0.0 0.4 −0.8 −0.4 0.0 0.4−0.25

0.00

0.25

0.50

Abundance

Stability

e Pomalidomide-induced proteome change in intact iPSCs at different time points

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint

Page 33: A tale of two tails - efficient profiling of protein degraders by specific functional ... · 2020. 9. 22. · 2 profiling of protein degraders 3 by specific functional and 4 target

TIA1

HNRNPDLGOT2

CDK4CSNK2A2

FECH

PLK1

PIP4K2B

CDK6

TIAL1

HNRNPUL2

CRBNHNRNPUL1

0

2

4

6

−1.0 −0.5 0.0 0.5 1.0Amplitude

−log10(p_adj)

ACO2

TIA1

HNRNPDL

RB1FECH

PLK1RRP1

TIAL1RRP1B

ZNF638 DNTTIP2

RIF1

CRBN

HNRNPUL1

0

2

4

6

−1.0 −0.5 0.0 0.5 1.0Amplitude

−log10(p_adj)

CDK6

CDK4 KLHL8

CRBN

0

1

2

3

4

−1.0 −0.5 0.0 0.5 1.0Amplitude

−log10(p_adj)

CETSA, lysed K562 cells15 minunets

CETSA, intact K562 cells1 hour

Protein abundance, intact K562 cells,1 and 6 hours

CDK4 CDK6 CRBN CSNK2A2 FECH HNRNPDL HNRNPUL1 HNRNPUL2 PIP4K2B PLK1 TIA1 TIAL1

0.02

0.06

70.

20.

67 26.

7 20

0.02

0.06

70.

20.

67 26.

7 20

0.02

0.06

70.

20.

67 26.

7 20

0.02

0.06

70.

20.

67 26.

7 20

0.02

0.06

70.

20.

67 26.

7 20

0.02

0.06

70.

20.

67 26.

7 20

0.02

0.06

70.

20.

67 26.

7 20

0.02

0.06

70.

20.

67 26.

7 20

0.02

0.06

70.

20.

67 26.

7 20

0.02

0.06

70.

20.

67 26.

7 20

0.02

0.06

70.

20.

67 26.

7 20

0.02

0.06

70.

20.

67 26.

7 20

−0.8−0.6−0.4−0.2

0.0

−1.2

−0.8

−0.4

0.0

−0.4−0.3−0.2−0.1

0.0

−0.10.00.10.20.30.4

−0.2

−0.1

0.0

−0.4−0.3−0.2−0.1

0.0

−0.6

−0.4

−0.2

0.0

−0.10.00.10.20.3

−0.1

0.0

0.1

0.2

0.0

0.1

0.2

0.3

−0.2

0.0

0.2

−0.1

0.0

0.1

0.2

Concentration, µM

CET

SA A

mpl

itude

, a.u

.

MatrixIntactLysate

CDK4 CDK6 CRBN KLHL8

0.2

0.67 2

0.2

0.67 2

0.2

0.67 2

0.2

0.67 2

0.0

0.2

0.4

0.6

0.8

0.0

0.1

−0.75

−0.50

−0.25

0.00

−0.6

−0.4

−0.2

0.0

Concentration, µM

logF

C, a

.u.

Time1h6h

IMiDPalbociclib

BSJ-03-204

CETSA, concentration response Abundance, concentration response

b c d

a

e f

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted September 23, 2020. ; https://doi.org/10.1101/2020.09.22.307926doi: bioRxiv preprint