A numerical Calculating Method for Apparent Resistivity of TEM Sounding

7
- 109 - http://www.j-es.org/ Scientific Journal of Earth Science December 2012, Volume 2, Issue 4, PP.109-115 A numerical Calculating Method for Apparent Resistivity of TEM Sounding Xiaoping Wu 1, 2# , Yunpeng Wu 3 1. China Non-ferrous Metals Resource Geological Survey, Beijing 100012, P.R. China 2. Beijing Donia Resources Co. Ltd., Beijing 100012, P.R. China 3. College of Computer Science & Technology of Chengdu University of Information Technology, Chengdu 610225, P.R. China #Email: [email protected] Abstract For the advantage of Stable signal and large detective depth of the Time Domain Electromagnetic Sounding, it is widely used currently for Mineral and Geological Structure Exploration. But in general, it is supposed some extremely conditions for processing and explaining the observed results. And it is very difficultly to fit that conditions we supposed. So we cannot get the exact processing and explaining of the observed results. We suggested a method by using Numerical Differential Calculating to obtain the apparent resistivity of TEM sounding in this paper. It can get the results close to the real Geo-Electrical section. We can simplify the explanations of the observed results. And we can get the Model Parameters for the inverse calculating easily. Keywords: TEM Sounding; Numerical Calculating; Numerical Differential; Apparent Resistivity; K Model 时间域电磁法视电阻率的一种数值计算方法 * 吴小平 1 2 ,吴云鹏 3 1. 中国有色金属矿产地质调查中心,北京 100012 2. 北京中色金地资源科技有限公司,北京 100012 3. 成都信息工程学院 计算机学院,四川 成都 610225 要: 主动源时间域电磁测深方法的主要优势在于其稳定的电磁响应信号和优越的勘探深度,特别是其对低阻薄层的敏感 反映。但传统的视电阻率计算方法是采用极端情况进行定义的,因而对极端条件的合适度与电磁响应结果的数据处理和解释 如何保持一致是一个很难确定的前提。本文建议采用一种直接利用观测结果进行 2 阶数值微分的方法来求解对应地点断面的 视电阻率。这种方法计算所得视电阻率能很好的与地点断面的真实电阻率对应。这就为时间域电磁测深结果的直接解释或为 反演初始模型参数选择提供了良好的基础。 关键词:时间域电磁测深法;数值计算;数值微分;视电阻率;K 模型 引言 时间域电磁测深方法是一种广泛应用于地球物理勘探的电磁测深方法 [6][7][8] 。这种方法利用电偶极子源或 磁偶极子源进行激励,在远离激励源的区域观测垂直磁场分量 [1][2][5] 。这种方法由于采用了人工的激励源,相 对采用天然电磁场的方法来说,观测信号的质量和稳定性都有很大的提高,但由于人工源的电磁场的复杂性 和电磁干扰,给观测结果的处理和解释增加困难,该方法由于采用远离激励源区的地点观测,近似将激励源 看成均匀的激励源场 [3][4][8][9] 。根据理论计算,激励源的激励波形采用阶跃波时的电磁响应可以用解析表达式 * 基金项目:1. 矿产资源与灾害探查湖南省高校科技创新团队(2008-244)。2. 博士点基金:200705331023. 湖南重大专项 基金:2008FJ10064. 有色资源与灾害探查湖南湖南省重点实验室(2004-32

description

For the advantage of Stable signal and large detective depth of the Time Domain Electromagnetic Sounding, it is widely used currently for Mineral and Geological Structure Exploration. But in general, it is supposed some extremely conditions for processing and explaining the observed results. And it is very difficultly to fit that conditions we supposed. So we cannot get the exact processing and explaining of the observed results. We suggested a method by using Numerical Differential Calculating to obtain the apparent resistivity of TEM sounding in this paper. It can get the results close to the real Geo-Electrical section. We can simplify the explanations of the observed results. And we can get the Model Parameters for the inverse calculating easily.

