indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell...

124
A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of Planar N =4 SYM Jacob L. Bourjaily Niels Bohr Institute based on work in collaboration with N. Arkani-Hamed, F. Cachazo, A. Goncharov, A. Postnikov, and J. Trnka [arXiv:1212.5605], [arXiv:1212.6974] Friday, 29 th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Transcript of indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell...

Page 1: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Jacob L. BourjailyNiels Bohr Institute

based on work in collaboration with

N. Arkani-Hamed, F. Cachazo, A. Goncharov, A. Postnikov, and J. Trnka

[arXiv:1212.5605], [arXiv:1212.6974]

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 2: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Organization and Outline

1 Spiritus MovensA Simple, Practical Problem in Quantum ChromodynamicsThe Shocking Simplicity of Scattering Amplitudes (a parable)

2 A New Class of Physical Observables: On-Shell FunctionsBeyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

3 The On-Shell Analytic S-Matrix: All-Loop Recursion RelationsBuilding-up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

4 The Combinatorial Simplicity of Planar N =4 SYMCombinatorial Classification of On-Shell Functions in N =4Canonical Coordinates, Computation, and the Positroid Stratification

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 3: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

A Simple, Practical Problem in Quantum ChromodynamicsThe Shocking Simplicity of Scattering Amplitudes (a parable)

Supercomputer Computations in Quantum ChromodynamicsConsider the amplitude for two gluons to collide and produce four: gg→gggg.Before modern computers, this would have been computationally intractable

220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challengeusing every theoretical tool available

and the world’s best supercomputers

final formula fit into 8 pages

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 4: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

A Simple, Practical Problem in Quantum ChromodynamicsThe Shocking Simplicity of Scattering Amplitudes (a parable)

Supercomputer Computations in Quantum ChromodynamicsConsider the amplitude for two gluons to collide and produce four: gg→gggg.Before modern computers, this would have been computationally intractable

220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challengeusing every theoretical tool available

and the world’s best supercomputers

final formula fit into 8 pages

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 5: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

A Simple, Practical Problem in Quantum ChromodynamicsThe Shocking Simplicity of Scattering Amplitudes (a parable)

Supercomputer Computations in Quantum ChromodynamicsConsider the amplitude for two gluons to collide and produce four: gg→gggg.Before modern computers, this would have been computationally intractable

220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challengeusing every theoretical tool available

and the world’s best supercomputers

final formula fit into 8 pages

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 6: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

A Simple, Practical Problem in Quantum ChromodynamicsThe Shocking Simplicity of Scattering Amplitudes (a parable)

Supercomputer Computations in Quantum ChromodynamicsConsider the amplitude for two gluons to collide and produce four: gg→gggg.Before modern computers, this would have been computationally intractable

220 Feynman diagrams, thousands of terms

In 1985, Parke and Taylor took up the challengeusing every theoretical tool available

and the world’s best supercomputers

final formula fit into 8 pages

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 7: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

A Simple, Practical Problem in Quantum ChromodynamicsThe Shocking Simplicity of Scattering Amplitudes (a parable)

The Discovery of Incredible, Unanticipated SimplicityThey soon guessed a simplified form of the amplitude (checked numerically):

—which naturally suggested the amplitude for all multiplicity!

=〈a b〉4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 6〉〈6 1〉δ2×2(λ·λ)

(≡δ2×2( n∑

a=1

λαa λαa))

Here, we have used spinor variables to describe the external momenta:

λ11

λ21

pµa

7→ pααa ≡ pµaσααµ

=

(p0

a + p3a p1

a−ip2a

p1a+ip2

a p0a− p3

a

)

≡ λαa λαa

⇔ “ a〉[a ”

Notice that pµpµ=det(pαα)

=0 for massless particles.

which is made manifest

The (local) Lorentz group, SL(2)L×SL(2)R, acts on λa and λa, respectively.The Grassmannian G(k, n): the linear span of k vectors in Cn.Momentum conservation becomes thegeometric statement:

λ⊂ λ⊥ and λ⊂λ⊥.

Thus, Lorentz invariants must be constructed out of determinants:

〈a b〉≡ det(λa, λb), [a b]≡ det(λa, λb)

λβbThe action of the little group corresponds to:

(λa, λa

)7→ (ta λa, t–1

a λa)

: Ψhaa 7→ t–2ha

a Ψhaa

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 8: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

A Simple, Practical Problem in Quantum ChromodynamicsThe Shocking Simplicity of Scattering Amplitudes (a parable)

The Discovery of Incredible, Unanticipated SimplicityThey soon guessed a simplified form of the amplitude (checked numerically):

—which naturally suggested the amplitude for all multiplicity!

=〈a b〉4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉 · · · 〈n 1〉δ2×2(λ·λ)

(≡δ2×2( n∑

a=1

λαa λαa))

Here, we have used spinor variables to describe the external momenta:

λ11

λ21

pµa

7→ pααa ≡ pµaσααµ

=

(p0

a + p3a p1

a−ip2a

p1a+ip2

a p0a− p3

a

)

≡ λαa λαa

⇔ “ a〉[a ”

Notice that pµpµ=det(pαα)

=0 for massless particles.

which is made manifest

The (local) Lorentz group, SL(2)L×SL(2)R, acts on λa and λa, respectively.The Grassmannian G(k, n): the linear span of k vectors in Cn.Momentum conservation becomes thegeometric statement:

λ⊂ λ⊥ and λ⊂λ⊥.

Thus, Lorentz invariants must be constructed out of determinants:

〈a b〉≡ det(λa, λb), [a b]≡ det(λa, λb)

λβbThe action of the little group corresponds to:

(λa, λa

)7→ (ta λa, t–1

a λa)

: Ψhaa 7→ t–2ha

a Ψhaa

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 9: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

A Simple, Practical Problem in Quantum ChromodynamicsThe Shocking Simplicity of Scattering Amplitudes (a parable)

The Discovery of Incredible, Unanticipated SimplicityThey soon guessed a simplified form of the amplitude (checked numerically):

—which naturally suggested the amplitude for all multiplicity!

=〈a b〉4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉 · · · 〈n 1〉δ2×2(λ·λ)

(≡δ2×2( n∑

a=1

λαa λαa))

Here, we have used spinor variables to describe the external momenta:

λ11

λ21

pµa 7→ pααa ≡ pµaσααµ =

(p0

a + p3a p1

a−ip2a

p1a+ip2

a p0a− p3

a

)≡ λαa λαa ⇔ “ a〉[a ”

Notice that pµpµ=det(pαα)=0 for massless particles.

which is made manifest

The (local) Lorentz group, SL(2)L×SL(2)R, acts on λa and λa, respectively.

The Grassmannian G(k, n): the linear span of k vectors in Cn.Momentum conservation becomes thegeometric statement:

λ⊂ λ⊥ and λ⊂λ⊥.

Thus, Lorentz invariants must be constructed out of determinants:

〈a b〉≡ det(λa, λb), [a b]≡ det(λa, λb)

λβb

The action of the little group corresponds to:(λa, λa

)7→ (ta λa, t–1

a λa): Ψha

a 7→ t–2haa Ψha

aFriday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 10: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

A Simple, Practical Problem in Quantum ChromodynamicsThe Shocking Simplicity of Scattering Amplitudes (a parable)

The Discovery of Incredible, Unanticipated SimplicityThey soon guessed a simplified form of the amplitude (checked numerically):

—which naturally suggested the amplitude for all multiplicity!

=〈a b〉4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉 · · · 〈n 1〉δ2×2(λ·λ)

(≡δ2×2( n∑

a=1

λαa λαa))

Here, we have used spinor variables to describe the external momenta:

λ11

λ21

λ≡

]λ11

λ21

(λ1

1 λ12 λ1

3 · · · λ1n

λ21 λ2

2 λ23 · · · λ2

n

)

≡(λ1

λ2

)∈G(2, n)

λ≡

λ11

λ21

(

λ11λ2

1

λ11 λ1

2 λ13 · · · λ1

n

λ21 λ2

2 λ23 · · · λ2

n

λ11λ2

1

)

Notice that pµpµ=det(pαα)=0 for massless particles.

which is made manifest

The (local) Lorentz group, SL(2)L×SL(2)R, acts on λa and λa, respectively.

The Grassmannian G(k, n): the linear span of k vectors in Cn.Momentum conservation becomes thegeometric statement:

λ⊂ λ⊥ and λ⊂λ⊥.

Thus, Lorentz invariants must be constructed out of determinants:

〈a b〉≡ det(λa, λb), [a b]≡ det(λa, λb)

λβb

The action of the little group corresponds to:(λa, λa

)7→ (ta λa, t–1

a λa): Ψha

a 7→ t–2haa Ψha

aFriday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 11: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

A Simple, Practical Problem in Quantum ChromodynamicsThe Shocking Simplicity of Scattering Amplitudes (a parable)

The Discovery of Incredible, Unanticipated SimplicityThey soon guessed a simplified form of the amplitude (checked numerically):

—which naturally suggested the amplitude for all multiplicity!

