A prostate MRI atlas of biochemical failures following ... · Radical prostatectomy (RP) and...

10
A prostate MRI atlas of biochemical failures following cancer treatment Mirabela Rusu a , John Kurhanewicz b , Ashutosh Tewari c , Anant Madabhushi a,* a Case Western Reserve University, Cleveland, Ohio; b University of California San Francisco, San Francisco, California; c Icahn School of Medicine at Mount Sinai Hospital, New York, New York; * Corresponding author ABSTRACT Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostate cancer (PCa). Despite advancements in radiation delivery and surgical procedures, RP and RT can result in failure rates as high as 40% and >25%, respectively. Treatment failure is characterized by biochemical recurrence (BcR), which is defined in terms of prostate specific antigen (PSA) concentrations and its variation following treatment. PSA is expected to decrease following treatment, thereby its presence in even small concentrations (e.g 0.2 ng/ml for surgery or 2 ng/ml over the nadir PSA for radiation therapy) is indicative of treatment failure. Early identification of treatment failure may enable the use of more aggressive or neo-adjuvant therapies. Moreover, predicting failure prior to treatment may spare the patient from a procedure that is unlikely to be successful. Our goal is to identify differences on pre-treatment MRI between patients who have BcR and those who remain disease-free at 5 years post-treatment. Specifically, we focus on (1) identifying statistically significant differences in MRI intensities, (2) establishing morphological differences in prostatic anatomic structures, and (3) comparing these differences with the natural variability of prostatic structures. In order to attain these objectives, we use an anatomically constrained registration framework to construct BcR and non-BcR statistical atlases based on the pre-treatment magnetic resonance images (MRI) of the prostate. The patients included in the atlas either underwent RP or RT and were followed up for at least 5 years. The BcR atlas was constructed from a combined population of 12 pre-RT 1.5 Tesla (T) MRI and 33 pre-RP 3T MRI from patients with BcR within 5 years of treatment. Similarly, the non-BcR atlas was built based on a combined cohort of 20 pre-RT 1.5T MRI and 41 pre-RP 3T MRI from patients who remain disease-free 5 years post treatment. We chose the atlas framework as it enables the mapping of MR images from all subjects into the same canonical space, while constructing both an imaging and a morphological statistical atlas. Such co-registration allowed us to perform voxel-by-voxel comparisons of MRI intensities and capsule and central gland morphology to identify statistically significant differences between the BcR and non-BcR patient populations. To assess whether the morphological differences are valid, we performed an additional experiment where we constructed sub-population atlases by randomly sampling RT patients to construct the BcR and non-BcR atlases. Following these experiments we observed that: (1) statistically significant MRI intensity differences exist between BcR and non-BcR patients, specifically on the border of the central gland; (2) statistically significant morphological differences are visible in the prostate and central gland, specifically in the proximity of the apex, and (3) the differences between the BcR and non-BcR cohorts in terms of shape appeared to be consistent across these sub-population atlases as observed in our RT atlases. Keywords: gland morphology, biochemical recurrence, MRI atlas, prostate cancer 1. DESCRIPTION OF PURPOSE Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment strategies for clinically localized prostate cancer (PCa), accounting for roughly 110 000 annual interventions in US alone. 1, 2 Despite the good prognosis associated with treating low grade PCa, disease recurrence following either treatment occurs frequently. At 5 years post treatment, biochemical recurrence (BcR) occurs in up to 40% of patients 3 undergoing RP and more than 25% of patients 4 treated via RT. BcR is generally defined in terms of PSA concentrations and its variations following treatment, although the absolute thresholds vary based on the treatment type. A PSA concentration > 0.2 ng/ml 3 indicates BcR following RP, while concentrations > 2 ng/ml 5 from the lowest value post-RT, also referred to as the PSA nadir, indicate BcR following RT. Medical Imaging 2014: Computer-Aided Diagnosis, edited by Stephen Aylward, Lubomir M. Hadjiiski, Proc. of SPIE Vol. 9035, 903513 · © 2014 SPIE · CCC code: 1605-7422/14/$18 · doi: 10.1117/12.2043775 Proc. of SPIE Vol. 9035 903513-1 DownloadedFrom:http://proceedings.spiedigitallibrary.org/on09/30/2014TermsofUse:http://spiedl.org/terms

Transcript of A prostate MRI atlas of biochemical failures following ... · Radical prostatectomy (RP) and...

Page 1: A prostate MRI atlas of biochemical failures following ... · Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostate cancer (PCa).

