A Novel Design Theory Using Coupling Coefficient for the ZVS … · 2013. 10. 11. · the...

6
␠࿅ᴺ 㔚ሶᖱႎㅢାቇળ ቇᛛႎ THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF IEICE INFORMATION AND COMMUNICATION ENGINEERS WPT2012- (2012-) 㨇․⻠Ṷ㨉 㜞ᵄࡢࡄ࠾ࡠ࠻ ࠆࠃߦZVS⛎㔚⚿ߩวଥᢙ↪ࠍ⸘⸳ߚℂ⺰ ⚦⼱ 㧔ᩣ㧕↰ᚲ ޥ617-8555 ੩ㇺᐭ㐳ጟ੩Ꮢ᧲⿷1-10-1 E-mail: [email protected] ߒ߹ࠄߒቇ㓙ᛛⴚಽ㊁ߡߒߣ㜞ᵄࡢࡄ࠾ࡠ࠻ឭ໒ࠆߔ㧚ᦸᛛⴚࡢߡߒߣ⛎㔚ߦᦼᓙ ߔ㧚ឭࠆߔZVS⛎㔚ߦࡓ࠹ߡߒ㧘⚿วଥᢙ↪ࠍߚߒ⸳⸘ℂ⺰ߟߦࠆߓ⺰ߡ2ߩߟߟߦ࡞ߡ㧘વㅍ〒㔌㧘⟎㧘ኻะᐲ߇ࠇߙࠇߘߩᄌൻߚߒ႐วߔ␜ࠍ⸘⸳ߩ㧚⸃ᨆߪߢ㧘ឭࠆߔⶄᝄ࿁〝⸃ᨆ㧔MRA↪ࠍߡ㑆㗔ߣᵄᢙ㗔ߩ߅ߦߡ⸃ᨆࠆߔ㧚ᵄᢙ㗔⸃ᨆߪߢ㧘⺞ᵄ㡆⸃ᨆ㧔HRA㧕㧘F㡆⸃ᨆ FRAࠅࠃߦ․ࡓ࠹ࠆߔߦ߆ࠄ㧚⸃ᨆ⸳⸘ߦߠߚ10MHz⚖േታ㛎ߪߢ࡞ߥ࡞ࡊࡦߣ࡞GaN FET ↪ࠍࠅࠃߦ㧘વㅍ㔚ജ74.9Wࡓ࠹㔚ജല₸74.0%߇㆐ᚑࠍߣߎࠆ߈ߢታ⸽ࠆߔࡦ࠴࠶㧘㔚⏛⇇㡆㧘ⶄᝄ࿁〝㧘MRAHRAFRA㧘㒢ⷐ⚛ᴺ A Novel Design Theory Using Coupling Coefficient for the ZVS Resonant Wireless Power Transfer with High-Frequency Power Electronics Tatsuya HOSOTANI Murata Manufacturing Co., Ltd. Nagaokakyo-shi, Kyoto, 617-8555 Japan E-mail: [email protected] Abstract We advocate high-frequency power electronics as a new interdisciplinary technical field. We expect wireless power transfer technology. We present a novel design theory using coupling coefficient for the ZVS resonant wireless power transfer. We study the system design when for two coils a distance, a position, and an angle change. We analyze the system characteristics from the both sides of a time domain and a frequency domain by use of a multi-resonance analysis (MRA), a harmonic resonance