=〈a b〉4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉 · · · 〈n 1〉δ2×2(λ·λ)

(≡δ2×2( n∑

a=1

λαa λαa))

Here, we have used spinor variables to describe the external momenta:

λ11

λ21

λ≡

]λ11

λ21

(λ1 λ2 λ3 · · · λn

)≡(λ1

λ2

)∈G(2, n)

λ≡

λ11

λ21

(

λ11

λ1 λ2 λ3 · · · λn

λ11

)Notice that pµpµ=det(pαα)=0 for massless particles.

which is made manifest

The (local) Lorentz group, SL(2)L×SL(2)R, acts on λa and λa, respectively.

The Grassmannian G(k, n): the linear span of k vectors in Cn.

Momentum conservation becomes thegeometric statement:

λ⊂ λ⊥ and λ⊂λ⊥.

Thus, Lorentz invariants must be constructed out of determinants:

〈a b〉≡ det(λa, λb), [a b]≡ det(λa, λb)

λβbThe action of the little group corresponds to:

(λa, λa

)7→ (ta λa, t–1

a λa)

: Ψhaa 7→ t–2ha

a Ψhaa

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 12: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

A Simple, Practical Problem in Quantum ChromodynamicsThe Shocking Simplicity of Scattering Amplitudes (a parable)

The Discovery of Incredible, Unanticipated SimplicityThey soon guessed a simplified form of the amplitude (checked numerically):

—which naturally suggested the amplitude for all multiplicity!

=〈a b〉4

〈1 2〉〈2 3〉〈3 4〉〈4 5〉 · · · 〈n 1〉δ2×2(λ·λ)

(≡δ2×2( n∑

a=1

λαa λαa))

Here, we have used spinor variables to describe the external momenta:

λ11

λ21

λ≡

]λ11

λ21

(λ1 λ2 λ3 · · · λn

)≡(λ1

λ2

)∈G(2, n)

λ≡

λ11

λ21

(

λ11

λ1 λ2 λ3 · · · λn

λ11

)Notice that pµpµ=det(pαα)=0 for massless particles.

which is made manifest

The (local) Lorentz group, SL(2)L×SL(2)R, acts on λa and λa, respectively.The Grassmannian G(k, n): the linear span of k vectors in Cn.

Momentum conservation becomes thegeometric statement: λ⊂ λ⊥ and λ⊂λ⊥.

Thus, Lorentz invariants must be constructed out of determinants:

〈a b〉≡ det(λa, λb), [a b]≡ det(λa, λb)

λβbThe action of the little group corresponds to:

(λa, λa

)7→ (ta λa, t–1

a λa)

: Ψhaa 7→ t–2ha

a Ψhaa

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 13: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Broadening the Class of Physically Meaningful FunctionsWe are interested in the class of functions involving only observable quantities

unitarity dictates that we marginalize over unobserved states

—integrating

over the Lorentz-invariant phase space (“LIPS”)

for each particle I, and

summing over the possible states

(helicities, masses, colours, etc.).

AL(. . . , I)×AR(I, . . .)

≡ 4×nV

3×nI

4

= number of excess δ-functions(= minus number of remaining integrations)

> 0

⇒ (nδ) kinematical constraints

= 0

⇒ ordinary (rational) function

< 0

⇒ ( nδ) non-trivial integrations

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 14: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Broadening the Class of Physically Meaningful FunctionsWe are interested in the class of functions involving only observable quantities

unitarity dictates that we marginalize over unobserved states

—integrating

over the Lorentz-invariant phase space (“LIPS”)

for each particle I, and

summing over the possible states

(helicities, masses, colours, etc.).

AL(. . . , I)×AR(I, . . .)

≡ 4×nV

3×nI

4

= number of excess δ-functions(= minus number of remaining integrations)

> 0

⇒ (nδ) kinematical constraints

= 0

⇒ ordinary (rational) function

< 0

⇒ ( nδ) non-trivial integrations

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 15: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Broadening the Class of Physically Meaningful FunctionsWe are interested in the class of functions involving only observable quantities

Internal Particles: locality dictates that we multiply each amplitude, andunitarity dictates that we marginalize over unobserved states—integratingover the Lorentz-invariant phase space (“LIPS”) for each particle I, andsumming over the possible states (helicities, masses, colours, etc.).∑

states I

∫d3LIPSI AL(. . . , I)×AR(I, . . .)

≡ 4×nV

3×nI

4

= number of excess δ-functions(= minus number of remaining integrations)

> 0

⇒ (nδ) kinematical constraints

= 0

⇒ ordinary (rational) function

< 0

⇒ ( nδ) non-trivial integrations

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 16: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Broadening the Class of Physically Meaningful FunctionsWe are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, Av, connected by any numberof internal particles, i∈ I, forming a graph Γ called an “on-shell diagram”.

unitarity dictates that we marginalize over unobserved states—integratingover the Lorentz-invariant phase space (“LIPS”) for each particle I, andsumming over the possible states (helicities, masses, colours, etc.).

fΓ ≡∏i∈I

(∑hi,ci,mi,···

∫d3LIPSi

)∏v

Av

≡ 4×nV

3×nI

4

= number of excess δ-functions(= minus number of remaining integrations)

> 0

⇒ (nδ) kinematical constraints

= 0

⇒ ordinary (rational) function

< 0

⇒ ( nδ) non-trivial integrations

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 17: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Broadening the Class of Physically Meaningful FunctionsWe are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, Av, connected by any numberof internal particles, i∈ I, forming a graph Γ called an “on-shell diagram”.

unitarity dictates that we marginalize over unobserved states—integratingover the Lorentz-invariant phase space (“LIPS”) for each particle I, andsumming over the possible states (helicities, masses, colours, etc.).

fΓ ≡∏i∈I

(∑hi,ci,mi,···

∫d3LIPSi

)∏v

Av

Counting Constraints:

nδ ≡ 4×nV 3×nI 4 = number of excess δ-functions(= minus number of remaining integrations)

> 0

⇒ (nδ) kinematical constraints

= 0

⇒ ordinary (rational) function

< 0

⇒ ( nδ) non-trivial integrations

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 18: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Broadening the Class of Physically Meaningful FunctionsWe are interested in the class of functions involving only observable quantities

On-Shell Functions: networks of amplitudes, Av, connected by any numberof internal particles, i∈ I, forming a graph Γ called an “on-shell diagram”.

unitarity dictates that we marginalize over unobserved states—integratingover the Lorentz-invariant phase space (“LIPS”) for each particle I, andsumming over the possible states (helicities, masses, colours, etc.).

fΓ ≡∏i∈I

(∑hi,ci,mi,···

∫d3LIPSi

)∏v

Av

Counting Constraints:

nδ ≡ 4×nV 3×nI 4

= number of excess δ-functions(= minus number of remaining integrations)

> 0 ⇒ (nδ) kinematical constraints= 0 ⇒ ordinary (rational) function< 0 ⇒ ( nδ) non-trivial integrations

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 19: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Broadening the Class of Physically Meaningful FunctionsWe are interested in the class of functions involving only observable quantities

unitarity dictates that we marginalize over unobserved states—integratingover the Lorentz-invariant phase space (“LIPS”) for each particle I, andsumming over the possible states (helicities, masses, colours, etc.).fΓ ≡

∏i∈I

(∑hi,ci,mi,···

∫d3LIPSi

)∏v

Av

Counting Constraints:

nδ ≡ 4×nV 3×nI 4

= number of excess δ-functions(= minus number of remaining integrations)

> 0 ⇒ (nδ) kinematical constraints= 0 ⇒ ordinary (rational) function< 0 ⇒ ( nδ) non-trivial integrations

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 20: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Building Blocks: the S-Matrix for Three Massless ParticlesMomentum conservation and Poincare-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).

=

f (λ1, λ2, λ3)

=

〈2 3〉4

〈1 2〉〈2 3〉〈3 1〉δ2×2(λ·λ)

〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡(〈23〉〈31〉〈12〉

)⊃λ

λ ≡(λ1

1 λ12 λ1

3λ2

1 λ22 λ2

3

)h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→〈a b〉→O(ε)

O(ε−(h1+h2+h3)

)

−−−−−−→[a b]→O(ε)

O(ε(h1+h2+h3)

)

f (λ1λ1, λ2λ2, λ3λ3)δ2×2(λ·λ)

or

f (λ1, λ2, λ3)

=

[2 3]4

[1 2] [2 3] [3 1]δ2×2(λ·λ)

[12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2 λ ≡(λ1

1 λ12 λ1

3

λ21 λ2

2 λ23

)λ⊥≡

([23] [31] [12]

)⊃λ

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 21: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Building Blocks: the S-Matrix for Three Massless ParticlesMomentum conservation and Poincare-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).