Transcript of A numerical Calculating Method for Apparent Resistivity of TEM Sounding

- 109 -

http://www.j-es.org/

Scientific Journal of Earth Science December 2012, Volume 2, Issue 4, PP.109-115

A numerical Calculating Method for Apparent

Resistivity of TEM Sounding Xiaoping

Wu

1, 2#, Yunpeng Wu

3

1. China Non-ferrous Metals Resource Geological Survey, Beijing 100012, P.R. China

2. Beijing Donia Resources Co. Ltd., Beijing 100012, P.R. China

3. College of Computer Science & Technology of Chengdu University of Information Technology, Chengdu 610225, P.R. China

#Email: [email protected]

Abstract

For the advantage of Stable signal and large detective depth of the Time Domain Electromagnetic Sounding, it is widely used

currently for Mineral and Geological Structure Exploration. But in general, it is supposed some extremely conditions for processing

and explaining the observed results. And it is very difficultly to fit that conditions we supposed. So we cannot get the exact

processing and explaining of the observed results. We suggested a method by using Numerical Differential Calculating to obtain the

apparent resistivity of TEM sounding in this paper. It can get the results close to the real Geo-Electrical section. We can simplify the

explanations of the observed results. And we can get the Model Parameters for the inverse calculating easily.

Keywords: TEM Sounding; Numerical Calculating; Numerical Differential; Apparent Resistivity; K Model

时间域电磁法视电阻率的一种数值计算方法*

吴小平 1,2,吴云鹏 3

1. 中国有色金属矿产地质调查中心,北京 100012

2. 北京中色金地资源科技有限公司,北京 100012

3. 成都信息工程学院 计算机学院,四川 成都 610225

摘 要:主动源时间域电磁测深方法的主要优势在于其稳定的电磁响应信号和优越的勘探深度,特别是其对低阻薄层的敏感

反映。但传统的视电阻率计算方法是采用极端情况进行定义的,因而对极端条件的合适度与电磁响应结果的数据处理和解释

如何保持一致是一个很难确定的前提。本文建议采用一种直接利用观测结果进行 2 阶数值微分的方法来求解对应地点断面的

视电阻率。这种方法计算所得视电阻率能很好的与地点断面的真实电阻率对应。这就为时间域电磁测深结果的直接解释或为

反演初始模型参数选择提供了良好的基础。

关键词:时间域电磁测深法;数值计算;数值微分;视电阻率;K 模型

引言

时间域电磁测深方法是一种广泛应用于地球物理勘探的电磁测深方法[6][7][8]。这种方法利用电偶极子源或

磁偶极子源进行激励,在远离激励源的区域观测垂直磁场分量[1][2][5]。这种方法由于采用了人工的激励源,相

对采用天然电磁场的方法来说,观测信号的质量和稳定性都有很大的提高,但由于人工源的电磁场的复杂性

和电磁干扰,给观测结果的处理和解释增加困难,该方法由于采用远离激励源区的地点观测,近似将激励源

看成均匀的激励源场[3][4][8][9]。根据理论计算,激励源的激励波形采用阶跃波时的电磁响应可以用解析表达式

* 基金项目:1. 矿产资源与灾害探查湖南省高校科技创新团队(2008-244)。2. 博士点基金:20070533102。3. 湖南重大专项

基金:2008FJ1006。4. 有色资源与灾害探查湖南湖南省重点实验室(2004-32)

- 110 -

http://www.j-es.org/

完整表示,但在电磁响应的解析表达式中含有非常规的概率函数或误差函数,给视电阻率的定义和计算带来

了一定的麻烦,一般采用泰勒级数展开方式[9][15][20][17][25],将时间域分成早期、中期和晚期几种情况来分别进

行求解。这就人为的将电磁响应的处理与解释工作加上了限制条件,可在实际应用观测中,往往不知道实际

条件是否符合,或部分符合人为划分的条件,这样就给资料的解释和处理工作带来了一定的困难。

1 电偶极源的时间域电磁响应及视电阻率的数值计算

如图 1 所示为一个放置在均匀半无限空间地面的电偶极子示意图[1][3][4][7][8],当使用阶跃波在电偶极子中

激励时,位于地面P点的垂直磁场的时间域电磁响应表达式为:

图 1 均匀半无限空间地面电偶极子

22

2

4

( ) 3 sin 2( ) (1 )