analysis (HRA), and a F-parameter resonance analysis (FRA). In the 10MHz-class operation experiment, we use two simple loop coils and GaN FETs. We’ve achieved 74.9W of the transmission power, and 74.0% of the total power efficiency. We prove our proposed switching system is high efficiency system. Keyword Zero voltage switching, Electromagnetic field resonance, Multi-resonant circuit, MRA, HRA, FRA, Finite element method 1. ߓߪ ߦㄭᐕ㧘㡆⛎㔚ߩ㐿⊒ߪടㅦߡߒ[1]-[7] 2007ߦMITMassachusetts Institute of Technology⎇ߩⓥ⠪ ࠅࠃႎ๔ߚࠇߐᵄᢙ10MHz㧘〒㔌2mߩታ㛎ߪߢ㧘વㅍല₸ ߪ40~50%߇ߛ㔚ജല₸ߪ15%ߣ[6] 㧚৻ᣇ㧘╩⠪ߪࠄ1994 ߦ10MHz ࡦ࠴࠶ZVS zero voltage switching㧕㔚ᵹⶄᝄࡃࡦࠍ࠲㐿⊒ ߒ[8],[9] 㧘ⓨᔃ ↪ࠍߚ10MHz⚖ታ㛎ߡߦ㔚ജല₸77.7%㆐ᚑߡߒ[10] MITߩߢታ㛎ߪ2ߩߟ߇࡞ⓨ㑆⏛ߢ᳇⚿วߒ10MHz ߩ⚖ᝄ㔚ᵹࠅࠃߦ㔚ജવㅍߪߢࠈߎߣࠆߔ㧘ᚒߩޘታ㛎 ߦ߇ࠆߔ࠷࠶ࡇ࡞⊒ᝄⵝ⟎↪ࠍߡ㜞ᵄ㔚ᵹࠅ߅ߡߒ⛎㔚ജല₸ߪߊ߈ૐ㧚╩⠪ߪࠄ㧘⇇ߦవ㚟 ߌߡ㡆ᣇᑼߩࡦ࠴࠶⛎㔚㐿⊒ߒ㧘ታ↪ൻ ߦߚߌ㐿⊒ផㅴߡߒ㧚․↪ߥߪߡߒߦࠆߌ߅ߦࡓ࠹㔚ജല₸ߩߪᔅⷐਇนߢᣣ㧘᳃↢ᯏߚߒߣࠆࠁࠄ㔚᳇ᯏߦ ࠴࠶㔚Ḯⵝ⟎↪߇ߡࠇࠄ㧚╩⠪ߪࠄ㧘ⓨ㑆ߡߒଏ⛎ࡢࠆߔ⛎㔚߅ߦߡ߽ࡦ࠴࠶ᛛⴚߣߎࠆࡢࡄ࠾ࡠ࠻ᔕ↪ࠍߣߎࠆߔផㅴ ࠆߔ⛎㔚ߪߢ㧘વㅍ〝⏛ߦ᳇ㇱຠ↪ࠍ ߣߎࠆ߇࿎㔍ߥ႐ว߿㔚ജવㅍࡃ࠺ߦዊൻ߇ࠆࠇࠄ႐ว ߇ߊMHzߩ㜞ᵄേ߇ᦼᓙࠆࠇߐߩࠄࠇߎᢙᏪߪ㧘㕒⏛⇇㧘㕒㔚⇇ࡢࡄ߁࠾ࡠ࠻ ߣ㔚⏛ᵄ↪ࠍㅢାᛛⴚ⁜ߩߦߣࠆ߽⟎ઃࠇࠄߌ㧘ᣂ ߒޟ㜞ᵄࡢࡄ࠾ࡠ࠻ߣޠ߽⸒߈ߴ߁ቇ㓙ᛛ ߡߒߣࠆ߈ߢ߇ߣߎ߁ᧄⓂߪߢ㧘ᣂߒଔ୯ഃㅧ⋡ᜰߚߒߒቇ㓙ᛛⴚಽ㊁ ߡߒߣޟ㜞ᵄࡢࡄ࠾ࡠ࠻ࠍޠឭ໒ࠆߔ㧚ᦸ ᛛⴚࡢߡߒߣ⛎㔚ߦᦼᓙࠆߔ㧚㜞ല₸ߥ ߩࡓ࠹ታ↪ൻ⋡⊛ߡߒߣ㧘㡆ᣇᑼߩࡦ࠴࠶ߒ㧘⚿วଥᢙ↪ࠍߚߒ⸳⸘ℂ⺰ߟߦ ߓ⺰ߡ2ߩߟߟߦ࡞ߡ㧘વㅍ〒㔌㧘⟎㧘ᐲ ࠇߘߩ߇ࠇߙᄌൻߚߒ႐วߩ․ࡓ࠹⸃ᨆࠆߔ㧚ឭࠆߔᝄ࿁〝⸃ᨆ㧔MRAMulti-Resonance Analysis㧕㧘⺞ᵄ㡆⸃ ᨆ㧔HRAHarmonic Resonance Analysis㧕㧘 F㡆⸃ ᨆ㧔FRAF-parameter Resonance Analysis↪ࠍ ߡ[1]-[5] 㑆㗔ߣᵄᢙ㗔ߩ߅ߦߡ⸃ᨆࠆߔ㧚ታ㛎ߪߢ࡞ߥ࡞ࡊࡦߣ࡞GaN FET↪ࠍߚ10MHz⚖േ ࠃߦ㧘㜞ല₸ߥ㔚ജવㅍ߇น⢻ࠍߣߎߥታ⸽ࠆߔ17

