A prototype back-action evading transducer suitable for gravitational radiation antennae

4
Volume 91A, number 4 PHYSICS LETFERS 6 September 1982 A PROTOTYPE BACK-ACTION EVADING TRANSDUCER SUITABLE FOR GRAVITATIONAL RADIATION ANTENNAE David BLAIR Department of Physics, University of Western Australia, Nedlands, WA. 6009, Australia Received 14 May 1982 This paper describes a practical configuration for a back-action evading motion transducer suitable for use on Weber-type gravitational radiation antennae. Tests on a prototype are described, noise sources are discussed and realistic sensitivity limits are estimated. Quantum non-demolition methods have been pro- describe a practical realisation of the “continuous posed as a means of circumventing the linear ampli- back-action evading transducer” proposed by Caves et fier quantum limit (standard quantum limit, SQL) to al. [1], which has been tested in a room temperature the sensitivity of precise experiments [1]. In particu- prototype. The device is based on a 10 GHz double lar, Weber type gravitational radiation (GR) antennae re-entrant microwave cavity. Fig. 1 shows the equiva- reach the SQL at amplitude sensitivity ~1 0—2 O_ lent circuit of the BAE transducer. The input signal 10—21 m, comparable to the signal complitude ex- (motion of the GR antenna) is applied across a split pected from extragalactic GR sources. To be confi- capacitor of total capacitance C, to which a microwave dent of GR detection it is important to surpass this excitation signal is applied via a coupling transformer limit, and the high Q resonator of which the capacitor is The SQL can be overcome by designing a trans- part. The motion signal is extracted through the trans- ducer to measure only one of the symmetrical oscil- former. The resonator Q factor determines the degree lator coordinates or quadrature amplitudes X 1 and of filtering of variable X2 (unwanted) relative to the X2. Several equivalent circuits [1—3]and two designs observed variable X~. [4,5] for such devices have been published. Here I Fig. 2a is a schematic diagram of the prototype transducer. A double re-entrant cavity of resonant ~J microwave frequency ~2with a microwave choke to prevent ra- probe diation loss, shielded inductance poles and a narrow ______ slit to accept the central capacitor plate is placed near J ~ the end of a Weber bar of frequency w. -~ ,jj-J The cavity is excited by the sidebands ~l ± w of a L T ~2 R microwave carrier &2, obtained using a sideband mod- ulator V~x. V0 sin ~2t coswt. (1) ______ Note that Vex is modulated in the cosine or X2 qua- motion drature. Fig. 1. Equivalent circuit of the transducer. The transformer A corresponding time varying electric dipole mo- represents the coupling probe through which signals Vex and ment is induced on the central capacitor plate, which V5 are coupled. in turn mixes with the incoming motion signal so as 0 03l-9163/82/0000—0000/$02.75 © 1982 North-Holland 197

Transcript of A prototype back-action evading transducer suitable for gravitational radiation antennae

Page 1: A prototype back-action evading transducer suitable for gravitational radiation antennae

Volume91A,number4 PHYSICSLETFERS 6 September1982

A PROTOTYPE BACK-ACTION EVADING TRANSDUCER

SUITABLE FOR GRAVITATIONAL RADIATION ANTENNAE

David BLAIRDepartmentofPhysics,Universityof WesternAustralia,Nedlands,WA. 6009, Australia

Received14 May 1982

Thispaperdescribesa practicalconfigurationfor a back-actionevadingmotiontransducersuitablefor useon Weber-typegravitationalradiationantennae.Testson a prototypearedescribed,noisesourcesarediscussedandrealisticsensitivitylimits areestimated.

Quantumnon-demolitionmethodshavebeenpro- describea practicalrealisationof the “continuousposedasa meansof circumventingthelinearampli- back-actionevadingtransducer”proposedby Cavesetfier quantumlimit (standardquantumlimit, SQL) to al. [1], whichhasbeentestedin a roomtemperaturethesensitivity of preciseexperiments[1]. In particu- prototype.The deviceis basedona 10 GHz doublelar, Webertypegravitationalradiation(GR)antennae re-entrantmicrowavecavity.Fig. 1 showstheequiva-reachtheSQLat amplitudesensitivity ~10—2O_ lent circuit of the BAE transducer.The inputsignal10—21 m, comparableto the signalcomplitudeex- (motionof theGRantenna)is appliedacrossa splitpectedfrom extragalacticGRsources.To be confi- capacitorof total capacitanceC, to which a microwavedentof GRdetectionit is importantto surpassthis excitationsignalis appliedvia a couplingtransformerlimit, andthehighQ resonatorof which the capacitoris