A prostate MRI atlas of biochemical failures following cancertreatment

Mirabela Rusua, John Kurhanewiczb, Ashutosh Tewaric, Anant Madabhushia,*

aCase Western Reserve University, Cleveland, Ohio; bUniversity of California San Francisco,San Francisco, California; cIcahn School of Medicine at Mount Sinai Hospital, New York, New

York; *Corresponding author

ABSTRACT

Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostatecancer (PCa). Despite advancements in radiation delivery and surgical procedures, RP and RT can result infailure rates as high as 40% and >25%, respectively. Treatment failure is characterized by biochemical recurrence(BcR), which is defined in terms of prostate specific antigen (PSA) concentrations and its variation followingtreatment. PSA is expected to decrease following treatment, thereby its presence in even small concentrations(e.g 0.2 ng/ml for surgery or 2 ng/ml over the nadir PSA for radiation therapy) is indicative of treatmentfailure. Early identification of treatment failure may enable the use of more aggressive or neo-adjuvant therapies.Moreover, predicting failure prior to treatment may spare the patient from a procedure that is unlikely to besuccessful. Our goal is to identify differences on pre-treatment MRI between patients who have BcR and thosewho remain disease-free at 5 years post-treatment. Specifically, we focus on (1) identifying statistically significantdifferences in MRI intensities, (2) establishing morphological differences in prostatic anatomic structures, and(3) comparing these differences with the natural variability of prostatic structures. In order to attain theseobjectives, we use an anatomically constrained registration framework to construct BcR and non-BcR statisticalatlases based on the pre-treatment magnetic resonance images (MRI) of the prostate. The patients included inthe atlas either underwent RP or RT and were followed up for at least 5 years. The BcR atlas was constructedfrom a combined population of 12 pre-RT 1.5 Tesla (T) MRI and 33 pre-RP 3T MRI from patients with BcRwithin 5 years of treatment. Similarly, the non-BcR atlas was built based on a combined cohort of 20 pre-RT1.5T MRI and 41 pre-RP 3T MRI from patients who remain disease-free 5 years post treatment. We chose theatlas framework as it enables the mapping of MR images from all subjects into the same canonical space, whileconstructing both an imaging and a morphological statistical atlas. Such co-registration allowed us to performvoxel-by-voxel comparisons of MRI intensities and capsule and central gland morphology to identify statisticallysignificant differences between the BcR and non-BcR patient populations. To assess whether the morphologicaldifferences are valid, we performed an additional experiment where we constructed sub-population atlases byrandomly sampling RT patients to construct the BcR and non-BcR atlases. Following these experiments weobserved that: (1) statistically significant MRI intensity differences exist between BcR and non-BcR patients,specifically on the border of the central gland; (2) statistically significant morphological differences are visiblein the prostate and central gland, specifically in the proximity of the apex, and (3) the differences between theBcR and non-BcR cohorts in terms of shape appeared to be consistent across these sub-population atlases asobserved in our RT atlases.

Keywords: gland morphology, biochemical recurrence, MRI atlas, prostate cancer

1. DESCRIPTION OF PURPOSE

Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment strategies for clinicallylocalized prostate cancer (PCa), accounting for roughly 110 000 annual interventions in US alone.1,2 Despitethe good prognosis associated with treating low grade PCa, disease recurrence following either treatment occursfrequently. At 5 years post treatment, biochemical recurrence (BcR) occurs in up to 40% of patients3 undergoingRP and more than 25% of patients4 treated via RT. BcR is generally defined in terms of PSA concentrationsand its variations following treatment, although the absolute thresholds vary based on the treatment type. APSA concentration > 0.2 ng/ml3 indicates BcR following RP, while concentrations > 2 ng/ml5 from the lowestvalue post-RT, also referred to as the PSA nadir, indicate BcR following RT.

Medical Imaging 2014: Computer-Aided Diagnosis, edited by Stephen Aylward, Lubomir M. Hadjiiski, Proc. of SPIE Vol. 9035, 903513 · © 2014 SPIE · CCC code: 1605-7422/14/$18 · doi: 10.1117/12.2043775

Proc. of SPIE Vol. 9035 903513-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/30/2014 Terms of Use: http://spiedl.org/terms

Page 2: A prostate MRI atlas of biochemical failures following ... · Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostate cancer (PCa).

(la) BcR Atlas Construction T (2) Voxel by Voxel Comparison

(3) 3D Morphologic Differences

1

1

(lb) Non BcR Atlas ConstructionFigure 1: MRI atlases are built for the BcR (1a) and non-BcR population (1b); (2) Statistical tests are applied toassess differences between corresponding voxels (pink and red) within the two atlases; (3) morphologic prostateshape comparison between and within the two populations are also performed.

The early prediction of recurrence is essential, as BcR is prognostic of disease progression, metastasis, anddisease-related mortality.6 Predicting which patients might experience BcR would enable the early administrationof more aggressive or neo-adjuvant therapies and may potentially improve patient outcome. Moreover, if obtainedprior to treatment, such predictions might facilitate choosing alternative therapies to spare the patient from aprocedure that is likely to fail.

