A Study on Comparison of Liquid-Phase Methanol Synthesis ... · A Study on Comparison of...

7
HWAHAK KONGHAK Vol. 39, No. 2, April, 2001, pp. 150-156 (Journal of the Korean Institute of Chemical Engineers) 150 * * (2000 9 26 , 2000 12 29 ) A Study on Comparison of Liquid-Phase Methanol Synthesis Processes for Coal-Derived Gas Jang-sik Shin, Heon Jung* and Jong-Dae Lee Dept. of Chem. Eng., Chungbuk National University, Cheongju 360-763, Korea *Energy Conversion Research Team, Korea Institute of Energy Research, Taejon 305-343, Korea (Received 26 September 2000; accepted 29 December 2000) Methyl Formate(MF) LPMEOH . MF . MF 50% 3.7%/ , LPMEOH 30% H 2 /CO 1 24%/ MF . 150-180 o C 60 MF 250 o C LPMEOH . MF CO 2 0.5% CO 2 MF . Abstract - Two liquid-phase methanol synthesis processes, the “Methyl Formate Intermediate” process(MF process) and the LPMEOH process, were experimentally investigated to find the suitability of the process for the coal-derived syngas. The MF process showed the superior methanol synthesis rate at the same gas hourly space velocity(GHSV) than LPMEOH process. The MF process showed more than 50% conversion of syngas per pass and 3.7%/day of deactivation rate which are far better than 30% conversion per pass and 24%/day deactivation rate of the LPMEOH process. The reaction condition of the MF pro- cess is milder than that of the LPMEOH process. The weakness of the MF process, which is the severe poisoning by small amounts of CO 2 , was able to be overcome from the experimental result that the reaction proceeded even with the syngas with 0.5% CO 2 . Overall comparison reveals that MF process is more suitable than the LPMEOH process when the coal-derived syn- gas is to be used for methanol synthesis. Key words: Methanol Synthesis, Methyl Formate, Liquid-Phase, Coal-Derived Syngas, LPMEOH E-mail: [email protected] 1. 100% . . , , $35 . Fischer-Tropsch(FT) , FT . , , MTBE , . ( ) ICI Lurgi -

Transcript of A Study on Comparison of Liquid-Phase Methanol Synthesis ... · A Study on Comparison of...

Page 1: A Study on Comparison of Liquid-Phase Methanol Synthesis ... · A Study on Comparison of Liquid-Phase Methanol Synthesis Processes for Coal-Derived Gas Jang-sik Shin, Heon Jung* and

HWAHAK KONGHAK Vol. 39, No. 2, April, 2001, pp. 150-156(Journal of the Korean Institute of Chemical Engineers)

������� � �� � �� �� ��

���†����*���

����� ���� �����*�� ����� �����

(2000� 9� 26� ��, 2000� 12� 29� ��)

A Study on Comparison of Liquid-Phase Methanol Synthesis Processes for Coal-Derived Gas

Jang-sik Shin, Heon Jung* and Jong-Dae Lee

Dept. of Chem. Eng., Chungbuk National University, Cheongju 360-763, Korea*Energy Conversion Research Team, Korea Institute of Energy Research, Taejon 305-343, Korea

(Received 26 September 2000; accepted 29 December 2000)

� �

���� ���� � �� �� ��� ���� ��� ���� ��� ���� ���� !�� "#

$% �� �� ��� Methyl Formate(MF) &'( ��) LPMEOH ��� *+ ��,- .��� / ��� ��0

12 34 ��� 056 78�9:. / ��� ��� ;<=) / ��� >? @� ABC ��DEF G# �'DE2

H MF &'( ��� I7J K,- LMN:. OJ MF &'( ��� 50% �%� ���� !�) 3.7%/ � P

Q�R DE6 S�F �T, LPMEOH��# U 30%� ���� !�) H2/CO� P� 1� ����2H 24%/ �

%� PQ�R DE6 S� MF &'( ��� I�6 S9:. OJ �� 012HE 150-180oC� ��VEW 60�X� �

�XY,- PZ� VRJ �� 01� �[F MF &'( ��� 250oC\]� ��VE6 �[F LPMEOH ��S: I

7J K,- LMN:. MF &'( ��� U^,- _`a CO22 bJ cd e%E \ fghi 0.5%� CO26 jk�

F ����2HE ��� a8hiH MF &'( ��� ���� � $% �� ��2 ��J K,- lmhn:.

Abstract − Two liquid-phase methanol synthesis processes, the “Methyl Formate Intermediate” process(MF process) and the

LPMEOH process, were experimentally investigated to find the suitability of the process for the coal-derived syngas. The MF

process showed the superior methanol synthesis rate at the same gas hourly space velocity(GHSV) than LPMEOH process.

