A new method for first-principles calibration

20
A new method for first- principles calibration of water vapor Raman lidar Valentin Simeonov École polytechnique fédérale de Lausanne Switzerland

description

Overview Raman lidar as meteorological tool Lidar and Raman lidar principle Calibration problem New method for instrumental calibration Conclusion and perspectives

Transcript of A new method for first-principles calibration

Page 1: A new method for first-principles calibration

A new method for first-principles calibration of water vapor Raman lidar

Valentin Simeonov École polytechnique fédérale de Lausanne

Switzerland

Page 2: A new method for first-principles calibration

Overview

• Raman lidar as meteorological tool• Lidar and Raman lidar principle• Calibration problem• New method for instrumental calibration• Conclusion and perspectives

Page 3: A new method for first-principles calibration

Time resolution - 10 min, Vertical resolution - 30 m up to 4 km

‘Rain stop’Clouds/Fog < 500 m

Clouds, Rain

Noc

turn

al B

L

Conv

ectiv

e M

ixed

Lay

er

Resid

ual l

ayer

g/kg

Raman Lidar for Meteorological observations (RALMO) EPFL-MeteoSwiss

Page 4: A new method for first-principles calibration

How does a lidar work?

P0

I(R)

R

R

A

Laser

Telesccope

Spectral unit

2

1R

𝐼 (𝑅 )=

𝑃0 𝐴k𝑅2 𝛽 (𝑅 )𝛤 2 (𝑅 )

I - Signal magnitude P0 -Laser powerA- Telescope areak- Lidar efficiencyR- Distanceβ- Backscatter coefficientΓ - Atmospheric extinctionα- Extinction coefficientFOV- Telescope field of view

FOV

Γ (𝑅 )=−∫0

𝑅

𝛼 (𝑟 )𝑑𝑟

Page 5: A new method for first-principles calibration

Water vapor Raman lidar

𝜷=𝝈𝑵Quantitative determination

h -Planck constantν – light frequencyc – speed of lightλ – light wavelength

𝝀=𝒄𝝂

High selectivity

σ -Raman cross sectionN – molecular number density

𝐼 𝑋 (𝑅 )=𝑃0𝐴𝑅2 k 𝑋𝜎 𝑋𝑁 𝑋 (𝑅)Γ 𝐿(𝑅)Γ𝑅𝑋 (𝜆𝑋𝑅)

H2O

Wavelength-λ [nm]

Scatt

erin

g in

tens

ity

=

(R)

𝑪=𝝁 𝒌𝑵 𝟐𝝈𝑵 𝟐

𝒌𝑯𝟐𝑶𝝈𝑯𝟐𝑶

q(R) – Water vapor/air mixing ratio C – Calibration constantΔΓ – Differential atmospheric transmissionµ – Constant, converts H2O/N2 to H2O/air mixing ratio

Page 6: A new method for first-principles calibration

Calibration against a reference instrument(radiosonde)

Disadvantages• Different air volumes sampled• Different spatial and temporal resolution• Auxiliary information (T or T & P profiles ) needed • Additional systematic errors from the conversions -Relative humidity to mixing ratio -Dew point temperature to mixing ratio• ΔΓ included in C• Calibration not traceable to primary standards• Calibration accuracy limited by the reference

instrument accuracy

𝑪=𝒒𝒓𝒆𝒇 (𝑹)𝑰𝑵𝟐(𝑹)𝑰𝑯 𝟐𝑶(𝑹)

𝟏𝜟𝜞 𝝀𝑵 𝟐−𝝀𝑯 𝟐𝑶

Advantages• Simple• Easy comparison with the existing techniques

qref – Reference mixing ratio

Page 7: A new method for first-principles calibration

407 407.1 407.2 407.3 407.4 407.5 407.6 407.7 407.8 407.90.00E+00

5.00E-32

1.00E-31

1.50E-31

2.00E-31

2.50E-31

3.00E-31

3.50E-31

4.00E-31

4.50E-31

0

0.2

0.4

0.6

0.8

1

στ

Wavelength [nm]

Ram

an c

ross

secti

on σ

[cm

2] τ

Instrumental calibration

𝑪=𝝁 𝒌𝑵 𝟐𝝈𝑵 𝟐

𝒌𝑯𝟐𝑶𝝈𝑯 𝟐𝑶

𝑪(𝑹)=𝝁𝜼𝑵 𝟐𝜺𝑵 𝟐∫𝝉𝑵 𝟐 ( 𝝀 )𝝈𝑵𝟐 (𝝀 ,𝑹)𝒅 𝝀

𝜼𝑯𝟐𝑶𝜺𝑯𝟐𝑶∫𝝉𝑯 𝟐𝑶 (𝝀 )𝝈𝑯𝟐𝑶 (𝝀 ,𝑹)𝒅 𝝀

G. Vaughan et al. (1988)

Sherlock et al. (1999)

Is the lidar calibration constant constant?