=

f (λ1, λ2, λ3)

=

〈2 3〉4

〈1 2〉〈2 3〉〈3 1〉δ2×2(λ·λ)

〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡(〈23〉〈31〉〈12〉

)⊃λ

λ ≡(λ1

1 λ12 λ1

3λ2

1 λ22 λ2

3

)

h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→〈a b〉→O(ε)

O(ε−(h1+h2+h3)

)

−−−−−−→[a b]→O(ε)

O(ε(h1+h2+h3)

)

f (λ1λ1, λ2λ2, λ3λ3)δ2×2(λ·λ)

or

f (λ1, λ2, λ3)

=

[2 3]4

[1 2] [2 3] [3 1]δ2×2(λ·λ)

[12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2

λ ≡(λ1

1 λ12 λ1

3

λ21 λ2

2 λ23

)λ⊥≡

([23] [31] [12]

)⊃λ

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 22: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Building Blocks: the S-Matrix for Three Massless ParticlesMomentum conservation and Poincare-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).

f (λ1, λ2, λ3)

=

〈2 3〉4

〈1 2〉〈2 3〉〈3 1〉δ2×2(λ·λ)

〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡(〈23〉〈31〉〈12〉

)⊃λ

λ ≡(λ1

1 λ12 λ1

3λ2

1 λ22 λ2

3

)

h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→〈a b〉→O(ε)

O(ε−(h1+h2+h3)

)

−−−−−−→[a b]→O(ε)

O(ε(h1+h2+h3)

)f (λ1λ1, λ2λ2, λ3λ3)δ2×2

(λ·λ)

or

f (λ1, λ2, λ3)

=

[2 3]4

[1 2] [2 3] [3 1]δ2×2(λ·λ)

[12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2

λ ≡(λ1

1 λ12 λ1

3

λ21 λ2

2 λ23

)λ⊥≡

([23] [31] [12]

)⊃λ

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 23: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Building Blocks: the S-Matrix for Three Massless ParticlesMomentum conservation and Poincare-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).

f (λ1, λ2, λ3)

=

〈2 3〉4

〈1 2〉〈2 3〉〈3 1〉δ2×2(λ·λ)∝

〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡(〈23〉〈31〉〈12〉

)⊃λ

λ ≡(λ1

1 λ12 λ1

3λ2

1 λ22 λ2

3

)

h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→〈a b〉→O(ε)

O(ε−(h1+h2+h3)

)

−−−−−−→[a b]→O(ε)

O(ε(h1+h2+h3)

)f (λ1λ1, λ2λ2, λ3λ3)δ2×2

(λ·λ)

or

f (λ1, λ2, λ3)

=

[2 3]4

[1 2] [2 3] [3 1]δ2×2(λ·λ)∝

[12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2 λ ≡(λ1

1 λ12 λ1

3

λ21 λ2

2 λ23

)λ⊥≡

([23] [31] [12]

)⊃λ

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 24: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Building Blocks: the S-Matrix for Three Massless ParticlesMomentum conservation and Poincare-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).

f (λ1, λ2, λ3)

=

〈2 3〉4

〈1 2〉〈2 3〉〈3 1〉δ2×2(λ·λ)∝

〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡(〈23〉〈31〉〈12〉

)⊃λ

λ ≡(λ1

1 λ12 λ1

3λ2

1 λ22 λ2

3

)

h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→〈a b〉→O(ε)

O(ε−(h1+h2+h3)

)

−−−−−−→[a b]→O(ε)

O(ε(h1+h2+h3)

)

f (λ1λ1, λ2λ2, λ3λ3)δ2×2(λ·λ)

or

f (λ1, λ2, λ3)

=

[2 3]4

[1 2] [2 3] [3 1]δ2×2(λ·λ)∝

[12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2 λ ≡(λ1

1 λ12 λ1

3

λ21 λ2

2 λ23

)λ⊥≡

([23] [31] [12]

)⊃λ

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 25: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Building Blocks: the S-Matrix for Three Massless ParticlesMomentum conservation and Poincare-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).

f (λ1, λ2, λ3)=〈2 3〉4

〈1 2〉〈2 3〉〈3 1〉δ2×2(λ·λ)

∝ 〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡(〈23〉〈31〉〈12〉

)⊃λ

λ ≡(λ1

1 λ12 λ1

3λ2

1 λ22 λ2

3

)h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→〈a b〉→O(ε)

O(ε−(h1+h2+h3)

)

−−−−−−→[a b]→O(ε)

O(ε(h1+h2+h3)

)f (λ1λ1, λ2λ2, λ3λ3)δ2×2

(λ·λ)

or

f (λ1, λ2, λ3)=[2 3]4

[1 2] [2 3] [3 1]δ2×2(λ·λ)

∝ [12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2 λ ≡(λ1

1 λ12 λ1

3

λ21 λ2

2 λ23

)λ⊥≡

([23] [31] [12]

)⊃λ

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 26: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Building Blocks: the S-Matrix for Three Massless ParticlesMomentum conservation and Poincare-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).

f (λ1, λ2, λ3)

=〈2 3〉4

〈1 2〉〈2 3〉〈3 1〉δ2×2(λ·λ)

∝ 〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡(〈23〉〈31〉〈12〉

)⊃λ

λ ≡(λ1

1 λ12 λ1

3λ2

1 λ22 λ2

3

)h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→〈a b〉→O(ε)

O(ε−(h1+h2+h3)

)

−−−−−−→[a b]→O(ε)

O(ε(h1+h2+h3)

)f (λ1λ1, λ2λ2, λ3λ3)δ2×2

(λ·λ)

or

f (λ1, λ2, λ3)

=[2 3]4

[1 2] [2 3] [3 1]δ2×2(λ·λ)

∝ [12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2 λ ≡(λ1

1 λ12 λ1

3

λ21 λ2

2 λ23

)λ⊥≡

([23] [31] [12]

)⊃λ

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 27: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Building Blocks: the S-Matrix for Three Massless ParticlesMomentum conservation and Poincare-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).

f (λ1, λ2, λ3)

=〈2 3〉4

〈1 2〉〈2 3〉〈3 1〉δ2×2(λ·λ)

∝ 〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡(〈23〉〈31〉〈12〉

)⊃λ

λ ≡(λ1

1 λ12 λ1

3λ2

1 λ22 λ2

3

)h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→〈a b〉→O(ε)

O(ε−(h1+h2+h3)

)

−−−−−−→[a b]→O(ε)

O(ε(h1+h2+h3)

)f (λ1λ1, λ2λ2, λ3λ3)δ2×2

(λ·λ)

or

f (λ1, λ2, λ3)

=[2 3]4

[1 2] [2 3] [3 1]δ2×2(λ·λ)

∝ [12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2 λ ≡(λ1

1 λ12 λ1

3

λ21 λ2

2 λ23

)λ⊥≡

([23] [31] [12]

)⊃λ

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 28: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Building Blocks: the S-Matrix for Three Massless ParticlesMomentum conservation and Poincare-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).

f (λ1, λ2, λ3)

=〈2 3〉4

〈1 2〉〈2 3〉〈3 1〉δ2×2(λ·λ) ≡ A3

(+,−,−

)

∝ 〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡(〈23〉〈31〉〈12〉

)⊃λ

λ ≡(λ1

1 λ12 λ1

3λ2

1 λ22 λ2

3

)h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→〈a b〉→O(ε)

O(ε−(h1+h2+h3)

)

−−−−−−→[a b]→O(ε)

O(ε(h1+h2+h3)

)f (λ1λ1, λ2λ2, λ3λ3)δ2×2

(λ·λ)

or

f (λ1, λ2, λ3)

=[2 3]4

[1 2] [2 3] [3 1]δ2×2(λ·λ) ≡ A3

(−,+,+

)

∝ [12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2 λ ≡(λ1

1 λ12 λ1

3

λ21 λ2

2 λ23

)λ⊥≡

([23] [31] [12]

)⊃λ

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 29: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Building Blocks: the S-Matrix for Three Massless ParticlesMomentum conservation and Poincare-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).

f (λ1, λ2, λ3)

=〈3 1〉〈2 3〉3

〈1 2〉〈2 3〉〈3 1〉δ2×2(λ·λ) ≡ A3

(+ 1

2 ,12 ,−

)

∝ 〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡(〈23〉〈31〉〈12〉

)⊃λ

λ ≡(λ1

1 λ12 λ1

3λ2

1 λ22 λ2

3

)h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→〈a b〉→O(ε)

O(ε−(h1+h2+h3)

)

−−−−−−→[a b]→O(ε)

O(ε(h1+h2+h3)

)f (λ1λ1, λ2λ2, λ3λ3)δ2×2

(λ·λ)

or

f (λ1, λ2, λ3)

=[3 1][2 3]3

[1 2] [2 3] [3 1]δ2×2(λ·λ) ≡ A3

( 12 ,+

12 ,+

)