The MF process showed more than 50% conversion of syngas per pass and 3.7%/day of deactivation rate which are far better

than 30% conversion per pass and 24%/day deactivation rate of the LPMEOH process. The reaction condition of the MF pro-

cess is milder than that of the LPMEOH process. The weakness of the MF process, which is the severe poisoning by small

amounts of CO2, was able to be overcome from the experimental result that the reaction proceeded even with the syngas with

0.5% CO2. Overall comparison reveals that MF process is more suitable than the LPMEOH process when the coal-derived syn-

gas is to be used for methanol synthesis.

Key words: Methanol Synthesis, Methyl Formate, Liquid-Phase, Coal-Derived Syngas, LPMEOH

†E-mail: [email protected]

1. � �

��� �� � �� � �� ����� ��� ����

� ���� �� 100%� ��� �� ��� �� !" #�$

%&�� ' ( )*. +,-� ./0� +, 12� �3 �4� �

5" �� ������ ' ( )*.

�467/8 9�:;� <=>? @A B CDE F� GH� I

JB>� KJB> L ��� )6M, �4N �O, �P67 Q1R0

� (=7 SA>T ��U1� �VW B CDE &X0� IJB

>� ���� YZ[ $35 �\] ��� �&U� )*. ^_ KJB

>� �4N �`> 0a Fischer-Tropsch(FT) ̂b�� c4d eU^

bN �f B CDE F� GH67, *g" &h� ijk� FT̂ b

� l0a c4d eU^b� mn�� o� ,p� )*. q" c4d

� IJ CD7 rs� �t0� uj, 2vwxyz, MTBE {� �

D7 =lk� )6M, |}~s CD��� (= &X �D7 /�k

� �� �" (!� ��k� )*.

�� c4d� �C�` (����� �" eU�`(]j>4=�

(=� �e�)E �s0a ICIr� Lurgir� ��-j>�C� �+\

150

Page 2: A Study on Comparison of Liquid-Phase Methanol Synthesis ... · A Study on Comparison of Liquid-Phase Methanol Synthesis Processes for Coal-Derived Gas Jang-sik Shin, Heon Jung* and

������� � �� � �� �� �� 151

�� �\ ̂ b�A67 &Xk� )6M, ��[ ij�� 0.46-0.5$A

��*(�C�`� ��� $0.5-1/million BTU��)[1]. �C�`� (

����� �R ij? eU�`� XU� H2/CO� 3-7�x lR �

4� �`>� �R iU? �4�`� XU� H2/CO� 2-0.57 \[

" ~�� )*. ICIr� Lurgir� �A� H2/CO l� /1 1�0

� �4�`E IJ rs0�_ (=� XUN o�� (U�` ^b

% CO2 &� �AN ��R� 0�7 �&U� ���*. � � ~¡

¢��£� IGCC(�4�`>¤e¢�)� C�0a �4�`E ]

¥� <" c4d7 �90� ¦�9 �`� 8§�� C=0� G

¨N �s0_ �&U� �\� �\?*. �� �¡�$67 C�k�

)� c4d eU^b� ©U� eU�`� ]¥�9ª� o� «�*.

¬­®� Haldor Topsoer�� �¢? �A� Trickle bed�� ©(

" ^b�E rs0a eU�` ]¥�9ª� 92%� ���, scale-up

�� hydrodaynamics {� ¯&� °2k� )�, �9ªN o�� ±

0a eU�`� �²N ��� ^b²�� �� ³p� )�� ´ª

U� �*� ' ( )*[2, 3].

Brookhaven National Laboratory�� NaH/RONa/M(OAc)2 �+E r

s0�µ �¢? �A[4, 5]� ��� heterogeneous �+� ¶� �+

� Triglyme% �� s+� ·�y ¸� B\ ^b�*. � ^b� ¹

O� 80-100oC� ^b O�� 95%�\� c4d mn�E ��_�

90%�\� eU�` ]¥�9ªN ���[6], �+� nickel� º»$

� ¼UN �½� nickel carbonylN ij0a X¾\ ¿�E �Àa�

"*. q" eU�`� 2Á? ¦-� �j>4=� \[y ÂÃ" �

+� ©U\ eU�`�� �j>4=� (��� &�� =!k� l

s� �A \¾>� ,Ä!�67 �\?*[7].

B\ c4d eU^b(Liquid-Phase Methanol synthesis, LPMEOH)�

Chem systemsr�� �¢kÅ*[8]. � �A� ICI�A�� rsk�

�+� �� lÆ" ��/j>�C� �+E mineral oil% �� B\�

Ç �>0a eU�`� B\N È%Á67� ^b ¢i0� ^b

Q� ´%$67 1jk� eU�`� ]¥�9ªN o] ( )� �

A�*. 1981É/8 ¦���U� |Ê��67 \s>E �0� )

6M, �� Air Productsr� Eastman Kodakr� 260 Ë/]� ijÌÍ

7 demoÎ ÏÐlE Eastmanr� Kingsport� ÑÐN ­º� ÏW�

� )*. � �A� ICI�A% lÆ" XÑ� lÒ$ o� O���

W�k�7 QÓÔ$ ÕÖ�9ª� �� B\�� W�k� ���¶

²�� �� ³p� )*.