Pre-treatment nomograms7–9 that employ statistical models based on patient specific risk criteria have beenintroduced to predict BcR post-treatment. For example, the Kattan nomograms7–9 predict 5 year cancer-freelikelihood following RP7 or RT8,9 by incorporating pre-treatment PSA, biopsy Gleason score and clinical stage.Additionally, Kattan nomograms predicting BcR post RT also include radiation dose. Other approaches usedMRI alone10 or in combination with magnetic resonance spectroscopy (MRS)11 or molecular profiles12 to improvethe prediction of BcR. These studies employ qualitative, reader-derived MRI measurements of disease, such asthe number of sextants involving the index lesion, tumor volume, extracapsular spread or seminal vesicle invasion.However, to our knowledge, no study to date has investigated characteristics on MRI that are correlated withBcR following RT or RP.

In this study, we focus on identifying imaging and morphological differences associated with BcR that arevisible on pre-treatment MRI between patients with and without BcR. The use of treatment planning MRIallows the study of differences independent of the treatment, while facilitating the early intervention to adjusttreatment.

In this work, we specifically test the hypothesis that differences exist in the anatomy and tissue appearanceof the prostate which may provide clues regarding BcR risk at 5 years after the treatment. Tiwari et. al.13,14

has shown that MRI can distinguish indolent from aggressive cancers, the latter of which are also more likely tocause BcR. In this work, we test whether BcR can be predicted by pre-treatment MRI intensity or gland shape.In order to identify these differences, the atlas construction framework previously introduced by us in15 willbe utilized to build BcR and non-BcR atlases. Statistical atlases have been previously utilized to characterizethe anatomical differences of brain16 and the prostate15 structures. We choose to use the atlas constructionframework as it allows us to generate a canonical representation of a population by mapping the MRI from allsubjects into the same space. The anatomically constrained registration ensures proper alignment of anatomic

Proc. of SPIE Vol. 9035 903513-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/30/2014 Terms of Use: http://spiedl.org/terms

Page 3: A prostate MRI atlas of biochemical failures following ... · Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostate cancer (PCa).

structures by combining anatomic surface and intensity similarity terms in the optimization process. Suchanatomic constraints are required to account for the large variability in appearance and shape of the prostateand its anatomical substructures, the central gland and peripheral zone.15 The resulting prostate statisticalatlas is composed of 1) a statistical MRI intensity atlas, 2) a morphological atlas of the prostate, and 3) amorphological atlas of the central gland.

The prostate atlas, AB , was constructed for the patients who had BcR following either treatment, whileANB included subjects without BcR at 5 years following treatment. Moreover, treatment-specific atlases wereconstructed from the cohorts stratified by treatment strategy. The RP atlas, AB(RP), was constructed from33 subjects with BcR within 5 years, while 41 patients were included in the non-BcR atlas, ANB(RP). TheRT BcR atlas, AB(RT), incorporated 12 patients, whereas 20 patients were included in the non-BcR atlas,ANB(RT). The atlas construction procedure allowed us to map both populations into the same canonical space,enabling voxel-by-voxel comparisons via the Wilcoxon test. To assess whether the morphologic and intensitydifferences ascertained between the BcR and non-BcR atlases for RT were significant, we created atlases fromsub-populations within the BcR and non-BcR cohorts and evaluated the differences between these populations.The objective of this experiment was to determine whether differences observed were real or by random chanceresulting from the natural variability of the prostate.

The rest of this paper is organized as follows. In Section 2, we describe the anatomically constrained registra-tion framework and its application to construct the BcR and non-BcR atlases. Section 3 introduces and discussesthe results of the various comparative experiments performed. Finally, in Section 4 we discuss the implicationsof our findings.

2. METHODOLOGY AND EXPERIMENTAL DESIGN

2.1 Preprocessing

Bias field correction via low-pass filtering approach described in17 was applied to the MRI prior to atlas construc-tion. Moreover, a histogram alignment was performed to correct the inter-patient MRI intensity drift, allowingfor per voxel MRI intensity comparisons.

2.2 Atlas construction framework

The construction of the BcR atlas AB and non-BcR atlas ANB was accomplished using the anatomically con-strained registration framework, previously described in.15 A summary of the atlas construction framework isprovided below, and the notations used in this work are outlined in Table 1. The framework uses an iterativeregistration approach to simultaneously create the MRI intensity and shape atlases while increasing the degreesof freedom of the optimized transformation from a simple affine to an elastic deformation.

In the first step, the outline of the prostate and central gland are obtained through interactive segmentationusing either 3D Slicer18 or MeVisLab.19 Next, a first atlas is created from all datasets once the MRI is centeredand isotropically scaled to ensure a constant prostate volume, defined here as the median prostatic volume inthe input cohort. The atlas is created via median filtering of the MRI intensity and the prostate and centralgland outline of all subjects. The framework generates 1) an MRI intensity atlas, denoted by AM , 2) a statisticalshape atlas of the prostate, Apr and 3) a statistical shape atlas of the central gland Acg. This first atlas servedas registration template for the second step, affine registration. Following the affine registrations, the atlas isupdated and used as a reference template for the deformable registration step. The final atlas is obtained viamedian filtering of the elastically aligned MRI.