∝ [12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2 λ ≡(λ1

1 λ12 λ1

3

λ21 λ2

2 λ23

)λ⊥≡

([23] [31] [12]

)⊃λ

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 30: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Building Blocks: the S-Matrix for Three Massless ParticlesMomentum conservation and Poincare-invariance uniquely fix the kinematical

dependence of the amplitude for three massless particles (to all loop orders!).

f (λ1, λ2, λ3)

=δ2×4

(λ·η)

〈1 2〉〈2 3〉〈3 1〉δ2×2(λ·λ) ≡ A(2)

3

∝ 〈12〉h3–h1–h2〈23〉h1–h2–h3〈31〉h2–h3–h1

λ⊥≡(〈23〉〈31〉〈12〉

)⊃λ

λ ≡(λ1

1 λ12 λ1

3λ2

1 λ22 λ2

3

)h1 + h2 + h3 ≤ 0

h1 + h2 + h3 ≥ 0

−−−−−−−→〈a b〉→O(ε)

O(ε−(h1+h2+h3)

)

−−−−−−→[a b]→O(ε)

O(ε(h1+h2+h3)

)f (λ1λ1, λ2λ2, λ3λ3)δ2×2

(λ·λ)

or

f (λ1, λ2, λ3)

=δ1×4

(λ⊥·η

)[1 2] [2 3] [3 1]

δ2×2(λ·λ) ≡ A(1)3

∝ [12]h1+h2–h3[23]h2+h3–h1[31]h3+h1–h2 λ ≡(λ1

1 λ12 λ1

3

λ21 λ2

2 λ23

)λ⊥≡

([23] [31] [12]

)⊃λ

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 31: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Amalgamating Diagrams from Three-Particle AmplitudesOn-shell diagrams constructed out of three-particle vertices are well-defined

to all orders of perturbation theory, generating a large class of functions:

=(〈91〉〈23〉〈46〉 − 〈16〉〈34〉〈29〉)2 δ2×2

(λ·λ)

〈12〉〈23〉〈34〉〈45〉〈56〉〈67〉〈78〉〈81〉〈14〉〈42〉〈29〉〈96〉〈63〉〈39〉〈91〉

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 32: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Amalgamating Diagrams from Three-Particle AmplitudesOn-shell diagrams constructed out of three-particle vertices are well-defined

to all orders of perturbation theory, generating a large class of functions:

=(〈91〉〈23〉〈46〉 − 〈16〉〈34〉〈29〉)2 δ2×2

(λ·λ)

〈12〉〈23〉〈34〉〈45〉〈56〉〈67〉〈78〉〈81〉〈14〉〈42〉〈29〉〈96〉〈63〉〈39〉〈91〉

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 33: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Amalgamating Diagrams from Three-Particle AmplitudesOn-shell diagrams constructed out of three-particle vertices are well-defined

to all orders of perturbation theory, generating a large class of functions:

=(〈91〉〈23〉〈46〉 − 〈16〉〈34〉〈29〉)2 δ2×2

(λ·λ)

〈12〉〈23〉〈34〉〈45〉〈56〉〈67〉〈78〉〈81〉〈14〉〈42〉〈29〉〈96〉〈63〉〈39〉〈91〉

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 34: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Amalgamating Diagrams from Three-Particle AmplitudesOn-shell diagrams constructed out of three-particle vertices are well-defined

to all orders of perturbation theory, generating a large class of functions:

=(〈91〉〈23〉〈46〉 − 〈16〉〈34〉〈29〉)2 δ2×2

(λ·λ)

〈12〉〈23〉〈34〉〈45〉〈56〉〈67〉〈78〉〈81〉〈14〉〈42〉〈29〉〈96〉〈63〉〈39〉〈91〉

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 35: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Amalgamating Diagrams from Three-Particle AmplitudesOn-shell diagrams constructed out of three-particle vertices are well-defined

to all orders of perturbation theory, generating a large class of functions:

=(〈91〉〈23〉〈46〉 − 〈16〉〈34〉〈29〉)2 δ2×2

(λ·λ)

〈12〉〈23〉〈34〉〈45〉〈56〉〈67〉〈78〉〈81〉〈14〉〈42〉〈29〉〈96〉〈63〉〈39〉〈91〉

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 36: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Amalgamating Diagrams from Three-Particle AmplitudesOn-shell diagrams constructed out of three-particle vertices are well-defined

to all orders of perturbation theory, generating a large class of functions:

=(〈91〉〈23〉〈46〉 − 〈16〉〈34〉〈29〉)2 δ2×2

(λ·λ)

〈12〉〈23〉〈34〉〈45〉〈56〉〈67〉〈78〉〈81〉〈14〉〈42〉〈29〉〈96〉〈63〉〈39〉〈91〉

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 37: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Amalgamating Diagrams from Three-Particle AmplitudesOn-shell diagrams constructed out of three-particle vertices are well-defined

to all orders of perturbation theory, generating a large class of functions:

=(〈91〉〈23〉〈46〉 − 〈16〉〈34〉〈29〉)2 δ2×2

(λ·λ)

〈12〉〈23〉〈34〉〈45〉〈56〉〈67〉〈78〉〈81〉〈14〉〈42〉〈29〉〈96〉〈63〉〈39〉〈91〉

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 38: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Grassmannian Representations of Three-Point AmplitudesIn order to linearize momentum conservation at each three-particle vertex,

(and to specify which of the solutions to three-particle kinematics to use)we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex:

allowing us to represent all on-shell functions in the form:

⇔ B ≡(

b11 b1

2 b13

b21 b2

2 b23

)⇔ W≡

(w1

1 w12 w1

3)

A(2)3 =

δ2×4(λ·η)〈12〉〈23〉〈31〉 δ

2×2(λ·λ) ≡∫ d2×3Bvol(GL2)

δ2×4(B·η)(12)(23)(31)

δ2×2(B·λ) δ1×2(λ·B⊥)

A(1)3 =

δ1×4(λ⊥·η)[12][23][31]

δ2×2(λ·λ) ≡∫ d1×3Wvol(GL1)

δ1×4(W ·η)(1) (2) (3)

δ1×2(W ·λ)δ2×2(λ·W⊥)

f ≡∫

dΩC δk×4(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)

C∈G(k, n)k≡2nB+nW−nI

C ≡

1 2 I

I’ 3 4

(1 w2 wI

)

0 0 00 0 0(

1 0 b14)

0 0 0 0 1 b24

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 39: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Grassmannian Representations of Three-Point AmplitudesIn order to linearize momentum conservation at each three-particle vertex,

(and to specify which of the solutions to three-particle kinematics to use)we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex:

allowing us to represent all on-shell functions in the form:

⇔ B ≡(

b11 b1

2 b13

b21 b2

2 b23

)⇔ W≡

(w1

1 w12 w1

3)

A(2)3 =

δ2×4(λ·η)〈12〉〈23〉〈31〉 δ

2×2(λ·λ) ≡∫ d2×3Bvol(GL2)

δ2×4(B·η)(12)(23)(31)

δ2×2(B·λ) δ1×2(λ·B⊥)

A(1)3 =

δ1×4(λ⊥·η)[12][23][31]

δ2×2(λ·λ) ≡∫ d1×3Wvol(GL1)

δ1×4(W ·η)(1) (2) (3)

δ1×2(W ·λ)δ2×2(λ·W⊥)

f ≡∫

dΩC δk×4(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)

C∈G(k, n)k≡2nB+nW−nI

C ≡

1 2 I

I’ 3 4

(1 w2 wI

)

0 0 00 0 0(

1 0 b14)

0 0 0 0 1 b24

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 40: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Grassmannian Representations of Three-Point AmplitudesIn order to linearize momentum conservation at each three-particle vertex,

(and to specify which of the solutions to three-particle kinematics to use)we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex:

allowing us to represent all on-shell functions in the form:

⇔ B ≡(

1 0 b13

0 1 b23

)⇔ W≡

(1 w1

2 w13)

A(2)3 =

δ2×4(λ·η)〈12〉〈23〉〈31〉 δ

2×2(λ·λ) ≡∫ d b13

b13∧d b2

3

b23

δ2×4(B·η) δ2×2(B·λ) δ1×2(λ·B⊥)

A(1)3 =

δ1×4(λ⊥·η)[12][23][31]

δ2×2(λ·λ) ≡∫ d w12

w12∧d w1

3

w13

δ1×4(W ·η) δ1×2(W ·λ)δ2×2(λ·W⊥)

f ≡∫

dΩC δk×4(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)

C∈G(k, n)k≡2nB+nW−nI

C ≡

1 2 I

I’ 3 4

(1 w2 wI

)

0 0 00 0 0(

1 0 b14)

0 0 0 0 1 b24

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 41: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Grassmannian Representations of Three-Point AmplitudesIn order to linearize momentum conservation at each three-particle vertex,