Methyl Formate(MF) K �A� B\�� methyl formateE K

7 0a eU�`7/8 c4dN ij0� GH67 ×ØÙ���

�SkÅ*[9-11]. B\�� W�k� ^bO�� lÒ$ ��� ]¥�

9ª� 90%� Ú�µ X¾� �t0M, � " o� �9ª7 �R �

=� Á�? ÛÜ eU�`E �s' ( )� ,p� )*. � � 0.1%

�\� �% �j>4=� �R ×¼k�7 �Ý� �" ×¼N ¹Ã'

( )� �+� �¢� �t0_ �4�`� $s�tU� o*.

Þ�� ß C���� LPMEOH �A% MF K �A� �4�

`� $s �tU� o*� à³k�, L �AN �4�`� ©U� á

� ^bXÑ�� lÒÁ67� �4�`s c4d eU �A� $eU

N Xr0â*.

2. ����

ãÏ,º� Ç �>? �+� ä�? �P� Ò^¨ ^b�� �-

�²�(MFC, Model 5850, Brooks)7 H2/CO/CO2 {� lª å �-�

Xæ? Ír�4�`� ¿çk�, ̂ b�E È%" ¦^b �`� con-

denser å ÓP5 XA�(BPR, Tescom)E ÈR �`¦8E �f Yè

k�µ �Uk� )*(Fig. 1). B\ ̂ biU�� c4d {� condenser

� bék� ¿�$67 êë0a �`®7­ì�íî(GC; HP5890,

Porapak Q, Carbosieve S column, TCD) å �-1��(Mass Spectroscopy,

Balzers)7 1�"*. 1¥� ãÏ� <= 1¿]� =!k�7 ï� (�

ãÏN ±R 300 cc� 500 ccs-� Autoclave(Autoclave Engineersr)

2�E к0â*. ©y MF�A ãÏ,º�� �P� syringe pump

(Iscor)� ,ðk� ãÏ� � wñ� �+ {� ¿ç� �t0�µ

�k� )*.

^b�� ¿çk� Ír�4�`� �- å XU� bypass lineN �

f �`¦8 å �`®7­ì�íî7 �� 1�?*. ̂ b�E È%"

¦^b�`� �-% ¿ç�`� �-%� ~� å � �`� XUN

òó67 ^b²�E �j0â*.

3. �� (MF) ��� ��

B\�� cô2c�õE K 7 0a eU�`7/8 c4dN i

j0� GH� c4d� ]j>4=� ^b0a cô2c�õE iU

"[c4d ö�÷> ^b; ^b (1)] � cô2c�õ� (=>1R7 2

ø� c4d� iUkM[̂ b (2)], ù^b� ]j>4=� (=>7 c

4d� iU[̂ b (3)]k� «�*.

Fig. 1. Schematic diagram of methanol synthesis unit.

HWAHAK KONGHAK Vol. 39, No. 2, April, 2001

Page 3: A Study on Comparison of Liquid-Phase Methanol Synthesis ... · A Study on Comparison of Liquid-Phase Methanol Synthesis Processes for Coal-Derived Gas Jang-sik Shin, Heon Jung* and

152 �����������

CH3OH + CO� HCOOCH3 (1)

HCOOCH3 + 2H2� 2CH3OH (2)

2H2 + CO� CH3OH (3)

� GH� q" c4d� K � k� eU�`7/8 cô2c�

õE IJ ij' (� )6M[̂ b (1)ú2 +^b (2) =^b (4)], c4

d% cô2c�õE }� ij' ( )*.

2H2 + 2CO� HCOOCH3 (4)

c4d� ö�÷> ^b� wñ�cûr�z� �+7 w�ü )�

[12-14], cô2c�õ� (=>1R ^b� copper chromite� ´%

$� �+7 w�ü )*[15-17]. � �A��� ³] ^b�°��

c4d B\� ±� L �+E Ç �>0a eU�`E È%ý_

c4d ö�÷> ^b% cô2c�õ� (=>1R ^b� }�

]�þ*. ^bXÑ� 100-180oC å 40-100 �P�*. � �A� ³

p� �D�`� 2Á? �j>4=� �� �R ö�÷> ^b� �

+� wñ�cûr�z� ×¼67 ^bU� �¹y ¹0?*� «�

*.

� �A� �4�`� $s �tU ÿìE ±R a  �A �((O�,

P5, eU�`� H2/CO lª, �², eU�`� �j>4= ��)� ̂

bU� ¦º� ��% ]j>4=� ��� o� �4�`�s� �

²UN Xr0â*.