𝑪(𝑹)=𝝁𝜼𝑵𝟐 (𝑹)𝜺𝑵 𝟐 ( 𝑹)∫𝝉𝑵 𝟐 (𝝀 ,𝑹 )𝝈𝑵 𝟐 ( 𝝀 ,𝑹)𝒅 𝝀

𝜼𝑯𝟐𝑶 (𝑹)𝜺𝑯𝟐𝑶(𝑹)∫𝝉𝑯𝟐𝑶 (𝝀 ,𝑹 )𝝈𝑯 𝟐𝑶 (𝝀 ,𝑹)𝒅 𝝀

η – Photodetector efficiencyε - Optics efficiencyτ - Spectral unit instrumentalfunction

Page 8: A new method for first-principles calibration

New instrumental calibration method

𝑪=𝝁𝜼𝑵 𝟐𝜺𝑵𝟐∫𝝉𝑵 𝟐 (𝝀 )𝝈𝑵 𝟐 (𝝀 )𝒅 𝝀

𝜼𝑯𝟐𝑶𝜺𝑯𝟐𝑶∫𝝉𝑯𝟐𝑶 (𝝀 )𝝈𝑯𝟐𝑶 ( 𝝀 )𝒅 𝝀

mX – mass of Xp – air pressureMa – molecular mass of airV – cell volumeT – air temperaturez – compressibility factor

LaserbeamDetection

 

   Cell

  Laser

 

       Ventilator

Gas inlet EvaporatorGas exit

Spectral unit

P, T RH

266 nm beam

D

FOV

“Telescope”

Optical fiber

=

Page 9: A new method for first-principles calibration

Experimental setup

Cell

Optical fiber

T, RH

Gas inletXYZ adjustablefiber holder

P sensor output

Beam output

Laser beam

Evaporator

Ventilator

T, RH

Laser beam

Page 10: A new method for first-principles calibration

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.40

2

4

6

8

10

12

14

16

f(x) = 6.89238116446633 x − 1.57246216539675R² = 0.998539174974694

Ratio of H2O/N2 Raman signals

Refe

renc

e sa

mpl

e m

ixin

g ra

tio [g

/kg]

Calibration function

Page 11: A new method for first-principles calibration

Parameter Value UncertaintyCell length [m] 1.8 ±0.001Cell width [m] 0.284 ±0.0005Cell height [m] 0.300 ±0.0005P [Pa] 97560 ±300Ma [kg/mol] 0.0289654 ±5.0.10-8

R [J/molK] 8.31447 ±1.10-7

T [K| 299.2 ±0.3Z 0.9971 ±0.0032Liquid water mass [g] from 0.40 to 2.32 ±0.01

MR g/kg Uncertainty % Calculated RH %

Measured RH%

2.387±0.058 2.42 10.66 11.926.182±0.0651 1.05 29.11 30.48.345±0.0712 0.85 38.76 39.4

10.714±0.0789 0.73 48.13 5013.414±0.0890 0.66 60.01 60.4

Experimental uncertainties

Page 12: A new method for first-principles calibration

High resolution Raman lidar

Water vapor mixing ratioSpatial resolution 1.2 mTemporal resolution 1 sOperational distance 50-500mWhole hemisphere scanning ability

Page 13: A new method for first-principles calibration

0 2 4

Horizontal wind speed

[m/s]0 180

Wind direction

[°]-1 0 1

Vertical wind

[m/s]23 24 25

v

[°C]

28/08/08 18:4528/08/08 19:00

Lidar

Sodar

Lake internal boundary layer

Page 14: A new method for first-principles calibration

Conclusion

Results:• New method for first-principle calibration of a Raman lidar proposed• High accuracy and precision of the calibration constant possible• Calibration constant potentially traceable to primary standard of mass ?

Potential applications:

Operational water vapor observations for weather nowcasting and climatology

Use as reference instrument for water vapor mixing ratio profiling in:• balloon sonde tests and intercomparison• GPS water vapor calibration

Page 15: A new method for first-principles calibration

1

2

3

HRSRL spectral unit

Page 16: A new method for first-principles calibration

Laser

Laser Power Supply

Water Vapor spectral unit

Aerosol / Temperature spectral unit

Lidar Windows

Laser Beam

Telescope array Beam Expander

2005 mm

Raman lidar for meteorological observations RALMO

Water vaporTemperatureAerosolTime resol- 30 minSpatial resolution 30-300mDistance rangeDay 5 kmNight 12 km

Page 17: A new method for first-principles calibration

Transciever RALMO

TransmitterNd:YAG laser400 mJ & 355 nm30 Hz rep. rateBeam expander 15 X

ReceiverMatrix telescope offour mirrors30 cm in diameter0.2 mrad FOV

Page 18: A new method for first-principles calibration

Polychromator RALMO

Page 19: A new method for first-principles calibration

RALMO specifications

•Distance range 150 m-up to 5 km day/ 12km night•Temporal resolution 30 min (optional 10 min)• Spatial resolution - variable 15-300 m•Detection limit water vapor 0.05 g/kg•Temperature resolution 0.5 K•Aerosol extinction and backscatter coefficients at 355 nm•Statistical error < 10 %•Automatic operation and data treatment•Eye safe

•Water vapor channel -Experimental operation since 2007-Fully operational since 2008•Temperature/aerosol channel operational since 2009

Page 20: A new method for first-principles calibration

• Stainless steel- low wall deposition• Can be evacuate to 10-4 torr • Volume 72 liters• Designed for precise weighing of dry air mass (uncertainty 0.02%)• Total uncertainty of the mixing ratio < 0.05%• Temperature stabilization from -30° C to +40°C (double-wall cell)• Signal duration up to 200 ns

New calibration cell- design