(and to specify which of the solutions to three-particle kinematics to use)we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex:

allowing us to represent all on-shell functions in the form:

⇔ B ≡(

b11 1 0

b21 0 1

)⇔ W≡

(w1

1 1 w13)

A(2)3 =

δ2×4(λ·η)〈12〉〈23〉〈31〉 δ

2×2(λ·λ) ≡∫ d b11

b11∧d b2

1

b21

δ2×4(B·η) δ2×2(B·λ) δ1×2(λ·B⊥)

A(1)3 =

δ1×4(λ⊥·η)[12][23][31]

δ2×2(λ·λ) ≡∫ d w13

w13∧d w1

1

w11

δ1×4(W ·η) δ1×2(W ·λ)δ2×2(λ·W⊥)

f ≡∫

dΩC δk×4(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)

C∈G(k, n)k≡2nB+nW−nI

C ≡

1 2 I

I’ 3 4

(1 w2 wI

)

0 0 00 0 0(

1 0 b14)

0 0 0 0 1 b24

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 42: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Grassmannian Representations of Three-Point AmplitudesIn order to linearize momentum conservation at each three-particle vertex,

(and to specify which of the solutions to three-particle kinematics to use)we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex:

allowing us to represent all on-shell functions in the form:

⇔ B ≡(

0 b12 1

1 b22 0

)⇔ W≡

(w1

1 w12 1

)

A(2)3 =

δ2×4(λ·η)〈12〉〈23〉〈31〉 δ

2×2(λ·λ) ≡∫ d b12

b12∧d b2

2

b22

δ2×4(B·η) δ2×2(B·λ) δ1×2(λ·B⊥)

A(1)3 =

δ1×4(λ⊥·η)[12][23][31]

δ2×2(λ·λ) ≡∫ d w11

w11∧d w1

2

w12

δ1×4(W ·η) δ1×2(W ·λ)δ2×2(λ·W⊥)

f ≡∫

dΩC δk×4(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)

C∈G(k, n)k≡2nB+nW−nI

C ≡

1 2 I

I’ 3 4

(1 w2 wI

)

0 0 00 0 0(

1 0 b14)

0 0 0 0 1 b24

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 43: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Grassmannian Representations of Three-Point AmplitudesIn order to linearize momentum conservation at each three-particle vertex,

(and to specify which of the solutions to three-particle kinematics to use)we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex:

allowing us to represent all on-shell functions in the form:

⇔ B ≡(

b11 b1

2 b13

b21 b2

2 b23

)⇔ W≡

(w1

1 w12 w1

3)

A(2)3 =

δ2×4(λ·η)〈12〉〈23〉〈31〉 δ

2×2(λ·λ) ≡∫ d2×3Bvol(GL2)

δ2×4(B·η)(12)(23)(31)

δ2×2(B·λ) δ1×2(λ·B⊥)

A(1)3 =

δ1×4(λ⊥·η)[12][23][31]

δ2×2(λ·λ) ≡∫ d1×3Wvol(GL1)

δ1×4(W ·η)(1) (2) (3)

δ1×2(W ·λ)δ2×2(λ·W⊥)

f ≡∫

dΩC δk×4(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)

C∈G(k, n)k≡2nB+nW−nI

C ≡

1 2 I

I’ 3 4

(1 w2 wI

)

0 0 00 0 0(

1 0 b14)

0 0 0 0 1 b24

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 44: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Grassmannian Representations of Three-Point AmplitudesIn order to linearize momentum conservation at each three-particle vertex,

(and to specify which of the solutions to three-particle kinematics to use)we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex:

allowing us to represent all on-shell functions in the form:

⇔ B ≡(

b11 b1

2 b13

b21 b2

2 b23

)⇔ W≡

(w1

1 w12 w1

3)

A(2)3 =

δ2×4(λ·η)〈12〉〈23〉〈31〉 δ

2×2(λ·λ) ≡∫ d2×3Bvol(GL2)

δ2×4(B·η)(12)(23)(31)

δ2×2(B·λ) δ1×2(λ·B⊥)︸ ︷︷ ︸B7→B∗=λ

A(1)3 =

δ1×4(λ⊥·η)[12][23][31]

δ2×2(λ·λ) ≡∫ d1×3Wvol(GL1)

δ1×4(W ·η)(1) (2) (3)

δ1×2(W ·λ)δ2×2(λ·W⊥)

f ≡∫

dΩC δk×4(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)

C∈G(k, n)k≡2nB+nW−nI

C ≡

1 2 I

I’ 3 4

(1 w2 wI

)

0 0 00 0 0(

1 0 b14)

0 0 0 0 1 b24

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 45: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Grassmannian Representations of Three-Point AmplitudesIn order to linearize momentum conservation at each three-particle vertex,

(and to specify which of the solutions to three-particle kinematics to use)we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex:

allowing us to represent all on-shell functions in the form:

⇔ B ≡(

b11 b1

2 b13

b21 b2

2 b23

)⇔ W≡

(w1

1 w12 w1

3)

A(2)3 =

δ2×4(λ·η)〈12〉〈23〉〈31〉 δ

2×2(λ·λ) ≡∫ d2×3Bvol(GL2)

δ2×4(B·η)(12)(23)(31)

δ2×2(B·λ) δ1×2(λ·B⊥)︸ ︷︷ ︸B7→B∗=λ

A(1)3 =

δ1×4(λ⊥·η)[12][23][31]

δ2×2(λ·λ) ≡∫ d1×3Wvol(GL1)

δ1×4(W ·η)(1) (2) (3)

δ1×2(W ·λ)︸ ︷︷ ︸W 7→W∗=λ⊥

δ2×2(λ·W⊥)

f ≡∫

dΩC δk×4(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)

C∈G(k, n)k≡2nB+nW−nI

C ≡

1 2 I

I’ 3 4

(1 w2 wI

)

0 0 00 0 0(

1 0 b14)

0 0 0 0 1 b24

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 46: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Grassmannian Representations of On-Shell FunctionsIn order to linearize momentum conservation at each three-particle vertex,

(and to specify which of the solutions to three-particle kinematics to use)we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex—allowing us to represent all on-shell functions in the form:

⇔ B ≡(

b11 b1

2 b13

b21 b2

2 b23

)⇔ W≡

(w1

1 w12 w1

3)

A(2)3 =

δ2×4(λ·η)〈12〉〈23〉〈31〉 δ

2×2(λ·λ) ≡∫ d2×3Bvol(GL2)

δ2×4(B·η)(12)(23)(31)

δ2×2(B·λ) δ1×2(λ·B⊥)︸ ︷︷ ︸B7→B∗=λ

A(1)3 =

δ1×4(λ⊥·η)[12][23][31]

δ2×2(λ·λ) ≡∫ d1×3Wvol(GL1)

δ1×4(W ·η)(1) (2) (3)

δ1×2(W ·λ)︸ ︷︷ ︸W 7→W∗=λ⊥

δ2×2(λ·W⊥)

f ≡∫

dΩC δk×4(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

) C∈G(k, n)k≡2nB+nW−nI

C ≡

1 2 I

I’ 3 4

(1 w2 wI

)

0 0 00 0 0(

1 0 b14)

0 0 0 0 1 b24

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 47: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Grassmannian Representations of On-Shell FunctionsIn order to linearize momentum conservation at each three-particle vertex,

(and to specify which of the solutions to three-particle kinematics to use)we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex—allowing us to represent all on-shell functions in the form:

⇔ B ≡(

b11 b1

2 b13

b21 b2

2 b23

)⇔ W≡

(w1

1 w12 w1

3)

A(2)3 =

δ2×4(λ·η)〈12〉〈23〉〈31〉 δ

2×2(λ·λ) ≡∫ d2×3Bvol(GL2)

δ2×4(B·η)(12)(23)(31)

δ2×2(B·λ) δ1×2(λ·B⊥)︸ ︷︷ ︸B7→B∗=λ

A(1)3 =

δ1×4(λ⊥·η)[12][23][31]

δ2×2(λ·λ) ≡∫ d1×3Wvol(GL1)

δ1×4(W ·η)(1) (2) (3)

δ1×2(W ·λ)︸ ︷︷ ︸W 7→W∗=λ⊥

δ2×2(λ·W⊥)

f ≡∫

dΩC δk×4(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

) C∈G(k, n)k≡2nB+nW−nI

C ≡

1 2 I I’ 3 4(1 w2 wI

)

0 0 00 0 0

(1 0 b1

4)

0 0 0

0 1 b24

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 48: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Grassmannian Representations of On-Shell FunctionsIn order to linearize momentum conservation at each three-particle vertex,

(and to specify which of the solutions to three-particle kinematics to use)we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex—allowing us to represent all on-shell functions in the form:

⇔ B ≡(

b11 b1

2 b13

b21 b2

2 b23

)⇔ W≡

(w1

1 w12 w1

3)