3-1. ��

^b� 500 cc s-� `���``ô autoclave�� ^¥1¨(semi-

batch)67 ��?*. ^b u�� 250 cc� c4d� $[-� copper

chromite(Ba-promoted; Aldrich)� KOCH3(Aldrich)E �� 170oC, 60

�P�� 8K}S copper chromiteE (=7 9� �, �-Xæ�

(MFC)7 XU% �-� Xæ? eU�`� c4d-�+ Ç �E È%

0_� ^b"*. ̂ b� P5� ÓP5 XA�(BPR)7 Xæk� �9

k� �� eU�`� �`¦87 �-N �A"*. ^b67 ij?

c4d% cô2c�õ� D 1�N ±" �N &�0�� ^b

��� &�k� �6�7 ^b� °/� �² é$?*. ^b B

� � � XU� �`®7­ì�íî å �-1��7 1�0â*.

3-2. ��

3-2-1. O�

^b (1), (2) ÍL ¢Q^b��7 O�� ��Á� Þ� QÓÔ$ Õ

Ö�9ª� Ã="*. ̂ _ �+^b� ^bO�� ��Á� Þ� ̂ b

²�� ��� �\?*. ^bO� �>� Þ3 � ^b²�� �>

E w��� ±R 100oC�� 180oCV� ^bO�E �>�6M �

%E Fig. 2� ��°Å*. ���� �� ò� �� 100oC��� �

U� �� �*�, O�� ��Á� Þ� � ^b²�� ��ÁN �

â6�, 180oC �\� ^bO���� ^b�°�� s+7� �s0

� c4d� �¢0� k�, � �\ B\^b� ]��� ��*. � 

�7 ^b� 180oC �0� O��� (�R� "*. 160oC �\� ^

bO���� � ^b²�� ��� �>kÅ�x �� ^bO��

��� Þ� ^b (1)� QÓÔ$ ÕÖ� ��67 �}, � K �

cô2c�õ� ��� Ã=Á� ��"*. Þ�� ^b� <$O��

150-180oC�N w ( )*.

3-2-2. �j>4= å �� ��

B\� �� ��0_ ̂ b (1)� �+� KOCH3� �% ̂ b0a 2

c�õ(HCOOK)E �Ý� �U� ���*� w�ü )*[11-13]. ̂

bN �0� �� copper chromite� KOCH3E c4d% Á� ^b

�� ä�0� (=7 copper chromiteE 9�ý� %A�� �� ¢

ik� KOCH3E ׼0� ?*. �� 9� � H2/CO �e�� ^

b�`E ¿ç0a� ^b� �ò7 �k� �� p�$67 ��k

� � 20K �� A\\�� ^b²�� �¶"*(Fig. 3).

^b u�� copper chromite� 9�� �R ¢i? �� ^bK�

�%�� � copper chromite� (U�`^b(Water-Gas Shift; CO +

H2O� CO2 + H2)� �+7� �s0a �N �j>4=7 �90�

�j>4=� ¦^b�`� Á� ^b��� Yè?*. �� ��� Ã

=0_� HCOOK q" copper chromite� �R KOCH37 �i?*.

Copper Chromite

HCOOK + 2H2→KOCH3 + H2O (5)

KOCH3� �i� Þ� B\��� cô2c�õ ��� pp ��0

M }� ^b²�� ��0a � 20K �� A\\�� ^b²�

� �¶0� ?*. �, copper chromite� cô2c�õ� (=> 1R

^b� �+ ��� (U�`^b å KOCH3� �i^b� �+7�

�s?*.

^b� A\\�� �¶" �� �±$67 ^b�� �N ¿ç0a

B\� �� ��E 2.5 mol%7 ��� %, ̂ b²�� Î�y

� ^b� �� ��k� �!6M, �" B\� cô2c�õ ���

Fig. 2. Change of Methyl Formate(MF) concentration and rate of methanolsynthesis at various reaction temperatures(copper chromite 5 g,KOCH 3 0.833 g in 250 cc methanol, 260 Ncm3/min, H2/CO=2,60 atm).

Fig. 3. Effect of CO2 in inlet mixture gas(copper chromite 5 g, KOCH3

0.833 g in 250 cc methanol, 260 Ncm3/min, H2/CO=2, 150oC, 60 atm).

���� �39� �2� 2001� 4�

Page 4: A Study on Comparison of Liquid-Phase Methanol Synthesis ... · A Study on Comparison of Liquid-Phase Methanol Synthesis Processes for Coal-Derived Gas Jang-sik Shin, Heon Jung* and

������� � �� � �� �� �� 153

0� kÅ*. �� L I# ^b ö�÷> ^b� ��k� �$67

�R � ^b� A�k� "¯�*. ­%��7 ^bK� �%Á�

Þ� KOCH3� �ik� B\��� cô2c�õ ��� pp ��

0M }� ^b²�� ��0a � 40K �� �� �� A\\�

� ^b²�� kÅ� �"� �� ��� 0.1 mol%7 �ÝÅ*. �

� 0.1 mol%(700 ppmv)� \[y o� ���� ^b� ��?*� «

� KOCH3� copper chromite� �R �² �i?*� «N �¦"*.