A combination of MRI intensity similarity and regional overlap defined relative to the prostate and centralgland shapes are used to drive the registration of every subject Xi, ∀i ∈ {1, . . . , N} to the template atlas A:

ψ(A,X σi ) = I2(AM ,XM

i ) +∑

σ∈{cg,pr}

wσ · ψσ(Aσ,X σi ), (1)

where X σi , ∀i ∈ {1, . . . , N}, σ ∈ {M, cg, pr} represents the MRI intensity, the prostate (pr) and the central gland

(cg) shapes of subject Xi. A is the template atlas composed of Aσ, σ ∈ {M, cg, pr}. The mutual information,20

Proc. of SPIE Vol. 9035 903513-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/30/2014 Terms of Use: http://spiedl.org/terms

Page 4: A prostate MRI atlas of biochemical failures following ... · Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostate cancer (PCa).

Symbol Description

A Prostate atlas, composed of Aσ, σ ∈ {M,pr, cg}AM MRI intensity atlasAσ Statistical shape atlas, σ ∈ {pr, cg}X σ

i = (C, fi(c)),∀i ∈ {1, . . . , N}

Subject i scene with ∀c ∈ C, fi(c) represents data at loca-tion c, σ ∈ {M,pr, cg}

XMi MRI intensity scene of subject Xi

X σi Outline scene of the region σ ∈ {pr, cg} for subject Xi

I2 Mutual informationψσ Surface similarity metric for σ ∈ {pr, cg}wσ Weight associated with the surface σ ∈ {pr, cg}N, M Subject count in the BcR and non-BcR cohortAσ

θ Atlas σ ∈ {M,pr, cg} constructed from the cohort θ ∈{B,NB};

AσB→NB Difference between BcR and Non-BcR for σ ∈ {M,pr, cg}

AB BcR atlas of the combined RT + RP patient cohortANB Non-BcR atlas of the combined RT + RP patient cohortAB(RP) BcR atlas of the RP patient cohortANB(RP) Non-BcR atlas of RP patient cohortAB(RT) BcR atlas of the RT patient cohortANB(RT) Non-BcR atlas of RT patient cohortAB,k, k ∈ {1, ..., 4} Atlas obtained from a subset of BcR subjectsANB,l, l ∈ {1, ..., 4} Atlas constructed from a subset of non-BcR subjects

Table 1: Symbols and notations employed in this paper.

I2, is used to assess the similarity of MRI intensities, while ψσ(Aσ,X σi ) quantifies the alignment of the anatomic

structures σ ∈ {cg, pr}, and wσ is an empirically determined weight.15 In this work, we choose the normalizedsquared error to evaluate the regional alignment.

2.3 BcR and non-BcR atlas construction

The MRI, prostate shape and central gland shape atlases are constructed for the BcR and the non-BcR cohort,resulting in Aσ

θ σ ∈ {M,pr, cg}, θ ∈ {B,NB}. Moreover, due to the patient specific criteria for RT or RP, wenot only constructed the combined RP+RT atlases, denoted by AB and ANB respectively, but we also generatedthe individual atlases AB(RP) and ANB(RP) for the RP cohorts, and AB(RT) and ANB(RT) for the RT cohorts(see Table 1).

2.4 Experiments

We performed 3 experiments. In experiment E1 (see Section 2.4.1), we investigate the MRI differences thatcan be identified between patients with or without BcR within 5 years following treatment. Experiment E2(see Section 2.4.2) was performed to assess the statistically significant differences between the morphology ofthe prostate and central gland of the BcR vs non-BcR patients. Finally, experiment E3 (see Section 2.4.3) isdesigned to assess morphological differences within the BcR and non-BcR cohorts independently.

2.4.1 Experiment E1: Voxel-by-voxel comparison of MRI intensities

The atlas construction enables the mapping of all patients within a common canonical space, which allows usto test whether differences exist between MRI intensities of BcR and non-BcR patients on a per-voxel basis.The statistical significance of MRI differences is assessed using the non-parametric Wilcoxon test. Here, we testwhether the mean MRI intensity is statistically significantly different between the N subjects used to generateAB and the M subjects considered when creating ANB . The Wilcoxon test was performed for each voxel c ∈ C,yielding a statistical significance map. We chose a lower significance level α = 0.01 to account for the large

Proc. of SPIE Vol. 9035 903513-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/30/2014 Terms of Use: http://spiedl.org/terms

Page 5: A prostate MRI atlas of biochemical failures following ... · Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostate cancer (PCa).

number of comparisons done in this study. Rejection of the null hypothesis indicates a statistically significantdifference in the mean MRI intensities.