Transcript of A Novel Design Theory Using Coupling Coefficient for the ZVS … · 2013. 10. 11. · the...

  • THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF IEICE INFORMATION AND COMMUNICATION ENGINEERS WPT2012- (2012- )

    ZVS

    617-8555 1-10-1 E-mail: [email protected]

    ZVS 2

    MRAHRA F

    FRA 10MHz GaN FET74.9W 74.0%

    MRA HRA FRA

    A Novel Design Theory Using Coupling Coefficient for the ZVS Resonant Wireless Power Transfer with High-Frequency Power Electronics

    Tatsuya HOSOTANI

    Murata Manufacturing Co., Ltd. Nagaokakyo-shi, Kyoto, 617-8555 Japan E-mail: [email protected]

    Abstract We advocate high-frequency power electronics as a new interdisciplinary technical field. We expect wireless power transfer technology. We present a novel design theory using coupling coefficient for the ZVS resonant wireless power transfer. We study the system design when for two coils a distance, a position, and an angle change. We analyze the system characteristics from the both sides of a time domain and a frequency domain by use of a multi-resonance analysis (MRA), a harmonic resonance analysis (HRA), and a F-parameter resonance analysis (FRA). In the 10MHz-class operation experiment, we use two simple loop coils and GaN FETs. We’ve achieved 74.9W of the transmission power, and 74.0% of the total power efficiency. We prove our proposed switching system is high efficiency system.

    Keyword Zero voltage switching, Electromagnetic field resonance, Multi-resonant circuit, MRA, HRA, FRA, Finite element method

    1. [1]-[7]

    2007 MIT Massachusetts Institute of Technology10MHz 2m

    40~50% 15% [6] 199410MHz ZVS zero voltage

    switching [8],[9]

    10MHz 77.7% [10]

    MIT 2 10MHz

    MHz

    2

    MRA Multi-Resonance AnalysisHRA Harmonic Resonance Analysis FFRA F-parameter Resonance Analysis [1]-[5]

    GaN FET 10MHz

    17

    Administrator This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.

  • 2. 2.1

    1

    3

    1973 Dr. Newell

    2.2 ZVS

    ZVS Optimum zero voltage switching

    [7],[8] 2.3

    10MHz GHz

    10kHz MHz

    10MHz 1% 10010000 100GHz

    3. 3.1

    MIT50

    2(a) 2(b)50

    50 50%50

    0 0 MHz

    ZVS 3.2 ZVS

    ZVS3

    np ns

    np nsLp Ls Lr Lrs

    Lmp Lms Cr CrsLC Lr Cr

    LC Lrs CrsQ1 Q2 Q3 Q4 FET

    Q3 Q4

    4. 4.1

    4 FET Q1 Q2vgs1 vgs2 vds1 vds2

    Cr ir FET Q3 Q4id3 id4 FET Q1 Q2 td

    Viir

    FET Q3 Q4

    Fig. 1 High-frequency power electronics.