�� q" \[-� KOCH3� l�U>? 2c�õ \�7 ��ÁN

&"*. Þ�� �� ·�y &�? \��� � ^bN ��0_ ��

g� KOCH37 � o� �U� �?*.

�4�`�� \[-� �j>4=� 2Ák� )�, �j>4=E

ppm ³±V� &�0�x� \[" ls� =!k�7 �' A�� �

j>4=E 2Á" �4�`� c4d7� �9� (!0*. ö�÷>

^b� �+� KOCH3� �j>4=� ^b0a KOCOOCH37 �9

k� �UN )� ?*[14]. ^b� A\\�� �¶0âN ", ^b�

� ¿çk� �`� �j>4=E 1% å 0.5%7 *�� ^bN ��

" %E Fig. 3� ��°Å*. �j>4=� 1% 2Á? �� ^b²

�� 75% Ã=0�, 0.5%� 2Á? �� 52% Ã=kM, �" K

� cô2c�õ� ��� �� 54% å 45% Ã=0a �j>4=�

�R ö�÷> ^b� �+� KOCH3� ×¼�N ��0â*. � �

10,000 ppmv(1%)� CO2� 2Á? �`E rs0� ö�÷> ³¼^b

� �� �+ ^b� ��k� ��x ^0a MF K �A� ��

copper chromite� �R KOCOOCH3� KOCH37 �ik� ^b� �

' A� ��?*(̂ b 6).

KOCOOCH3 + 3H2 → KOCH3 + H2O + CH3OH (6)

�j>4=� 2Ák� �� eU�`E * ,��°� ^bN �

�" %, �í ^b²�� 70%V�� ¥¤k� ]/ l�Ó$� l

�U>� ]�-N w ( )Å*.

3-2-3. eU�`� �²

¿çk� eU�`� �² �>� Þ3 ̂ b²� å �9ª� �>E

w��� ±0a 150oC�� ^b�� ¿çk� �`� �²N �>

� %E Fig. 4� ��°Å*. ���� . ( )/� �²� ���

Þ� ^b²�� ��0� eU�`� ]¥ �9ª� Ã="*. ©y

¿çk� �`� 50 Ncm3/min� �� �²��� 80% �\� +� o

� �9ªN ��*.

ß ãÏ��� ^b�� Ò^ ²�� 1,000 rpm67 +� o�� �

/ ���¶²� &"(external mass transfer limitation)� �� 0±�

� ^b� ��k�7, �²��� Þ3 ^b²�� �>� �\0�

�� %�*. �� ^b� ��k� \��� 700 ppmv� �� B\

� )6�7 (U�`^b� �R ¢ik� CO2� �� �²��� ¦

^b�`� �²� �6�7 ´%$67 ^b��� &�k� 10�

"¯67 i�?*.

3-2-4. eU�`� XU(H2/CO lª)

eU�`� &X0� GH% �D� Þ� � XU� *�*. ]^

$67 ï� rsk� �C�`� (����� �� H2/COl� 3-

7��, /1j>(partial oxidation)� ��� 1.6-2, ��� �4� �

`>� ��� 0.5-2�*. *g" XU� eU�`� �s �tUN

w��� ±R ^b� � eU�`� XUN �>� %E Fig. 5

� ��°Å*. eU�`� H2/CO lE 4�� 17 Ã=2 ��, �

77%� p�$� ^b²�� ��E �â*. �� ^b� °/� ]

j>4= 1P ��� Þ3 B\ cô2c�õ� �� ��� ��"

*(Fig. 5). � � eU�`� H2/CO l� 0.5� ��, ^b²�� Î

�y Ã=? ^_ cô2c�õ� ��� Î�y ��kÅ*. �� �

3 o� ]j>4=� 1P� �" copper chromite� ×¼% �3

�� (= 1P67 �0a ^b (2)� (=>1R ²�� ¹0kÅ

*� R�' ( )*. ©y �4�`� XU� H2/CO=1 /4�� o

� ^b²�E �a � �A� �4�`� $s�tU� o� �A�

N r"*.