A(2)3 =

δ2×4(λ·η)〈12〉〈23〉〈31〉 δ

2×2(λ·λ) ≡∫ d2×3Bvol(GL2)

δ2×4(B·η)(12)(23)(31)

δ2×2(B·λ) δ1×2(λ·B⊥)︸ ︷︷ ︸B7→B∗=λ

A(1)3 =

δ1×4(λ⊥·η)[12][23][31]

δ2×2(λ·λ) ≡∫ d1×3Wvol(GL1)

δ1×4(W ·η)(1) (2) (3)

δ1×2(W ·λ)︸ ︷︷ ︸W 7→W∗=λ⊥

δ2×2(λ·W⊥)

f ≡∫

dΩC δk×4(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

) C∈G(k, n)k≡2nB+nW−nI

C ≡

1 2 I I’ 3 4(1 w2 wI

)

0 0 00 0 0

(1 0 b1

4)

0 0 0

0 1 b24

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 49: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Grassmannian Representations of On-Shell FunctionsIn order to linearize momentum conservation at each three-particle vertex,

(and to specify which of the solutions to three-particle kinematics to use)we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex—allowing us to represent all on-shell functions in the form:

⇔ B ≡(

b11 b1

2 b13

b21 b2

2 b23

)⇔ W≡

(w1

1 w12 w1

3)

A(2)3 =

δ2×4(λ·η)〈12〉〈23〉〈31〉 δ

2×2(λ·λ) ≡∫ d2×3Bvol(GL2)

δ2×4(B·η)(12)(23)(31)

δ2×2(B·λ) δ1×2(λ·B⊥)︸ ︷︷ ︸B7→B∗=λ

A(1)3 =

δ1×4(λ⊥·η)[12][23][31]

δ2×2(λ·λ) ≡∫ d1×3Wvol(GL1)

δ1×4(W ·η)(1) (2) (3)

δ1×2(W ·λ)︸ ︷︷ ︸W 7→W∗=λ⊥

δ2×2(λ·W⊥)

f ≡∫

dΩC δk×4(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

) C∈G(k, n)k≡2nB+nW−nI

C ≡

1 2 I I’ 3 4

(

1 w2 wI

)

0 0 00 0 0

(

1 0 b14

)

0 0 0 0 1 b24

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 50: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Beyond (Mere) Scattering Amplitudes: On-Shell FunctionsBasic Building Blocks: S-Matrices for Three Massless ParticlesGrassmannian Representations of On-Shell Functions

Grassmannian Representations of On-Shell FunctionsIn order to linearize momentum conservation at each three-particle vertex,

(and to specify which of the solutions to three-particle kinematics to use)we introduce auxiliary B∈G(2, 3) and W∈G(1, 3) for each vertex—allowing us to represent all on-shell functions in the form:

⇔ B ≡(

b11 b1

2 b13

b21 b2

2 b23

)⇔ W≡

(w1

1 w12 w1

3)

A(2)3 =

δ2×4(λ·η)〈12〉〈23〉〈31〉 δ

2×2(λ·λ) ≡∫ d2×3Bvol(GL2)

δ2×4(B·η)(12)(23)(31)

δ2×2(B·λ) δ1×2(λ·B⊥)︸ ︷︷ ︸B7→B∗=λ

A(1)3 =

δ1×4(λ⊥·η)[12][23][31]

δ2×2(λ·λ) ≡∫ d1×3Wvol(GL1)

δ1×4(W ·η)(1) (2) (3)

δ1×2(W ·λ)︸ ︷︷ ︸W 7→W∗=λ⊥

δ2×2(λ·W⊥)

f ≡∫

dΩC δk×4(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

) C∈G(k, n)k≡2nB+nW−nI

C ≡(1 2 3 4

1 w2 0 b14

0 0 1 b24

)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 51: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

Building-Up On-Shell Diagrams with “BCFW” BridgesVery complex on-shell diagrams can be constructed by successively

adding “BCFW” bridges to diagrams (an extremely useful tool!):

Adding the bridge has the effect of shifting the momenta pa and pbflowing into the diagram f0 according to:λaλa 7→ λaλa = λa

(λa−αλb

)and λbλb 7→ λbλb =

(λb +αλa

)λb,

introducing a new parameter α, in terms of which we may write:

f (. . . , a, b, . . .) =dαα

f0(. . . , a, b, . . .)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 52: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion RelationsConsider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:

An = An(α→0) ∝∮α=0

dααAn(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)the sum of residues away from the origin:

—these come in two types:factorization-channels and forward-limits

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 53: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion RelationsConsider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:

An = An(α→0) ∝∮α=0

dααAn(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)the sum of residues away from the origin:

—these come in two types:factorization-channels and forward-limits

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 54: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion RelationsConsider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:

An = An(α→0) ∝∮α=0

dααAn(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)the sum of residues away from the origin:

—these come in two types:factorization-channels and forward-limits

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 55: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion RelationsConsider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:

An = An(α→0) ∝∮α=0

dααAn(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)the sum of residues away from the origin—these come in two types:

factorization-channels and forward-limits

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 56: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion RelationsConsider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:

An = An(α→0) ∝∮α=0

dααAn(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)the sum of residues away from the origin—these come in two types:factorization-channels

and forward-limits

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 57: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion RelationsConsider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:

An = An(α→0) ∝∮α=0

dααAn(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)the sum of residues away from the origin—these come in two types:factorization-channels and forward-limits

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 58: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion RelationsConsider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:

An = An(α→0) ∝∮α=0

dααAn(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)the sum of residues away from the origin—these come in two types:factorization-channels and forward-limits

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 59: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion RelationsConsider adding a BCFW bridge to the full n-particle scattering amplitude

the undeformed amplitude An is recovered as the residue about α=0:

An = An(α→0) ∝∮α=0

dααAn(α)

We can use Cauchy’s theorem to trade the residue about α=0 for (minus)the sum of residues away from the origin—these come in two types:factorization-channels and forward-limits

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 60: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

The Analytic Boot-Strap: All-Loop Recursion RelationsForward-limits and loop-momenta:

the familiar “off-shell” loop-momentum is represented by on-shell data as:

` ≡ λIλI + αλ1λn with d4` =

d2λId2λI

vol(GL1)

d3LIPSI dα 〈1 I〉 [n I]

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 61: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of AmplitudesThe BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)n !

The only (non-vanishing) contribution to A(2)n is A(2)

n−1⊗A(1)

3 :

A(2)4 = +

=

A(2)5 = A(2)

6 =

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 62: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of AmplitudesThe BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)n !

The only (non-vanishing) contribution to A(2)n is A(2)

n−1⊗A(1)

3 :

A(2)4 =

=

A(2)5 = A(2)

6 =

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 63: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of AmplitudesThe BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)n !

The only (non-vanishing) contribution to A(2)n is A(2)

n−1⊗A(1)

3 :

A(2)4 = =

A(2)5 = A(2)

6 =

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 64: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of AmplitudesThe BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)n !

The only (non-vanishing) contribution to A(2)n is A(2)

n−1⊗A(1)

3 :

A(2)4 = =

A(2)5 =

A(2)6 =

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 65: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of AmplitudesThe BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)n !

The only (non-vanishing) contribution to A(2)n is A(2)

n−1⊗A(1)

3 :

A(2)4 = =

A(2)5 = A(2)

6 =

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 66: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of AmplitudesThe BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)6 :

A(3)6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising ways

How can we characterize and systematically compute on-shell diagrams?

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 67: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Building-Up Diagrams with “BCFW” BridgesOn-Shell (Recursive) Representations of Scattering AmplitudesExempli Gratia: On-Shell Manifestations of Tree Amplitudes

Exempli Gratia: On-Shell Representations of AmplitudesThe BCFW recursion relations realize an incredible fantasy: it directly

gives the Parke-Taylor formula for all amplitudes with k=2, A(2)n !

And it generates very concise formulae for all other amplitudes—e.g. A(3)6 :

A(3)6 = + +

Observations regarding recursed representations of scattering amplitudes:

varying recursion ‘schema’ can generate many ‘BCFW formulae’

on-shell diagrams can often be related in surprising waysHow can we characterize and systematically compute on-shell diagrams?

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 68: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Combinatorial Characterization of On-Shell DiagramsOn-shell diagrams can be altered without changing their associated functions

chains of equivalent three-particle vertices can be arbitrarily connectedany four-particle ‘square’ can be drawn in its two equivalent ways

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 69: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Combinatorial Characterization of On-Shell DiagramsThese moves leave invariant a permutation defined by ‘left-right paths’

Starting from any leg a, turn:left at each white vertex;right at each blue vertex.

Let σ(a) denote where path terminates.

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 70: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Combinatorial Characterization of On-Shell DiagramsThese moves leave invariant a permutation defined by ‘left-right paths’.