    Fig. 2 A novel switching wireless power transfer system.

    Fig. 3 Multi-resonant ZVS wireless power transfer system using electromagnetic field resonant coupling coils.

    18

  • vo id3 id4FET

    tdZVS

    td ZVS D D= ton/Ts 0

    j ttjt coscoshcosh /sin/sinh tt (13)

    (b) Qe=0.5 e=

    0 tt /sinh (14) (c) Qe

    (a)(c)

    5. 5.1 Femtet®

    np nsLp Cp

    Fig. 4 Switching waveforms.

    Table 1 Equivalent input voltage vie and output voltage voe no state vie vio Q1 Q2 Q3 Q41 on-period 1 Vi vo on off on off2 on-period 2 Vi 0 on off off on3 off-period 1 0 0 off on off on4 off-period 2 0 vo off on off on5 deadtime 1 vied vo off off on off6 deadtime 2 vied 0 off off off on

    Fig. 5 Equivalent circuit with coupling coefficient k.

    19

  • np ns np=ns=5r=10cm h=5cm =2mm

    Femtet®

    dx=10cm6(a)(b)

    Lp=7.55 HCp=3.54pF Ri 678m (6)

    fr )MHz(8.30)2/(1 ppr CLf (15)

    dxk 7(a) 7(b)

    dx kLr Lp

    5.2 np ns

    ANSYS HFSS 830MHz fr(15) fr(12) (13) Ri

    10MHzCpa=30pF9 fr

    )MHz(0.10))(2/(1 pappr CCLf (16)

    8 9

    5.3 MRA/HRA/FRA [1]-[5]

    (MRA) (HRA) F (FRA)(MRA) 4

    2 Multi-resonant circuit

    Cr10

    HRA 2 FET

    visqf (t)

    1

    )sin())cos(1(212

    )(n

    sii

    isqf tnnnVV

    tv (17)

    ]))cos(1(2/)}cos(1[{cos 1 nn , ss T/2 (18)

    0viac(t)

    Ro Racviac(t) Rac

    )sin()/2()( tVtv siiac 2/2 oac RR (19) FRA LC

    F 1-1’F j s

    12

    101

    101

    101

    10

    11

    mp

    ir

    prp

    sL

    RsLsCsC

    F (20)

    1101

    10

    11101

    101

    12

    101

    acrs

    s

    isrs

    mss

    RsCsC

    RsL

    sLF (21)

    spall FFF (22) F Zall

    (= vo/Vi) Mall

    2111 / FFZall 11/1 FM all (23)

    Zall Im0

    (23)

    6. 6.1

    Femtet®

    Lp=7.55 H Cp=3.54pF Ri=678m Cr=30pFVi=50V fs=10MHz

    (a) Magnetic field analysis (b) Electric field analysis Fig.6 Electromagnetic field analysis near two resonant coils.

    0.0001

    0.001

    0.01

    0.1

    1

    0 20 40 60 80 100

    Cou

    plin

    g coe

    ffici

    ent

    Distance [cm] (a) Coupling coefficient k (b) Analytical model

    Fig.7 Coupling coefficient k for two resonant coils.

    0 [A/m]

    50

    0 [V/m]

    25Fig. 8 Impedance characteristics of a resonant coil.

    0 5 10 15 20 25 30Frequency [MHz]

    0

    5.0E3

    1.0E4

    1.5E4

    Res

    ista

    nce

    [

    0 5 10 15 20 25 30Frequency [MHz]

    0

    4.0E4

    8.0E4

    -4.0E4

    Rea

    ctan

    ce [

    Fig. 9 Impedance characteristics of a resonant coil with 30pF.

    Fig. 10 Multi-resonant circuit.