3-2-5. ,�K SAU

ß �A� \¾>k� ±R�� �+�� ,K W��� l�U>

A�� ��� o� �UN ��R� "*. �D�`� H2/CO l� 2

� �� 100K� W� % l�U> ²�� 0-0.4%/]7 �� ��

�� �!*. � � ß C��� \67 0� �4�`� �Ö$�

XU� H2/CO=1��� l�U>� ]�� 3.7%/]� l�U> ²�E

��*. �" B � XUN Xr" %, K � cô2c�õ� �

�� �� Ã=ÁN w ( )Å*(Fig. 6). cô2c�õ� �� Ã=�

^b (1)� �+� KOCH3� �UN )� «67 R�' ( )*. � 

� �£" ò� �� KOCH3� ^b (2)� �+� copper chromite�

�R �² �ik�7, ]j>4=� 1P� o� \��� copper

chromite� p�$� ׼� �R KOCH3� �i� ��0� ��k�

��*�� R�' ( )*. ã&7 ^b (2)E copper chromite �+\

�� ��' ", ]j>4=� �Ó$67 copper chromite �+E ×

¼0� «67 ��? ò )*[13].

Fig. 4. Change of conversion and rate of methanol synthesis at variousflow rates of inlet gas(copper chromite 5 g, KOCH3 0.833 g in250 cc methanol, H2/CO=2, 150oC, 60 atm).

Fig. 5. Effect of H2/CO ratio of inlet gas mixture on methanol synthesisrate(copper chromite 5 g, KOCH3 0.833 g in 250 cc methanol,250 cm3/min, 150oC, 60 atm).

HWAHAK KONGHAK Vol. 39, No. 2, April, 2001

Page 5: A Study on Comparison of Liquid-Phase Methanol Synthesis ... · A Study on Comparison of Liquid-Phase Methanol Synthesis Processes for Coal-Derived Gas Jang-sik Shin, Heon Jung* and

154 �����������

4. LPMEOH ��

LPMEOH �A� c4d eU ̂ b[̂ b (3)]� o� ̂ bQ (∆H298o =

−90.64 KJ/mol)7 �" ��-j>�C� �+� = N �� ±0a 10-

12%7 &"k� eU�`� ]¥�9ªN o�� ±0a ^bQN ´

%$67 1j &�' ( )� mineral oil% �� B\� �+E Ǡ

�>0a eU�`� B\N È%0_� ^b0�µ 0a ^b�`�

]¥�9ªN 30%V� o� �A�*.

ICIr� �\ ^b �A% �r" X¾XÑ�� W�k� LPMEOH

�A� ©567 ��� \s�A��� 6�t" ]j>4=� lª

� o� �4�`� IJ rs� �t0M, �} A�/�X¾ {� X

¾��� s�0�, ij? c4d� 2Á? (1� �� �A(4-20%)

� lR $� Á�k�(1% ¦�) c4d A& ls� ¹Ãk� ,pÝ

� )*. q" X¾ �� 77W �+E �² ¿ç' ( )�� C²

$� W�� �t0*.

4-1. ��

^b� 300 cc ̀ ���``ô autoclave�� C²¨67 ��?*. ̂

b u�� 150 cc� mineral oil(Aldrich)� �+E �� 180oC, 60�P

�� 10-13K}S (=7 9� �, �-X� �R XU% �-�

Xæ? eU�`� 250oC7 ��? �+ Ç �E È%"*. ¦^b�

`� �-% ¿ç�`� �-%� ~�7 ^b²�E �j0M, ̂ b6

7 ij? c4d� condenser� bé?*. ^b B � � � X

U� �`®7­ì�íî å �-1��7 1�0â*.

^b�� Cu�Q� 489 \s�+E rs0â*. �Ý �+� :_

$(BET, ASAP2010, Micromeriticsr)� Table 1� :0â*.

4-2. ��

4-2-1. � �+� ^bU

� \s �+� " ̂ bU ã� ãÏ %E Fig. 7� ��°Å*. �

�+� ^bU ãÏ %, ���� �� ò� �� Cu/ZnO�Q� A�

+� ^b²�� �, o�, l�U ²�� �, �� «67 ���

LPMEOH �A� ã� �+7 mn0â*. �Ý �+ ÍL� �j>4

=� 2Ák� �� eU�`E ,��; % c4d7� �9ª� �

� 0� �V<� �j>4=� = (!ÁN w ( )Å*. �A� ã�

�+7 mn? A�+� ��, o� :_$� o� �U% >?� )*

� ' ( )6�, A�+� :_$� 1/4N @� C�+� A�+� u�

^b²�� �r0a �+� :_$ ��� �+� XU { *3 !�

� �+� �U� ��N ¦AN ��' ( )*. B�7 C�+� Cu/

ZnO/Al2O3� �+�*.

4-3-2. ̂ bO�

<$� ^bO�E Xr0� ±0a A�+ 15 gN ä�0� ^b O

�E 210oC�� 275oCV� �>ý_� c4d eU ãÏN (�"

%E Fig. 8� ��°Å*. ���� ��þ ò� �� O�� ��Á

� Þ� c4d ^b²�� ^b�`� ]¥�9ª� ��0� «N w

( )6M, 210oC��� 30.0%� ]¥�9ªN ���, O�� ���

Á� �+� �U� ��0a ^bO� 250oC�� 42.7%� <� ]¥

�9ªN FN ( )Å*. 275oC��� c4d eU²�� Ã=0â*.