The SQLcanbeovercomeby designinga trans- part.Themotionsignalis extractedthroughthetrans-ducerto measureonly oneof the symmetricaloscil- former.TheresonatorQ factordeterminesthedegreelator coordinatesor quadratureamplitudesX1 and of filtering of variableX2 (unwanted)relativeto theX2. Severalequivalentcircuits[1—3]andtwo designs observedvariableX~.[4,5] for suchdeviceshavebeenpublished.Here I Fig. 2ais a schematicdiagramof theprototype

transducer.A doublere-entrantcavity of resonant

~Jmicrowave frequency~2with amicrowavechoketo preventra-probe diationloss, shieldedinductancepolesanda narrow

______ slit to acceptthe centralcapacitorplate is placednearJ ~ theendof a Weberbar of frequencyw.-~ ,jj-J The cavity is excitedby the sidebands~l ±w of a

L T ~2 R microwavecarrier &2, obtainedusinga sidebandmod-

ulator

V~x. V0 sin ~2t coswt. (1)

______ Notethat Vex is modulatedin the cosineor X2 qua-motion drature.

Fig. 1. Equivalentcircuit of thetransducer.Thetransformer A correspondingtimevaryingelectricdipolemo-representsthecoupling probethroughwhich signalsVexand mentis inducedon the centralcapacitorplate,whichV5arecoupled. in turnmixeswith the incomingmotion signalsoas

0 03l-9163/82/0000—0000/$02.75© 1982North-Holland 197

Page 2: A prototype back-action evading transducer suitable for gravitational radiation antennae

Volume91A, number4 PHYSICSLETTERS 6 September1982

whereI3~is thecavity couplingfactoron resonance,andI~2~is the cavity coupling at frequencies&2 ±2w.

The back-actionforceFba,which actsbackon theantennadueto theJohnsonnoisefrom the resistanceR

1at theinputof the amplifierhasthe form

cavityFba = (—~~V0130Z2/D)coswt

choke

+ termsat frequencies(2~7±w) , (3)

bar whereZ2 isthe amplitudeof themicrowavequadrat-

ure componentsat frequency~l. Eq.(3) showsthat

(a) althoughsomeof theamplifier noisepoweris downconvertedto thesignalfrequency,this downconverted

cavity mounting block component appears in the cosine X2 quadrature,and

II~i~JI is thereforein phasewith the phaseof themodula-~ tion. No back-actionforcesappearin thesine quadra-

ture.bar

bending In the prototypethe cavity Q is low (~400)so thatplate X2 is not filtered by the transducer cavity (~2 9.6

GHzandw 1260 Hz). Backactionevasionis notachieved,sincefrequencyselectionis only obtainedby a 1260Hz bandpassfilter in the input circuit ofthe lock-in amplifier (seefig. 1).Howeverthe selec-

(b) tive sensitivityto X1 is easilyobserved,andin this in-Fig. 2. (a)Schematicdiagramof theprototypetransducer stancethe sensitivityratio X1 /X2 1 o~—1o~.Onlyanddemodulationcircuit. Thetransducercavity is cylin- at Q-levels~107— ~0

8,achievablewith superconduct-drical,with two opposingpostsmountedradially. Thecavity ing cavitieswifi BAE occur.diameteris 8 mm,and thepostsare2 mm diameterand 3 i now go on to dicussseveralpracticalaspectsofmm long. Thecentralcapacitorplatepenetratesthecavity

this transducerdesign.througha slit betweentwo semicircularshieldingplatesatthebottomof the cavity. (b) Schematicdiagramof theset-up (a) Seismicnoise.Low frequencyseismicnoisefor a cavity mountedon a barwith a bendingmodeimpe- (<10 Hz) canbea seriousproblemin GRantennaedancematchingplate. [6], sincefor earthbasedantennaethe amplitudeis

alwayslargeandvibration isolationat low frequenciesto “re-radiate” to the inputprobesignalcomponents is difficult. Thisparticularlyappliesto BAE or strobo-at frequencies&7 and ~2±2w via capacitorC

2 in fig. 1. scopicschemesusingconventionalre-entrantcavityAs shownin refs. [1,4] thefrequency&2 containsonly transducers[7], whereonefinds that theX1 signalisX1 information.Thefrequencies~2±2w containboth contaminatedby a prohibitivelevel of seismicnoise.X1 andX2information,butpowerflow at thesefre- The split capacitorschemehasthe advantagethat toquencieswill besuppressedif thecavity Q-factorQe first orderthe total seriescapacitanceis independentis such that Qe ~‘ &l/w. of distanceandtheresonantfrequencyof thecavity

Thefrequency~2component of the signalvoltage is notaffectedby low frequencyvibration. Thustheobservedat the outputof thecavity is enhancedby excitationsignalis notamplitudemodulatedby thethe Q-factorof the cavity, up to thelimit ~2/w, so seismicnoiseandcontaminationof theX1 signalisthat in thehigh Q limit prevented.