    20

  • Ro=50 dx 10 cm(23) Zall

    Rre Im11(a) (b) Rre

    fr dxdx=0.2m Im 0

    3 Im=0fr1 fr fr2

    Zall Mall12(a) (b) Zall Mall

    Mall dx=0.4mvo Po

    12(b) AC viac ACvoac Mall Vi=50VDC vo 13(a)

    SCAT ver. K.492

    DC-DC13(b)

    FET 100m Cds=100pF0.7V 13(a) (b)

    DC-DC AC-AC

    SCAT14(a) HFSS 10MHzk 14(b) SCAT

    70%MIT 15%

    7(a) 14(b) 10MHz

    6.2 k

    2kRo=50

    dx=20cm 0 20cm0 180deg HFSS (a)

    fr1 (b) fr2(1) dx=20cm (2) dx=20cm 10cm (3)

    dx=20cm 45deg. 15(1)(2)(3)fr1 fr2 2

    fr1fr2

    dx=20cm HFSS

    9.5 9.75 10 10.25 10.5120

    60

    0

    60

    120dx= 10cmdx= 20cmdx= 30cmdx= 40cmdx= 50cm

    9.5 9.75 10 10.25 10.51

    10

    100

    1000dx= 10cmdx= 20cmdx= 30cmdx= 40cmdx= 50cm

    (a) Resistance Rre (b) Reactance Im Fig.11 Resistance and reactance characteristics.

    9.5 9.75 10 10.25 10.51

    10

    100

    1000dx= 10cmdx= 20cmdx= 30cmdx= 40cmdx= 50cm

    9.5 9.75 10 10.25 10.50

    0.6

    1.2

    1.8dx= 10cmdx= 20cmdx= 30cmdx= 40cmdx= 50cm

    (a) Input impedance Zall (b) Voltage gain Mall Fig.12 Input impedance and voltage gain characteristics.

    0

    20

    40

    60

    80

    100

    9.5 9.75 10 10.25 10.5

    Out

    put

    volta

    ge [

    V]

    Frequency [MHz]

    dx= 10cmdx= 20cmdx= 30cmdx= 40cmdx= 50cm

    9.5 9.75 10 10.25 10.50

    20

    40

    60

    80

    100dx= 10cmdx= 20cmdx= 30cmdx= 40cmdx= 50cm

    Frequency [MHz]

    Out

    put V

    olta

    ge [V

    ]

    Frequency [MHz]

    (a) Proposed design theory (b) Switching simulation Fig.13 Output voltage by a proposed theory and a simulator.

    0.0001

    0.001

    0.01

    0.1

    10 20 30 40 50 60 70 80 90 100

    Cou

    plin

    g coe

    ffici

    ent

    Distance [cm]

    0

    20

    40

    60

    80

    9.5 9.75 10 10.25 10.5

    Effic

    ienc

    y [%

    ]

    Frequency [MHz]

    dx= 10cmdx= 20cmdx= 30cmdx= 40cmdx= 50cm

    (a) Whole power efficiency by SCAT (b) Coupling coefficient at 10MHzFig.14 Whole power efficiency and coupling coefficient.

    (1) dx = 20cm (Shift = 0cm, Rotate = 0deg.)

    (2) Shift = 10cm (dx = 20cm, Rotate = 0deg.)

    (3) Rotate = 45deg. (Shift = 0cm, dx = 20cm) (a) Low resonant frequency fr1 (b) High resonant frequency fr2

    Fig.15 Magnetic field analysis near two resonant coils.

    21

  • 10MHz k16(1) k

    16(2) 16(3)k

    k90deg k 0

    16(2) (3)

    SCAT

    17(a)(b) 70%16 17

    7. GaN FET 10MHz k

    GaN FET

    GaN FET100V 20A 0.21

    0.8V 6ns

    5cm1mm 2

    fs=8.2MHz Ro=5018

    60V 61.2V 74.9W73.3% 50V 51.0V

    52.0W 74.0%

    8.