Recall that different contributions to A(3)6 were related by rotation:

left-right permutation σ

σ :

(1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 10

)Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 71: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Combinatorial Characterization of On-Shell DiagramsNotice that the merge and square moves leave the number of ‘faces’ of an

on-shell diagram invariant. Diagrams with different numbers of facescan be related by ‘reduction’—also known as ‘bubble deletion’:

Bubble-deletion does not, however, relate ‘identical’ on-shell diagrams:it leaves behind an overall factor of dα/α in the on-shell functionand it alters the corresponding left-right path permutation

Such factors of dα/α arising from bubble deletion encode loop integrands!

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 72: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsRecall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams.

Conveniently, adding a BCFW bridge acts very nicely on permutations:it merely transposes the images of σ!

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 73: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsRecall that attaching ‘BCFW bridges’ can lead to very rich on-shell diagrams.

Read the other way, we can ‘peel-off’ bridges and thereby decomposea permutation into transpositions according to σ = (a b) σ′

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 74: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0

f1f2f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 10

5 3 6 7 8 10

5 6 3 7 8 10

6 5 3 7 8 10

6 7 3 5 8 10

7 6 3 5 8 10

7 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 75: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0

f1f2f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 10

5 3 6 7 8 10

5 6 3 7 8 10

6 5 3 7 8 10

6 7 3 5 8 10

7 6 3 5 8 10

7 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)

(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 76: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1f1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1

f2f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 10

5 6 3 7 8 10

6 5 3 7 8 10

6 7 3 5 8 10

7 6 3 5 8 10

7 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)

(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 77: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1f1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1

f2f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 10

5 6 3 7 8 10

6 5 3 7 8 10

6 7 3 5 8 10

7 6 3 5 8 10

7 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)

(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 78: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2f2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1f2

f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 10

6 5 3 7 8 10

6 7 3 5 8 10

7 6 3 5 8 10

7 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)

(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 79: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2f2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1f2

f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 10

6 5 3 7 8 10

6 7 3 5 8 10

7 6 3 5 8 10

7 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)

(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 80: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3f3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1f2f3

f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 10

6 7 3 5 8 10

7 6 3 5 8 10

7 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)

(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 81: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3f3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1f2f3

f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 10

6 7 3 5 8 10

7 6 3 5 8 10

7 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)

(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 82: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4f4

dα5

α5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1f2f3f4

f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 10

7 6 3 5 8 10

7 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)

(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 83: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4f4

dα5

α5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1f2f3f4

f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 10

7 6 3 5 8 10

7 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)

(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 84: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5f5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1f2f3f4f5

f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 10

7 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)

(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 85: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5f5

dα6

α6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1f2f3f4f5

f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 10

7 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)

(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 86: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6f6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1f2f3f4f5f6

f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)

(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 87: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6f6

dα7

α7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1f2f3f4f5f6

f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 10

7 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)

(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 88: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7f7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1f2f3f4f5f6f7

f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)

(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 89: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7f7

dα8

α8

‘Bridge’ Decomposition

σ :

f0f1f2f3f4f5f6f7

f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 90: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

‘Bridge’ Decomposition

σ :

f0f1f2f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 91: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

‘Bridge’ Decomposition

σ :

f0f1f2f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 92: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

‘Bridge’ Decomposition

σ :f0

f1f2f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 10

5 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)

(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 93: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

‘Bridge’ Decomposition

σ :f0f1

f2f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 10

5 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)

(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 94: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

‘Bridge’ Decomposition

σ :f0f1f2

f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 10

6 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)

(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 95: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

‘Bridge’ Decomposition

σ :f0f1f2f3

f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 10

6 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)

(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 96: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

‘Bridge’ Decomposition

σ :f0f1f2f3f4

f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 10

7 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)

(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 97: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

‘Bridge’ Decomposition

σ :f0f1f2f3f4f5

f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 10

7 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)

(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 98: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

‘Bridge’ Decomposition

σ :f0f1f2f3f4f5f6

f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 10

7 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)

(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 99: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

‘Bridge’ Decomposition

σ :f0f1f2f3f4f5f6f7

f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 100: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

‘Bridge’ Decomposition

σ :f0f1f2f3f4f5f6f7

f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 101: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f8 =∏

a=σ(a)+n

(δ4(ηa

)δ2(λa

)) ∏b=σ(b)

(δ2(λb

))

C≡

1 2 3 4 5 61 0 0 0 0 00 1 0 0 0 00 0 0 1 0 0

‘Bridge’ Decomposition

σ :f0f1f2f3f4f5f6f7

f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 102: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f8 =∏

a=σ(a)+n

(δ4(ηa

)δ2(λa

)) ∏b=σ(b)

(δ2(λb

))

C≡

1 2 3 4 5 61 0 0 0 0 00 1 0 0 0 00 0 0 1 0 0

‘Bridge’ Decomposition

σ :f0f1f2f3f4f5f6f7

f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 103: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f8 =δ3×4(C·η)δ3×2(C·λ)δ2×3(λ·C⊥)

C≡

1 2 3 4 5 61 0 0 0 0 00 1 0 0 0 00 0 0 1 0 0

‘Bridge’ Decomposition

σ :f0f1f2f3f4f5f6f7

f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 104: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f8 =δ3×4(C·η)δ3×2(C·λ)δ2×3(λ·C⊥)

C≡

1 2 3 4 5 61 0 0 0 0 00 1 0 0 0 00 0 0 1 0 0

‘Bridge’ Decomposition

σ :f0f1f2f3f4f5f6f7

f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 10

7 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 105: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f7 =dα8

α8δ3×4(C·η)δ3×2(C·λ)δ2×3(λ·C⊥)

C≡

1 2 3 4 5 61 0 0 0 0 00 1 0 0 0 00 0 0 1 0 α8

(4 6) : c6 7→ c6 + α8 c4

‘Bridge’ Decomposition

σ :f0f1f2f3f4f5f6

f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 10

7 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)

(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 106: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f6 =dα7

α7

dα8

α8δ3×4(C·η)δ3×2(C·λ)δ2×3(λ·C⊥)

C≡

1 2 3 4 5 61 0 0 0 0 00 1 0 α7 0 00 0 0 1 0 α8

(2 4) : c4 7→ c4 + α7 c2

‘Bridge’ Decomposition

σ :f0f1f2f3f4f5

f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 10

7 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)

(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 107: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f5 =dα6

α6

dα7

α7

dα8

α8δ3×4(C·η)δ3×2(C·λ)δ2×3(λ·C⊥)

C≡

1 2 3 4 5 61 0 0 0 0 00 1 0 α7 α6α7 00 0 0 1 α6 α8

(4 5) : c5 7→ c5 + α6 c4

‘Bridge’ Decomposition

σ :f0f1f2f3f4

f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 10

7 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)

(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 108: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f4 =dα5

α5· · · dα8

α8δ3×4(C·η)δ3×2(C·λ)δ2×3(λ·C⊥)

C≡

1 2 3 4 5 61 α5 0 0 0 00 1 0 α7 α6α7 00 0 0 1 α6 α8

(1 2) : c2 7→ c2 + α5 c1

‘Bridge’ Decomposition

σ :f0f1f2f3

f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 10

6 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)

(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 109: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f3 =dα4

α4· · · dα8

α8δ3×4(C·η)δ3×2(C·λ)δ2×3(λ·C⊥)

C≡

1 2 3 4 5 61 α5 0 α4α5 0 00 1 0 (α4 +α7)α6α7 00 0 0 1 α6 α8

(2 4) : c4 7→ c4 + α4 c2

‘Bridge’ Decomposition

σ :f0f1f2

f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 10

6 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)

(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 110: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f2 =dα3

α3· · · dα8

α8δ3×4(C·η)δ3×2(C·λ)δ2×3(λ·C⊥)

C≡

1 2 3 4 5 61 (α3+α5) 0 α4α5 0 00 1 0 (α4 +α7)α6α7 00 0 0 1 α6 α8

(1 2) : c2 7→ c2 + α3 c1

‘Bridge’ Decomposition

σ :f0f1

f2f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 105 3 6 7 8 10

5 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)

(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 111: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f1 =dα2

α2· · · dα8

α8δ3×4(C·η)δ3×2(C·λ)δ2×3(λ·C⊥)

C≡

1 2 3 4 5 61 (α3+α5) α2(α3+α5) α4α5 0 00 1 α2 (α4 +α7)α6α7 00 0 0 1 α6 α8

(2 3) : c3 7→ c3 + α2 c2

‘Bridge’ Decomposition

σ :f0

f1f2f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓

3 5 6 7 8 10

5 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)

(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 112: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f0 =dα1

α1· · · dα8

α8δ3×4(C·η)δ3×2(C·λ)δ2×3(λ·C⊥)

C≡

1 2 3 4 5 61 (α1+α3 +α5)α2(α3+α5) α4α5 0 00 1 α2 (α4 +α7)α6α7 00 0 0 1 α6 α8

(1 2) : c2 7→ c2 + α1 c1

‘Bridge’ Decomposition

σ :

f0f1f2f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 113: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f0 =dα1