Moreover, we also computed the normalized mean difference between the BcR and non-BcR cohorts, anduses it to establish qualitative correlations with the statistical significance map, defined ∀c ∈ C by:

D(c) =1N

∑Ni=1 fB,i(c)− 1

M

∑Mj=1 fNB,j(c)

1M

∑Mj=1 fNB,j(c)

(2)

where fB,i(c) and fNB,i(c) represent the MRI intensities at location c for subject Xi from the BcR cohort and Xj

from the non-BcR cohort, respectively. Large D(c) are expected to correspond to voxels that show statisticallysignificant differences between the BcR and non-BcR patients, while values close to zero indicate similar MRIintensities when comparing BcR and non-BcR subjects.

2.4.2 Experiment E2: Variability in gland morphology

The atlas construction framework allowed us to generate the statistical shape of the prostate and central glandbased on the cohorts considered. Statistical shapes of the prostate and central gland were computed for both AB

and ANB , and distances between these gland shapes were evaluated to estimate the inter-population variability ingland morphology. The non-parametric Wilcoxon test is used to investigate whether the levelset representationsof the prostate surfaces and central glands are significantly different between AB and ANB using α = 0.01.The levelset representation provides a continuous version of the region segmentations corresponding to differentanatomic areas. We chose such a representation to limit boundary effects. Two tests were performed for eachvoxel c, comparing the N levelset representations of the prostate surface and central gland in AB to the Mlevelset representations in ANB . As in experiment E1, rejection of the null hypothesis indicates a statisticallysignificant difference in the structural morphology of the gland and anatomical regions.

2.4.3 Experiment E3: Prostate morphological variability assessed within cohort

In order to assess whether the morphological differences observed in experiment E2 are meaningful, we alsoconstructed four sub-atlases AB,k, k ∈ {1, ..., 4}, from a randomly selected subset of patients of the RT BcR set.Similarly, four sub-atlases ANB,l, l ∈ {1, ..., 4}, were constructed from the set of patients that did not have BcR.We estimate the intra-population variability in gland shape based on the four sub-atlases, and we estimate thevariability as the average distances to the statistical shape of the prostate gland within each of the sub-populationatlases.

2.5 Data Description

Table 2 summarizes the characteristics of the 106 patients included in this study. The 75 subjects included inthe RP group had 1) biopsy confirmed cancer, 2) surgery to remove the prostate and 3) 3 Tesla(T) T2 weightedMRI acquired prior to the surgery using an endo-rectal coil. BcR was defined by 0.2 ng/ml PSA concentration.The median follow up period for the BcR patients was 10 months (range: 0-46 months), while the non-BcRpatients had a median follow up period of 68 months (range 65-78).

The subjects included in the RT group had biopsy confirmed cancer, underwent either external beam RT orbrachytherapy, and had 1.5T T2 weighted endo-rectal MRI acquired prior to treatment. The 12 BcR subjectswere followed up for at least 20 months, with a median period of 59 months, and BcR was assessed at a medianperiod of 47 months post treatment using either of the following two criteria: 1) increased PSA concentration of2ng/ml or more above nadir PSA;5 or 2) medical evidence that PCa recurred as indicated by medical notes orfollow-up intervention, e.g. brachytherapy. The 20 non-BcR subjects either did not have BcR during the entirefollow-up period (median 87 months, with minimum 60 months of follow up) or had BcR after 5 years or morefollowing RT (median 89 months with range of 73-118 months).

Proc. of SPIE Vol. 9035 903513-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/30/2014 Terms of Use: http://spiedl.org/terms

Page 6: A prostate MRI atlas of biochemical failures following ... · Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostate cancer (PCa).

a0j 0

Z'0l £'0

0 z'o s'o e'o

Atlas Cohort Status CohortSize

MRIStrength

Grade ¶ Follow up \ Failure time \

AB(RP) RP BcR 33 3.0T 1,25,8,0 46.5 (18-73) 10 (0-46)ANB(RP) RP Non-BcR 41 3.0T 3,34,4,0 68 (65-78)

AB(RT) RT BcR 12 1.5T 8,3,1,0 59 (20-90) 47 (19-68)ANB(RT) RT Non-BcR 20 1.5T 13,6,0,1 87 (60-123) 89 (73-118)§AB RT+RP BcR 45 - - - -ANB RT+RP Non-BcR 61 - - - -

Table 2: Data description; ¶shows Gleason grade stratified as low (≤ 6), intermediate (7), high (≥ 8) and notavailable; \ time provided in months showing median and range in parenthesis; §Included in the non-BcR cohortwas a subgroup of patients who had BcR failure later than 5 years (between 73-118 months)

(a) (b) (c)(d)

(e) (f) (g) (h)

(i) (j)(k)

(l)

Figure 2: Per voxel differences are visible between the BcR and non-BcR patients. (a) AMB ; (b) AM