V~(t) ~V0(J30/D)(&2/w)X1~ ~ Measurementson a prototypecavity areshown infig. 3. Secondordereffectsclearly occur,as one

— ~V~J(J32L,/D)(X1sin f2t cos2wt would expect,but thedatashowsthatover abroadcentralregionvariationsof capacitancewith distance

+X2 sin &1t sin2wt), (2) areweak. Fromthis datait follows that the contam-

198

Page 3: A prototype back-action evading transducer suitable for gravitational radiation antennae

Volume91A, number4 PHYSICSLETFERS 6 September1982

tion. Local oscillatorphasenoiseisindistinguishablefrom signal,andin practicehasto bereducedby fre-

9660 quencystabilisationsystems[9]. In thepresentcase

N 9650 -, - - -. -. - -.- .• theweak dependenceof resonantfrequencyon dis-- ~•- - -. placementleadsto reducedphasediscriminationso

9640 • thatphasenoisesensitivity isreduced.HoweverAM

~. 9630 noisenow becomesthedominantnoisesource.Let

9620 SA(w)be the AM noisespectraldensity of the car-rier ~2before modulation. Mter modulation this

-0 4 -0 3 -0 2 -0.1 01 02 0 3 0 4 sidebandnoisepoweris convertedto noiseat fre-X/

2Q ‘ quency~2:

Fig. 3. Dependenceof thecavity resonantfrequencyon the s o~= s ( ~ 5staticpositionof thecentralcapacitanceplate,measuredin A’ / aunitsx/D. wherea takesa valuebetween..J~and 2 depending

onthe degreeof correlationof noisein the upper andinationofX1 from low frequencyamplitudeexcur- lowersidebands.Now, ff Qe � fu/w (asis requiredforsions~O.2D,isreducedby ~8 X 10—6 comparedwith QND)the spectraldensityofnoisepowerin thecavitya conventionalre-entrantcavity transducer.Fora 1% S~(0)will be increasedby alorentzianfactorduetotuningaccuracy,seismiccontaminationisreducedto thepreferentialfiltering of thenoiseat frequency~l.~2 X 108. II oneassumes,asa worstcase,that the That isseismicnoiseoccursat the samplingperiod r5 (e.g. ~ ~ ~ ~

~AW)*(~eW/~) SA 0 . 60.1 sor 10 Hz) thenthe seismicnoiseamplitudeatthetransducermustbe~l 0 11 cm to reachthe SQL. Thisdemonstratesthat for this transducertheratioThisis a tight,but achievablecondition. By modify- Qe~&~I~

2shouldnotbe increasedwithout limit. Theingthe cavity geometryit is possiblethat theoffend- optimumvaluedependson SA(w)for theexcitationing secondordereffectscouldbereducedfurther, signalsource.In additiontechnicalproblemsariseif

(b) Coupling.It isimportantthatanytransducer Qe is muchlarger than~/w sincethecouplingof thebewell coupledor impedancematchedto the signal excitationsignalto thecavity is reducedandincon-source.Them~~tchingis characterisedby the dimen- vementlylargeexcitationsignalsare required.sionlessmatchingratio (3. Forthe transducerdescribed To detecta signalS~(0)in thepresenceof AMhere,in thehighQ limit, noiserequiresS

5(0)/S~(0)�1. This limit coincides

1 2 2 2 withtheSQL(in themicrowavedetectioncircuit)~ ~(~Z/w)CV 1mw D (4) for S~(0) 10—17 if ~2/2ir 1010 Hz. Suchlevelsofpracticallyidenticalto the couplingof conventional AM noisecanbeachievedwith superconductingcay-parametricupconvertertransducers[8]. Foralow ity stabilisedoscillators[9] for w/2ir ~ i0

3—i04.massantenna(e.g. the67 kg antennaat UWA) it is Theanalysisby JohnsonandBocko [5J of a SQUIDpossibleto achieve(3 values~‘ 0.1 [8] if D issmall basedBAE transduceravoidsthe AM noiseproblem(�lOOiim). Formoremassiveantennae(e.g. 1.5 by assuminganidealnon-resonantforcedmodulationtonneNb antennaat UWA) it isnecessaryto usean Vex.The technicaldifficulty in achievingsuchcou-impedancematchingelementto obtain(3valuesap- plingmaybeconsiderable.proachingunity. Fig. 2b showsschematicallya sim- (d) Thermalnoisein GRantennae.BAE tech-ple matchingschemewherethe endof a baris cut to niquesoffernohopeof surpassingthequantumlimitform atunedbendingplate throughwhichthe signal until highmechanicalQ-factors,short samplingtimesis coupled. r