Þ�� ^b� <$O�� 250oC /467 à»kÅ*.

4-3-3. ̂ bP5

Fig. 6. Long-term change of methanol synthesis rate and methyl for-mate concentration during the reaction with simulated coal gas(copper chromite 5 g, KOCH3 0.833 g in 250 cc methanol, 164Ncm3/min, H2/CO=1, 150oC, 60 atm).

Table 1. BET surface areas of commercial catalysts tested

Catalyst A B C D

Surface area[m2/g] 67.79 72.27 15.97 49.26

Fig. 7. Change of initial rate of methanol synthesis of LPMEOH pro-cess over various commercial catalysts(2.68 g in 150 mineral oil,260 Ncm3/min, 250oC, 60 atm, CO2=1.7-5.4%).

Fig. 8. Change of methanol synthesis rate of LPMEOH process andCOx conversion at various reaction temperatures(catalyst A 15 gin 150 cc mineral oil, 260 Ncm3/min, H2/CO=2, 60 atm, CO2=3.2%).

���� �39� �2� 2001� 4�

Page 6: A Study on Comparison of Liquid-Phase Methanol Synthesis ... · A Study on Comparison of Liquid-Phase Methanol Synthesis Processes for Coal-Derived Gas Jang-sik Shin, Heon Jung* and

������� � �� � �� �� �� 155

^bP5N 40�P�� 70�PV� �>�N " ^b²�� ¦º�

��N Fig. 9� ��°Å*. ̂ bP5� ��0_ c4d eU²�� �

�"*. 40�P�� 60�PV�� ^bP5� 10�P ��� � ^b

²�� 10%�\� ��E ���, 60�P�� 70�PV�� ^b²�

��� 6.3%7 60�P �\� P5��� ´sU� �$N w ( )*.

4-3-4. �j>4=� ��

^b�� ä�? 15.0 g� A�+\�� eU�`� 2Á? CO2 ��

�>� Þ3 c4d eU²�� �>E Fig. 10� ��°Å*. CO2 �

�� 0%] ���� ^b� �+ ]��� �!6M, 3%� �� �,

o� c4d eU²�E ��°Å*. �� Klier {� &" %� ]

º"*[18]. CO2� 1.0% Á�? eU�`� lR 3%� Á�? eU�

` 1±��� 21%� �U��E �â*. � � CO2 ��� 5%7 �

�0_ c4d eU²�� Ã=0â� K� �-� Þ� �+� �

U� Ã=0� l�U>� >CkÅ*. �, ��� �+E rs0�

LPMEOH�A� 1-3%� D� ��0±� CO2� Á�? �D�`�

�R�� c4d eU� �tÁN w ( )*.

4-3-5. ̂ b�` �²

A�+ 6 gN ^b�� ä�0� eU�`(H2/CO=2, CO2=3.7%) �

²N 262 Ncm3/min(GHSV=2620l/kgEhr)�� 512 Ncm3/min67 �

�ý_� F� %E Fig. 11� ��°Å*. �²� 2Y7 ��Á�

Þ� iU²�� � 50% ��0� eU�`� ]¥�9ª� 35.3%�

� 26.5%7 Ã=0â*. ©�" p� �²� 262 Ncm3/min��� l

�U>� �� �Å6� �²N 512 Ncm3/min7 ��ý_ �+� l

�U>� ]�þ*� «�*.

4-3-6. ̂ b�` XU å ,�K SAU �`õ

eU�`� XU(H2/CO)N 2�� �4�`� :$� XU� 1� �

>� %E Fig. 11� �� ��°Å*. �" l�U> ²�� 24.2%/

]�Å*. �+� ä�-N 15 g67 F�� eU�` XU(H2/CO)� 1

� eU�`� �²N 260 Ncm3/min7 � ��� ãÏ %E Fig. 12

� ��°Å6M, � ���� l�U>ª� 24.4%/]7 l�U> �\

� �m� �G��� �!*. L HI7 �(" \s�+� C�+� �

�� eU�`� XU(H2/CO)� 1% 2 ÍL�� 20%/]� Ú� o� l

�U>ªN �â*. Þ�� LPMEOH �A� �4�`E JD7 0�

c4d eU� rsK �� ï� g� �+� =!K «67 �\?*.

5. � �

LPMEOH �A% MF K �A� ã� ãÏ %E Table 2� l

Fig. 9. Change of methanol synthesis rate of LPMEOH process at var-ious reaction pressures(catalyst A 15.0 g in 150 cc mineral oil,260 Ncm3/min, 250oC, CO2=3.2%).

Fig. 10. Change of methanol synthesis rate at various CO2 concentra-tion of syngas with 15.0 g A catalyst in LPMEOH process(150 ccmineral oil, 260 Ncm3/min, H2/CO=2, 250oC, 60 atm).