NB ; (c) normal-ized difference D (AM

B→NB) (eq 2); (d) p-value for AMB→NB ; (e) AM

B (RP); (f) AMNB(RP); (g) D(AM

B→NB(RP));(h) p-value for AM

B→NB(RP); (i) AMB (RT); (j) AM

NB(RT); (k) D(AMB→NB(RT)); (l) p-value for AM

B→NB(RT). Leg-end: (c,g,k) red, blue - large difference, green-close to 0 difference; (d,h,l) purple p-value ≤ 0.01, green p-value> 0.01.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1 Experiment E1: MRI intensity atlas

In experiment E1, we constructed the BcR atlases of the combined cohort AB (Figure 2a) and individual cohortsAB(RP) (Figure 2e) and AB(RT) (Figure 2i), as well as the non-BcR atlases of the combined cohort ANB

(Figure 2b) and individual cohorts ANB(RP) (Figure 2f) and ANB(RT) (Figure 2j). By constructing the atlases,the patients were projected in the same canonical space, which allowed us to make per-voxel comparisons of thesame anatomic regions. Sharp hypo-intense boundaries of the prostate and the central gland can be observedindicating a good alignment of the anatomic regions (Figure 2a,b,e,f). The smaller number of patients includedin the RT BcR cohort caused less defined boundaries within the MRI intensity atlas AM

B (RT) (Figure 2i).

Proc. of SPIE Vol. 9035 903513-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/30/2014 Terms of Use: http://spiedl.org/terms

Page 7: A prostate MRI atlas of biochemical failures following ... · Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostate cancer (PCa).

Metalmage'17141021.6

1.2

-0.8

40.

a4

.]141021.6

-0.8

0

0.

0.75

0.5

0.25

5.56a11

035

0.5

0.25

5.56a

0.75

0,5

-0.25

5,6e -11 1

1107505

025

2e-13

075

05

0.25

1.7e -13

075

05

0.25

1.7e -13

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Morphological distances viewed from different perspectives (a-b) AprB→NB ; (c-d) Acg

B→NB ; (e-f)Apr

B→NB(RP); (g-h) AcgB→NB(RP). Legend: red colors are used to depict large distances, while close to zero

distances are shown in green.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Significance of morphological distances viewed from different perspectives (a-b) AprB→NB ; (c-d)

AcgB→NB ; (e-f) Apr

B→NB(RP); (g-h) AcgB→NB(RP). Legend: purple indicates p-value ≤ 0.01 while green is used

for p-value > 0.01.

3.2 Experiment E1: MRI intensity differences

Figure 2 also shows the normalized difference D (eq. 2) and the p-value to assess the statistical significanceof these differences. The normalized mean differences revealed up to 30% differences between AM

B and AMNB .

Furthermore, some of these differences were found to be statistically significant (column 4 in Figure 2). Such sta-tistically significant differences were visible across the entire gland but were consistently found at the boundaryof the central gland and peripheral zone, in the proximity of the apex. The RP atlases showed more structuredstatistically significant differences in MRI intensity particularly at the boundary of the central gland and pe-ripheral zone. Such pronounced differences may be attributed to BcR in those patients that underwent radicalprostatecomy. Although MRI differences appear larger when comparing the AB(RT) and ANB(RT) (Figure 2k),these differences are not typically statistically significant, in part due to the small RT population size.

Proc. of SPIE Vol. 9035 903513-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/30/2014 Terms of Use: http://spiedl.org/terms

Page 8: A prostate MRI atlas of biochemical failures following ... · Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostate cancer (PCa).

lul (o)

(1) (D

o ) (a)

Figure 5: Prostate morphology in the RT cohort viewed from different angles. Colors represent (a-d) the statis-tical significance of APr

B→NB(RT) or (e-p) surface distances: (e-h) AprB→NB(RT); (i-l) BcR variability obtained via

the subatlas AB,k(RT); (m-p) non-BcR intra-class variability assessed via ANB,l(RT), k, l = 1, 2, . . . , 4. Legend:(a-d) purple indicates p-value ≤ 0.01 while green is used for p-value > 0.01. (e-p) Red colors are used to depictlarge distances, while close to zero distances are shown in green.

3.3 Experiment E2: Morphological differences in the prostate

Figure 3 shows the morphological distances for the combined RP+RT cohort (Figures 3a-d) and the RP cohortalone (Figures 3e-h). These morphological distances are measured by the Euclidean distance of the mean regionalshapes, σ ∈ {pr, cg}, obtained via the atlas construction framework. Figure 3 shows the apex of the prostate(Figures 3a,e), the prostate side (Figures 3b,f), the apex of the central gland (Figures 3c,g), and the side ofthe central gland (Figures 3d,h). Large differences are visible close to the apex for both the prostate and thecentral gland in both the RP+RT or RP cohorts. Moreover, statistically significant differences are apparentwhen comparing Apr

B→NB , AcgB→NB , A

prB→NB(RP), and Acg

B→NB(RP) (Figure 4). The statistically significantlydifferent regions are visible in the proximity of the apex both the prostate and central gland.