2 3

uz E

B t P uu u e

t r

(1)

式中 2 r

u

7

0

22 2 10

tt

(2)

我们在实际应用中,接收点通常采用不接地小回线框来检测垂直磁场变化率,若接收回线有效面积为S ,

线圈的匝数为 N ,由(1)式可以得到接收线圈的感应电动势为[5][7][8]

22

2

4

( ) 3 sin 2( ) ( ) (1 )

2 3

uz E

B t NSP ut NS u u e

t r

(3)

显然,由于上式中含有概率函数,无法直接计算出均匀半无限空间的电阻率值 。不过,我们可以通过

转换运算,推导求得均匀半无限空间的电阻率的解析表达式。

从(2)式我们可以得到:

du u

d ,

2

d

dt t

2

du du d u

dt d dt t

我们可以将(3)式两边同时对时间 t 求导即得:

2

5 2

4

sin( )

2 2

uENSPd t

u edt r t

(4)

- 111 -

http://www.j-es.org/

我们如果再对(4)式两边继续对时间 t 求导可以得到:

225 2 2

2 4 2

sin( )( 7)

4 2

uENSPd t

u u edt r t

(5)

为了便于表述,我们令:

1

( )d tV

dt

2

2 2

( )d tV

dt

联合(4),(5)两式,用(5)式两边去除(4)式两边得到:

2

2

1

7

2

V u

V t

(6)

2 2

1

2 7V

u tV

(7)

由(2)式可得: 2

2 0

2

ru

t

(8)

联合(7)式和(8)式,即可以直接求得均匀半空间的视电阻率为: 2

0

2

1

2 (2 7)

r

Vt t

V

(9)

(9)式中可以看到,均匀半空间电阻率值与观测点接收线圈感应电动势随时间的一阶、二阶导数值有

关,而我们实际观测了感应电动势随时间的变化曲线,因此,我们可以采用数值微分的方法来求取接收线圈

中感应电动势随时间的一阶和二阶微分,然后,利用(9)式即可以直接得到均匀半空间的电阻率。也就是

可以直接定义这一电阻率为非均匀半空间情形下的视电阻率。

2 传统方式的时间域晚期视电阻率与数值计算结果比较

传统的时间域电磁方法的视电阻率定义的基础是根据均匀半无限空间的电磁表达式,即(1)式,利用

泰勒级数将指数部分展开得出。晚期视电阻率的表达式为[8][5][12][9][22][25]: 2

3

0 0( )4 5 ( )

l E

s z

z

r PB

t tB t

(10)

对于均匀半无限空间电偶极子源采用阶跃波激励时的垂直磁场响应,我们可以利用(1)式计算,并绘

制图形如图 2 所示 12]。我们还可以利用(10)式计算出根据垂直磁场响应定义的晚期视电阻率,如图 3 所示。

从图 3 可以看到[12]:晚期视电阻率逐渐趋近于均匀半空间的真实电阻率,而在早、中期的视电阻率与均匀半

空间的真实视电阻率是有较大偏差的。

我们看到,在计算均匀半空间的垂直磁场时,我们没有加上任何的时间约束,就是说,(1)式表达的电

磁响应是适合全域时间范围的。我们利用(1)式计算的时间域的电磁响应,采用数值计算的方法,分别计

算各个时间点上的垂直磁场响应对时间的一阶、二阶导数,然后利用(9)式来计算视电阻率,这种利用数

值微分的方式计算的视电阻率如图 4 所示。从图 4 我们可以看到,在全域时间范围内,视电阻率与均匀半空

间的真实电阻率完全一致。

- 112 -

http://www.j-es.org/

10-3

10-2

10-1

100

101

102

103

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

时间

垂直

磁场

响应

图 2 均匀半无限空间垂直磁场响应

10-3

10-2

10-1

100

101

102

103

100

101

102

103

时间

晚期

视电

阻率

图 3 根据垂直磁场响应计算的晚期视电阻率图

10-3

10-2

10-1

100

101

102

103

101

102

103

利用数值微分法计算的视电阻率

时间

视电

阻率

图 4 利用数值微分法计算的均匀半空间视电阻率曲线

- 113 -

http://www.j-es.org/

3 实际应用分析

图 5 所示为一个 K 模型正演计算的电磁响应曲线图。模型参数为一个三层 K 模型:

1 1

2 2

3

100 60

200 40

100

M h m

M h m

M

10-6

10-5

10-4

10-4

10-3

10-2

10-1

100

时间

电磁

相应

电 磁相应曲线

图 5 K 模型电磁响应曲线图

10-6

10-5

10-4

101

102

103

时间

视电

阻率

视 电阻率曲线

传统方式计算的视电阻率

数值微分方法计算的视电阻率

图 6 K 模型的视电阻率曲线

图 6 是根据图 5 的电磁响应计算出来的视电阻率曲线图。从图中我们可以看到,采用传统的视电阻率计

算方法,晚期视电阻率逐步趋近于底层视电阻率,而在早期和中期很难反映上层的电阻率变化情况,而采用

数值微分的计算方法能够很直观反映上层的电阻率变化。

4 结语

时间域电磁测深方法因其较大的勘探深度而在当今向深部勘探挺进的时期被广泛的应用。但由于其观测

结果的复杂性,给解释工作带来很大的困难。我们通过采用数值微分的方法来计算时间域电磁测深的视电阻

- 114 -

http://www.j-es.org/

率,能够与实际地电断面很准确的一致,这为我们解释观测结果,或建立反演的初始模型提供了极大的方便。

采用数值微分计算方法来计算时间域电磁测深的视电阻率是一种确实可行的方法。

REFERENCES

[1] Carlos Flores, Sergio A. Peralta-Ortega Induced polarization with in-loop transient electromagnetic soundings: A case study of

mineral discrimination at El Arco porphyry copper, Mexico. Journal of Applied Geophyics, 2009, 68: 423-436

[2] M. Combrinck. Analysis of numerical differentiation methods applied to time domain electromagnetic (TDEM) geophysical data in

the S-layer differential transform. Computer & Geosciences, 2009, 35: 1563-1573

[3] Michael S. Zhdanov, Dmitriy A. Pavlov. Analysis and interpretation of anomalous conductivity and magnetic permeability effects

in time domain electromagnetic data Part II: Sμ-inversion. Journal of Applied Geophyics, 2001, 46: 235-248

[4] Efthimios Tartaras, Michael S. Zhdanov, Kazushige Wada, Akira Saito, Toshiaki Hara Fast Imaging of TDEM data based on

S-inversion. Journal of Applied Geophyics, 2000, 43: 15-32

[5] Xue G Q, Li X. Correction of TEM Early -Time sounding date[J]. Progress in Geophysics. (in Chinese), 2008, 23(1): 220-224

[6] Han Z H, Wei W B, Zhang W B. Study on the exploration depth of transient electromagnetic method in northern China coalfield[J].

Progress in Geophysics (in Chinese), 2008, 23(1): 237-241

[7] Teng J W.The core scientific problems and development direction for the contemporary geophysical research[J]. Progress in

Geophysics (in Chinese), 2008, 23(3): 637-640

[8] Xue G Q,Li X,Di Q Y. Research progress in TEM forward modeling and inversion calculation[J]. Progress in Geophysics (in

Chinese), 2008, 23(4): 1165-1172

[9] Wang H J. Time domain transient electromagnetism all time apparent resistivity translation algorithm. Chinese J. Geophys. (in

Chinese), 2008, 51(6): 1936-1942

[10] Xing G L, Wang H J, Yang S D. The response functions of electromagnetic wave logs in the 2-D axis-symmetric formation[J].