    GaN FET 10MHz

    74.0% 74.9W

    [1] ZVS

    PE2012-17,pp.9-14 2012 10 . [2] ZVS

    MAG-12-103 2012. [3] ,“ ZVS

    , , WPT2012-5, 2012 . [4] T.Hosotani, I. Awai, “A Novel Analysis of ZVS Wireless Power Transfer System

    Using Coupled Resonators”, IEEE IMWS-IWPT Proc., pp.235-238, 2012. [5]

    WPT2011-22 2011. [6] A.Kurs, A.Karalis, R.Moffatt, J.D.Joannopoulos, P.Fisher, and M.Soljacic,

    Wireless Power Transfer via Strongly Coupled Magnetic Resonances, in Science Express on 7 June, vol.317, no.5834, pp.83-86, 2007.

    [7] , , , ,, The Institute of Electrical Engineers of Japan, vol.130, no.1,

    pp.84-92, 2010.

    [8] T.Hosotani, K.Harada, Y.Ishihara, T.Todaka, “A novel ZVS multi-resonant converter with rectifiers’ deadtime control operated in 20 MHz range”, IEEE INTELEC Proc., pp.115-122, 1994.

    [9] , , , , “ 10MHz, , vol.117-A, no.2, pp.140-147, 1997.

    [10] , , , , ,“10MHz DC-DC, , PE95-69, 1996.

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0 5 10 15 20

    Cou

    plin

    g coe

    ffici

    ent

    Shift [cm]

    dx= 10cmdx= 20cmdx= 30cmdx= 50cm

    -0.04

    -0.02

    0

    0.02

    0.04

    0 30 60 90 120 150 180

    Cou

    plin

    g co

    effic

    ient

    Rotate [deg]

    (a) Displacement (b) Rotation (dx=20cm) (1) Coupling coefficient k characteristics

    9.5 9.75 10 10.25 10.50

    20

    40

    60

    80Shift= 0cmShift= 10cmShift= 15cmShift= 20cm

    Frequency [MHz]

    Out

    put V

    olta

    ge [V

    ]

    9.5 9.75 10 10.25 10.50

    10

    20

    30

    40

    500deg30deg60deg90deg

    Frequency [MHz]

    Out

    put V

    olta

    ge [V

    ]

    (a) Displacement (b) Rotation (2) Output voltage vo characteristics (dx=20cm)

    9.5 9.75 10 10.25 10.50

    20

    40

    60

    80Shift= 0cmShift= 10cmShift= 15cmShift= 20cm

    Frequency [MHz]

    Out

    put p

    ower

    [W]

    9.5 9.75 10 10.25 10.50

    10

    20

    30

    40

    500deg30deg60deg90deg

    Frequency [MHz]

    Out

    put p

    ower

    [W]

    (a) Displacement (b) Rotation (3) Output power Po characteristics (dx=20cm)

    Fig.16 Power system characteristics by proposed theory.

    0

    20

    40

    60

    80

    9.5 9.75 10 10.25 10.5

    Effic

    ienc

    y [%

    ]

    Frequency [MHz]

    0deg30deg60deg90deg

    0

    20

    40

    60

    80

    9.5 9.75 10 10.25 10.5

    Effic

    ienc

    y [%

    ]

    Frequency [MHz]

    Shift= 0cmShift= 10cmShift= 15cmShift= 20cm

    (a) Displacement (dx=20cm) (b) Rotation Fig.17 Whole power efficiency characteristics by SCAT.

    0

    20

    40

    60

    80

    20 30 40 50 60

    Out

    put p

    ower

    [W

    ]

    Input voltage [V]

    0

    20

    40

    60

    80

    20 30 40 50 60

    Effic

    ienc

    y [%

    ]

    Input voltage [V]

    (a) Output power vo (b) Whole power efficiency Fig.18 Experimental whole power efficiency at 8.2MHz.

    22