Figure 5 shows the statistically significant differences (Figures 5a-d) of prostate morphological distancesApr

B→NB(RT) (Figure 5e-h) for the patients who had RT. Distances of up to 2.67 mm can be observed between

Proc. of SPIE Vol. 9035 903513-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/30/2014 Terms of Use: http://spiedl.org/terms

Page 9: A prostate MRI atlas of biochemical failures following ... · Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostate cancer (PCa).

the prostate shape, indicating the existence of morphologic gland differences between the two populations.Statistically significant differences are visible on the rectal wall (Figure 5a) and on the prostate side (Figure 5c),while other regions do not show significant differences, attributable to the smaller population size.

3.4 Experiment E3: Morphological differences in the prostate

The intra-class variability in prostate shape was assessed for the BcR cohort via AB,k (Figures 5i-l) and non-BcRcohort via ANB,l (Figures 5m-p), k, l ∈ {1, 2, . . . , 4}. Figures 5i-p indicate that the intra-class variability in glandmorphology is larger in ANB(RT) compared to AB(RT). It is important to note that the inter-class morphologicdifferences (Figure 5e-h) surpass the intra-population variability, which barely reaches 2mm.

4. CONCLUDING REMARKS

In this work, we investigate imaging and morphological differences that may be associated with biochemicalrecurrence (BcR) following prostate cancer treatment by either radical prostatectomy or radiotherapy. In orderto investigate these differences, we constructed prostate atlases for patients with and without BcR 5 years posttreatment. Through the atlas construction, the pre-treatment MRI of the subjects were projected into the samecanonical space, which allowed us to perform per voxel comparisons within the spatially normalized images. Suchcomparisons were done relative to the MRI intensity and the prostate and central gland morphology.

Statistically significant MRI differences were observed between the BcR and non-BcR patients that hadradical prostatectomy. These differences were visible at the border of the central gland and peripheral zone closeto the apex. Similarly, statistically significant differences were observed near the apex in the atlas constructedfrom the combined radical prostatectomy and radiotherapy patients. On the other hand, the small sample size inthe radiotherapy cohort prevented us from observing statistical significant differences in MRI intensity betweenthe patients that had BcR and those that did not have BcR following radiation therapy. Moreover, morphologicdifferences in the prostate and the central gland shapes were localized towards the apex and were found tobe statistically significant between the BcR and non-BcR populations, regardless of treatment. Furthermore,morphological differences were observed on the rectal wall of the prostate in the radiation therapy patients whohad BcR versus those who did not have it 5 years post treatment. In the radiation therapy cohort, the differencesbetween the BcR and non-BcR subjects were larger than the variability within each individual cohort (BcR ornon-BcR) which suggests that the observed differences are meaningful. These results suggests that we may beable to predict early BcR even before treatment which may allow for early intervention via more aggressive orneo-adjuvant treatments.

The lack of precise mapping of cancer on MRI prevented us from quantifying the influence of cancer sizeand shape in assessing gland morphology variability. In future studies, we will attempt to carefully map theextent of tumor from the ex vivo prostatectomy specimens onto the pre-operative MRI for those patients inthe radical prostatectomy cohort. Such mapping could allow us to build more detailed atlases for predictingbiochemical recurrence following surgery. Moreover, we envision extending the current atlas to incorporateinformation pertaining to type of treatment, radiation dose, cancer grade or extra-capsular spread to predict riskof biochemical failure.

5. ACKNOWLEDGMENTS

Research reported in this publication was supported by the Department of Defense Postdoctoral Prostate CancerAward W81XWH-12-PCRP-PTA, National Cancer Institute of the National Institutes of Health under awardnumbers R01CA136535-01, R01CA140772-01, and R21CA167811-01; the National Institute of Diabetes andDigestive and Kidney Diseases under award number R01DK098503-02, the DOD Prostate Cancer SynergisticIdea Development Award (PC120857); the QED award from the University City Science Center and RutgersUniversity, the Ohio Third Frontier Technology development Grant. The content is solely the responsibility ofthe authors and does not necessarily represent the official views of the National Institutes of Health.”

Proc. of SPIE Vol. 9035 903513-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/30/2014 Terms of Use: http://spiedl.org/terms

Page 10: A prostate MRI atlas of biochemical failures following ... · Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostate cancer (PCa).

REFERENCES

[1] Djavan, B., Moul, J. W., Zlotta, A., Remzi, M., and Ravery, V., “PSA progression following radical prosta-tectomy and radiation therapy: new standards in the new Millennium.,” Eur. Urol. 43, 12–27 (Jan 2003).

[2] Penson, D. F., Chan, J. M., and , U. D. i. A. P., “Prostate cancer.,” J. Urol. 177, 2020–2029 (Jun 2007).

[3] Trock, B. J., Han, M., Freedland, S. J., Humphreys, E. B., DeWeese, T. L., Partin, A. W., and Walsh, P. C.,“Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemicalrecurrence after radical prostatectomy.,” J.A.M.A 299, 2760–2769 (Jun 2008).