Chinese J. Geophys. (in Chinese), 2008, 51(3): 924-932

[11] Yang X, Pan H P. The simulation of cross-hole electromagnetic fields using FDTD method[J]. Progress in Geophysics (in Chinese),

2008, 23(2): 572-582

[12] A. A. Kaufman, G. V. Keller, Frequency And Transient Sounding, Elsevier Science Publishes B. V., 1983

[13] WU Xiao-ping, HE Ji-shan, LIU Jian-xin. The effect of the electromagnetic wave's impedance transform to the results of the

ground-probing-radar[J]. Progress in Geophysics (in Chinese), 2006, 21(1): 251-255

[14] YAN Yong-Li, MA Xiao-Bing, Yuan Guo-Ping, LI Yuan-Hou, KONG Xiang-Ru. Application of magnetotelluric method in

groundwater pollution detection on Asuwei refuse sanitary landfill. Chinese J. Geophys. (in Chinese), 2007, 50(6): 1863-1868

[15] Wu X P, Liu J X, Duan W H, etal. The effect of topography aberration on the pseudo-section of the dipole-dipole array resistivity

sounding. Progress in Geophys. (in Chinese), 2010, 25(2): 635-641, DOI: 10.3966/ j.issn.1004-2903.2010.02.037.

[16] Wang M, Deng M, Zhang Q S, etal. The technique of time synchronization operation to control marine electromagnetic emission.

Progress in geophys. (in Chinese), 2009, 24(4): 1493-1498, DOI: 10.3969/j.issn.1004- 2903. 2009.04.043

[17] Li X Y, Sun D, Jing Y Q, etal. Scanning analysis of effective by using generalized S transform. Progress in geophys. (in Chinese),

2009,24(5): 1696-1702, DOI: 10.3969/j.issn.1004-2903.2009.05.020

[18] Lin J Y, Tang J T, Ding M B,etal. Application of object oriented technology in geophysical electromagnetic visualization. Progress

in geophys. (in Chinese), 2009, 24(6): 2233-2241, DOI: 10.3969/j.issn.1004-2903.2009.06.043

[19] Xie W, Liu J X, Zhang D F, etal. Development of magnetotelluric data processingsoftware based on VC++. Progress in geophys. (in

Chinese), 2009, 24(6): 2242-2249, DOI: 10.3969/j.issn.1004-2903.2009.06.044

[20] Shi X X, Yan S, Fu J M, etal. Improvement for interpretation of central loop transient electromagnetic method. Chinese J.

geophys.(in Chinese), 2009, 52(7): 1931-1936, DOI: 10.3969/j.issn.0001-5733.2009.07.029

[21] Lei D. Studies and applications of 2D CSAMT modeling and inversion with a dipole source and topography. Chinese J. geophys.(in

Chinese), 2010, 53(4): 982-993, DOI: 10.3969/j.issn.0001-5733.2010.04.023

- 115 -

http://www.j-es.org/

[22] Wu X P, Liu J X, Duan W H, etal. A utilitarian method for the explanation of time domain electromagnetic sounding. Progress in

geophys. (in Chinese), 2010, 25(3): 898-903, DOI:10.3969/j.issn.1004-2903.2010.03.024

[23] QIN Qing-yan, WANG Xu-ben, MAO Li-feng. The Fixed-wing Airborne Transient Electromagnetic response of a magnetic

conductive layered medium. Progress in Geophysics. (in Chinese), 2011, V26(5): 1796-1801, DOI: 10.3969/j.issn.1004-2903.2011.

05. 035

[24] GUO You-gang, Alexander Simakov. A new method of strong anti-jamming using Electromagnetic induction. Progress in

Geophysics. (in Chinese),2011,V26(5): 1819-1823,DOI: 10.3969/j.issn.1004-2903.2011.05.038

[25] WU Xiao-ping, LIU Jian-xin. The Research method of error and correction for data processing in Transient Electromagnetic

sounding. Progress in Geophysics. (in Chinese), 2011, V26(6): 2171-2176, DOI: 10.3969/j.issn.1004-2903.2011.06.034

[26] LIU Jian-xin, TANG Wen-wu, HE Zhan-xiang, LIU Ying, TONG Xiao-zhong. Study on joint inversion method of one-dimensional

time-domain magnetic field and frequency-domain electric field. Progress in Geophysics. (in Chinese), 2011,V26(6): 2011-2017,

DOI: 10.3969/j.issn.1004-2903.2011.06.015

【作者简介】

吴小平(1964- ),男,湖南澧县人,博士,主要从事时间域电磁方法研究。Email: [email protected]