5 andultralow temperaturescanreducefluctuations(c) Noisein the excitationsignal. Conventionalre- in occupationnumberof the fundamentalmodeMT

entrantcavity transducersextractsignalinformation suchthat (M/) ~ i in the time r~.ThisrequiresQ toby measuringthe fractionalchangesin phaseshift satisfytheapproximaterelationcausedby themodulationof capacitanceby themo-

199

Page 4: A prototype back-action evading transducer suitable for gravitational radiation antennae

Volume91A, number4 PHYSICSLETTERS 6 September1982

urationdescribedhasadvantagesin seismicnoise iso-Q� l0~~r~T. lation. However,theuseof a singleresonantcircuit

Althoughultra low temperaturerefrigerationtech- for bothexcitationandreadout,has the disavantageniques,combinedwithhighQ sapphireorsiliconcrys- thatAM noisein the excitationsignalis enhanced.tals 1101,canenablethis inequalityto be satisfied,thetechnicaldifficulties in doingsoare significant I wishto thankM.J. Buckingham,A.G. Mannandunless~ canbereducedto ~l0~ 210 ~s. In the L.D. Mannfor usefuldiscussions.Thiswork was sup-absenceof thermalnoise,matchingconditionsfor the portedby the AustralianResearchGrantsCommittee.transducerrequire r5 ([3w~1, Themost realisticantennaconfigurationmight thenbeanoptimised Referencestransducerwith (3 0.1 usedwith an Al or Nb bar ofQ~ 108 at temperatures~ I K. [1] C.M. Caves,KS. Thorne,R.W.P.Drever, U.D. Sandberg

(e) Possibilityof reachingthe SQL. Braginskyhas andM. Ziemmermann,Rev.Mod. Phys.52 (1980) 341.

shownthat in the absenceof thermalnoisetheuncer- 12] K.S. Thorne, in: Theoreticalprinciplesin astrophysicsandrelativity, eds. N.R. Leibovitz, W.H. Reid andP.O.tainty~X1 in X1 is givenby Vandervoort(Universityof Chicago,1978).

= (Ah/mw)(�2/wQe), [3JW.G. Unruh, in: Gravitationalradiationand collapsedobjects,Lecturenotesin physics,VoL 124, ed.C.

whereA is theamplifiernoisenumber[11]. Thus, to Edwards(Springer,Berlin , 1980).

achievethe SQLrequiresQe �A~2/w.In practiceat- 141 V.1. PanovandF. Ja.Khalili, 9th mt. Conf. on Gen.Rd. andGray. Abstracts2 (1980)397.tainmentof the SQLrequiresanamplifier withA [5] W.W. Johnsonand M. Bocko,Phys.Rev.Lets. 47

~ 10 (suchasa GaAsFETor parametricamplifier) (1981) 1184.[12] anddueto the difficulty in obtaininghigh Q~ [6] E. Amaldi eta!.,NuovoCimento4C (1981) 295.

valueswith a small gap D, (needed to obtain a high [71D.G. Blair et a!., J. dePhys.Lett. 40 (1979)Li 13;13)it may benecessaryto use lowervaluesof ~ SeealsoW.C. Oelfkc,W.O. HamiltonandD. Darling,

IEEE Trans.MAG 17 (1981)853.that ~2/w ~ 10~. [8J D.G. Blair eta!.,in: Proc.22ndMarcelGrossmann

(1’) if l’~is simply an unmodulatedcarrier V0 Conf. on Gen.Re!. andGray.,ed. R. Ruffini, to beX coswt the device acts as a lineartransducerwithout published.backactionevasionproperties,butstill possessingthe [9] A.G. Mannand D.G. Blair, submittedto J. Phys.D.

advantageof reducedsensitivity to seismicnoise corn- 110] Kh.S. Bagdasanor,V.S. BraginskyandV.P. Mitrofonov,Soy. Phys.Crystallogr. 19 (1975)549.

paredwith conventionaltransducers. D.F. McGuiganeta!.,J. Low Temp.Phys.30 (1978)

In conclusion,a backactionevadingtransducer 621.

with sensitivityZ~sX1~ SQLappearsfeasiblefor fre- [11] C.M. Caves,in: Quantumoptics,experimentalgravita-quenciesw/2ir l0’~and&2/2 ir 109_~10b0Hz. tion andmeasurementtheory,eds.P. MeystreandMO.

Am noisein theexcitationsignalsourceSA(w) Scully (Plenum,New York) to be published.

shouldbereducedto �10 17 andthe microwaveam- [12] R.N. Jameseta!.,9th Int. Conf. on Gen.Re!. andGray.Abstracts2 (1980) 392.plifier shouldhavenoisenumberA ~ 10. The config-

200