[4] Rukstalis, D. B., “Treatment Options After Failure of Radiation Therapy - A Review,” Rev. Urol. 4, S12(2002).

[5] Roach III, M., Hanks, G., Thames Jr, H., Schellhammer, P., Shipley, W. U., Sokol, G. H., and Sandler, H.,“Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinicallylocalized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference,” Int. J.Radiat. Oncol. Biol. Phys. 65(4), 965–974 (2006).

[6] Uchio, E. M., Aslan, M., Wells, C. K., Calderone, J., and Concato, J., “Impact of biochemical recurrencein prostate cancer among US veterans.,” Arch Intern Med 170, 1390–1395 (Aug 2010).

[7] Kattan, M. W., Eastham, J. A., Stapleton, A. M., Wheeler, T. M., and Scardino, P. T., “A preoperativenomogram for disease recurrence following radical prostatectomy for prostate cancer.,” J. Natl. CancerInst. 90, 766–771 (May 1998).

[8] Kattan, M. W., Zelefsky, M. J., Kupelian, P. A., Scardino, P. T., Fuks, Z., and Leibel, S. A., “Pretreatmentnomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer,” J.Clin. Oncol. 18(19), 3352–3359 (2000).

[9] D’Amico, A. V., Whittington, R., Malkowicz, S. B., Fondurulia, J., Chen, M.-H., Kaplan, I., Beard, C. J.,Tomaszewski, J. E., Renshaw, A. A., Wein, A., and Coleman, C. N., “Pretreatment nomogram for prostate-specific antigen recurrence after radical prostatectomy or external-beam radiation therapy for clinicallylocalized prostate cancer,” J. Clin. Oncol. 17(1), 168 (1999).

[10] Fuchsjager, M. H., Pucar, D., Zelefsky, M. J., Zhang, Z., Mo, Q., Ben-Porat, L. S., Shukla-Dave, A., Wang,L., Reuter, V. E., and Hricak, H., “Predicting Post-External Beam Radiation Therapy PSA Relapse ofProstate Cancer Using Pretreatment MRI,” Int. J. Radiat. Oncol. Biol. Phys. 78(3), 743–750 (2010).

[11] Westphalen, A. C., Koff, W. J., Coakley, F. V., Muglia, V. F., Neuhaus, J. M., Marcus, R. T., Kurhanewicz,J., and Smith-Bindman, R., “Prostate cancer: prediction of biochemical failure after external-beam radiationtherapy - Kattan nomogram and endorectal MR imaging estimation of tumor volume,” Radiology 261(2),477–486 (2011).

[12] Shukla-Dave, A., Hricak, H., Ishill, N., Moskowitz, C. S., Drobnjak, M., Reuter, V. E., Zakian, K. L.,Scardino, P. T., and Cordon-Cardo, C., “Prediction of prostate cancer recurrence using magnetic resonanceimaging and molecular profiles.,” Clin. Cancer Res. 15, 3842–3849 (Jun 2009).

[13] Tiwari, P., Kurhanewicz, J., Rosen, M., and Madabhushi, A., “Semi supervised multi kernel (SeSMiK)graph embedding: identifying aggressive prostate cancer via magnetic resonance imaging and spectroscopy,”MICCAI 13(Pt 3), 666–73 (2010).

[14] Tiwari, P., Viswanath, S., Kurhanewicz, J., and Madabhushi, A., “Weighted combination of multi-parametric mr imaging markers for evaluating radiation therapy related changes in the prostate,” MICCAI, 80–91 (2011).

[15] Rusu, M., Bloch, B. N., Jaffe, C. C., Rofsky, N., Genega, E., Lenkinski, R., and Madabhushi, A., “Statistical3D Prostate Imaging Atlas Construction via Anatomically Constrained Registration,” in [SPIE MedicalImaging ], 8669 (2013).

[16] Evans, A., Collins, D., Mills, S., Brown, E., Kelly, R., and Peters, T., “3d statistical neuroanatomicalmodels from 305 MRI volumes,” in [Nuclear Science Symposium and Medical Imaging Conference ], 1813–1817 (1993).

[17] Cohen, M. S., DuBois, R. M., and Zeineh, M. M., “Rapid and effective correction of RF inhomogeneity forhigh field magnetic resonance imaging,” Human Brain Mapping 10(4), 204–211 (2000).

[18] Pieper, S., Halle, M., and Kikinis, R., “3D Slicer,” IEEE Int. Sym. on Biomed. Imaging , 632–635 (04 2004).

[19] http://www.mevislab.de/, “Mevislab.”[20] Pluim, J. P., Maintz, J. A., and Viergever, M. A., “Mutual-information-based registration of medical images:

a survey,” IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 986–1004 (2003).

Proc. of SPIE Vol. 9035 903513-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/30/2014 Terms of Use: http://spiedl.org/terms