Fig. 11. Change of methanol synthesis rate at various inlet flow ratesover 6.0 g of A catalyst in LPMEOH process(150 cc mineral oil,250oC, 60 atm, CO2=3.7).

Fig. 12. Deactivation behavior of A catalyst when simulated coal gas(H2/CO=1) was fed(15 g A catalyst in 150 cc mineral oil, 260Ncm3/min, 250oC, 60 atm, CO2=3.0%).

HWAHAK KONGHAK Vol. 39, No. 2, April, 2001

Page 7: A Study on Comparison of Liquid-Phase Methanol Synthesis ... · A Study on Comparison of Liquid-Phase Methanol Synthesis Processes for Coal-Derived Gas Jang-sik Shin, Heon Jung* and

156 �����������

95

M.

A,

.S.

RI

nt,

Ò0â*.

�K ²�� �� �� �Ó�� �+ ³± 3�[ ^b²�� MF

K �A� �(0*. �4�`s c4d eU�A� (( X�

o� eU�` ]¥�9ª _�� MF K �A� LPMEOH �A

� lR L{y �(0*. �4�`E �D7 rs" �� \s>� X

Ñ� �+� SAU_��� MF K �A� �+ l�U>ª�

LPMEOH �A� lR ��� �^$67 MF K �A� �4�

`s c4d eU�A67 $e" «67 à»?*. MF K �A�

³p� =-� CO2� " ×¼�\� 0.5% CO2� 2Á? eU�`

�� ^b� ���� � �m� a�� )� �4�`� rs �t

U� o*.

����

1. Brown, D. P., Brown, D. M., Jones, W. C. and Kornosky, R. M.: “The

Liquid Phase Methanol(LPMEOH) Process Demonstration at King-

sport,” presented at Fifth Annual DOE Clean Coal Technology Con-

ference, Tampa, Florida(1997).

2. Westerturp, K. R. and Kuczinski, M.: Hydrocarbon Processing, 65(11),

80(1986).

3. Wainwright, M. S.: in “Methane Conversion,” ed. by D. M. Bibby, C. D.

Chang, R. F. Howe and S. Yurchak, Elsevior, B. V., Amsterdam,

(1988).

4. Sleigeir, W. A., Sapienza, R., O’Hare, T., Mahajan, D., Foran,

and Skaperdas, G.: 9th EPRI Contractors Meeting, Palo Alto, C

May(1984).

5. Sapienza, R. S., Sleigeir, W. A., O’Hare, T. E. and Mahajan, D.: U

Patent No. 4,619,946(1986).

6. Muhajan, D. and Mattas, L.: Proceedings of the 16th Annual EP

Conference on Fuel Science, Palo Alto, CA, April(1992).

7. Trimm, D. L. and Wainwright, M. S.: Catal. Today, 6, 261(1990).

8. Sherwin, M. S. and Frank, M. E.: Hydrocarbon Processing, 55(11),

122(1976).

9. Chemical Week, October 25, 41(1995).

10. Liu, Z., Tierney, J. W., Shah, Y. T. and Wender, I.: Fuel Processing

Technol., 23, 149(1989).

11. Palekar, V. M., Jung, H., Tierney, J. W. and Wender, I.: Appl. Catal. A,

102, 14(1993).

12. Tonner, S. P., Trimm, D. L., Wainwright, M. S. and Cant, N. W.: J. Mol.

Catal., 18, 215(1983).

13. Liu, Z., Tierney, J. W., Shah, Y. T. and Wender, I.: Fuel Processing

Technol., 18, 185(1988).

14. Choi, S. J., Lee, J. S. and Kim, Y. G.: HWAHAK KONGHAK, 32, 317

(1994).

15. Evans, J. W., Casey, P. S., Wainwright, M. S., Trimm, D. L. and Ca

N. W.: Appl. Catal., 7, 31(1983).

16. Monti, D. M., Kohler, M. A., Wainwright, M. S., Trimm, D. L. and

Cant, N. W.: Appl. Catal., 22, 123(1986).

17. Kim, Y. G., Lee, J. S., Kim, J. C., Lee, S. H., Kim, K. M.: HWAHAK

KONGHAK, 27, 396(1989).

18. Klier, K., Chatikavanij, V., Herman, R. G. and Simmons, G. W.: J.

Catal., 74, 343(1982).

Table 2. Results of reaction for LPMEOH & MF process

MF process LPMEOH process

Synthesis rate(mole/kg · hr) at GHSV of 2,600l/kg · hr

24.9 13.9

Maximum conversion per pass 80% 43%Optimum temperature(oC) 180 250Pressure(atm) 60 60Effect of CO2 tolerant up to 0.5% Limited to 1-3%Deactivation rate(H2/CO)=1 3.7%/day 24%/day

���� �39� �2� 2001� 4