α1· · · dα8

α8δ3×4(C·η)δ3×2(C·λ)δ2×3(λ·C⊥)

C≡

1 2 3 4 5 61 (α1+α3 +α5)α2(α3+α5) α4α5 0 00 1 α2 (α4 +α7)α6α7 00 0 0 1 α6 α8

(1 2) : c2 7→ c2 + α1 c1

‘Bridge’ Decomposition

σ :

f0f1f2f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 114: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates for Computing On-Shell FunctionsThere are many ways to decompose a permutation into transpositions—e.g.,

always choose the first transposition τ≡(a b) such that σ(a)<σ(b):

f0 =dα1

α1

dα2

α2

dα3

α3

dα4

α4

dα5

α5

dα6

α6

dα7

α7

dα8

α8f8

f0 =dα1

α1· · · dα8

α8δ3×4(C·η)δ3×2(C·λ)δ2×3(λ·C⊥)

C≡

1 2 3 4 5 61 (α1+α3 +α5)α2(α3+α5) α4α5 0 00 1 α2 (α4 +α7)α6α7 00 0 0 1 α6 α8

(1 2) : c2 7→ c2 + α1 c1

‘Bridge’ Decomposition

σ :

f0f1f2f3f4f5f6f7f8

(

1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓3 5 6 7 8 105 3 6 7 8 105 6 3 7 8 106 5 3 7 8 106 7 3 5 8 107 6 3 5 8 107 6 3 8 5 107 8 3 6 5 107 8 3 10 5 6

)

τ

(1 2)(2 3)(1 2)(2 4)(1 2)(4 5)(2 4)(4 6)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 115: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYM

Combinatorial Classification of On-Shell Functions in PlanarN =4Canonical Coordinates, Computation, and the Positroid Stratification

Canonical Coordinates and the Manifestation of the YangianAll on-shell diagrams, in terms of canonical coordinates, take the form:

f =

∫dα1

α1∧· · ·∧dαd

αdδk×4(C(~α)·η

)δk×2(C(~α)·λ

)δ2×(n−k)

(λ·C(~α)⊥

)Measure-preserving diffeomorphisms leave the function invariant, but—

via the δ-functions—can be recast variations of the kinematical data.The Yangian corresponds to those diffeomorphisms that simultaneously

preserve the measures of all on-shell diagrams.

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 116: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYMThe Ongoing Revolution: Toward a Complete Reformulation of QFT

On-Shell Structures of General Quantum Field Theories

fΓ≡∫

dΩC δk×N(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)On-Shell Physics• on-shell diagrams

– bi-colored

, undirected, planar

bi-colored

, directed

, planar

bi-colored

, undirected

, non-planar

bi-colored

, directed

, non-planar

bi-colored, undirected, non-planar

• physical symmetries– trivial symmetries (identities)

⇔Grassmannian Geometry•strata C∈G(k, n), volume-form ΩC

– cluster variety(?) ,(∏

idαiαi

)×JN– 4positroid variety

,(∏

idαiαi

)

×JN– 4

cluster variety(?)

,(∏

idαiαi

)

×JN– 4

• volume-preserving diffeomorphisms– cluster coordinate mutations

C

1 α8 α5+α8α14 α5α11 0 0 0 0 00 0 0 1 α10α4+α10α13 α4α7 0 0

α3α9 0 0 0 0 0 1 α6 α3+α6α12α9 0 α1 α1α11 0 α1α2 α1α2α7 0 1

ΩC ≡(dα1

α1∧· · ·∧ dα14

α14

)

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 117: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYMThe Ongoing Revolution: Toward a Complete Reformulation of QFT

On-Shell Structures of General Quantum Field Theories

fΓ≡∫

dΩC δk×N(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)On-Shell Physics: planar N=4• on-shell diagrams

– bi-colored, undirected, planar

bi-colored, directed , planarbi-colored, undirected, non-planarbi-colored, directed , non-planarbi-colored, undirected, non-planar

• physical symmetries– trivial symmetries (identities)

⇔Grassmannian Geometry•strata C∈G(k, n), volume-form ΩC

cluster variety(?) ,(∏

idαiαi

)×JN– 4

positroid variety ,(∏

idαiαi

)

×JN– 4cluster variety(?),(∏

idαiαi

)

×JN– 4

• volume-preserving diffeomorphisms– cluster coordinate mutations

C

1 α8 α5+α8α14 α5α11 0 0 0 0 00 0 0 1 α10α4+α10α13 α4α7 0 0

α3α9 0 0 0 0 0 1 α6 α3+α6α12α9 0 α1 α1α11 0 α1α2 α1α2α7 0 1

ΩC ≡(dα1

α1∧· · ·∧ dα14

α14

)Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 118: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYMThe Ongoing Revolution: Toward a Complete Reformulation of QFT

On-Shell Structures of General Quantum Field Theories

fΓ≡∫

dΩC δk×N(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)On-Shell Physics: planar N=4• on-shell diagrams

– bi-colored, undirected, planar

bi-colored, directed , planarbi-colored, undirected, non-planarbi-colored, directed , non-planarbi-colored, undirected, non-planar

• physical symmetries: the Yangian– trivial symmetries (identities)

⇔Grassmannian Geometry•strata C∈G(k, n), volume-form ΩC

cluster variety(?) ,(∏

idαiαi

)×JN– 4

positroid variety ,(∏

idαiαi

)

×JN– 4cluster variety(?),(∏

idαiαi

)

×JN– 4

• volume-preserving diffeomorphisms– cluster coordinate mutations

C

1 α8 α5+α8α14 α5α11 0 0 0 0 00 0 0 1 α10α4+α10α13 α4α7 0 0

α3α9 0 0 0 0 0 1 α6 α3+α6α12α9 0 α1 α1α11 0 α1α2 α1α2α7 0 1

ΩC ≡(dα1

α1∧· · ·∧ dα14

α14

)Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 119: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYMThe Ongoing Revolution: Toward a Complete Reformulation of QFT

On-Shell Structures of General Quantum Field Theories

fΓ≡∫

dΩC δk×N(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)On-Shell Physics: planar N<4• on-shell diagrams

bi-colored, undirected, planar

bi-colored, directed , planar

bi-colored, undirected, non-planarbi-colored, directed , non-planarbi-colored, undirected, non-planar

• physical symmetries: ?– trivial symmetries (identities)

⇔Grassmannian Geometry•strata C∈G(k, n), volume-form ΩC

cluster variety(?) ,(∏

idαiαi

)×JN– 4

positroid variety ,(∏

idαiαi

)×JN– 4

cluster variety(?),(∏

idαiαi

)×JN– 4

• volume-preserving diffeomorphisms– cluster coordinate mutations

C

1 α8 α5+α8α14 α5α11 0 0 0 0 00 0 0 1 α10α4+α10α13 α4α7 0 0

α3α9 0 0 0 0 0 1 α6 α3+α6α12α9 0 α1 α1α11 0 α1α2 α1α2α7 0 1

ΩC ≡(dα1

α1∧· · ·∧ dα14

α14

)×(1)N– 4

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 120: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYMThe Ongoing Revolution: Toward a Complete Reformulation of QFT

On-Shell Structures of General Quantum Field Theories

fΓ≡∫

dΩC δk×N(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)On-Shell Physics: non-planar N=4• on-shell diagrams

bi-colored, undirected, planarbi-colored, directed , planar

bi-colored, undirected, non-planar

bi-colored, directed , non-planarbi-colored, undirected, non-planar

• physical symmetries: ?– trivial symmetries (identities)

⇔Grassmannian Geometry•strata C∈G(k, n), volume-form ΩC

cluster variety(?) ,(∏

idαiαi

)×JN– 4positroid variety ,

(∏i

dαiαi

)

×JN– 4

cluster variety(?),(∏

idαiαi

)

×JN– 4

• volume-preserving diffeomorphisms– cluster coordinate mutations

C⊥≡

α1 1 0 α2 0 0 0 0 00 0 α3 1 0 α4 0 0 00 0 0 α5 1 α6 0 0 00 0 0 0 0 1 0 α7 α80 0 0 0 0 α9 1 α10 0α11 0 0 0 0 0 0 1 α120 α13 α14 0 0 0 0 0 1

ΩC ≡

(dα1

α1∧· · ·∧ dα14

α14

)Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 121: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYMThe Ongoing Revolution: Toward a Complete Reformulation of QFT

On-Shell Structures of General Quantum Field Theories

fΓ≡∫

dΩC δk×N(C·η)δk×2(C·λ)δ2×(n−k)(λ·C⊥

)On-Shell Physics: non-planar N<4• on-shell diagrams

bi-colored, undirected, planarbi-colored, directed , planarbi-colored, undirected, non-planar

bi-colored, directed , non-planar

bi-colored, undirected, non-planar

• physical symmetries: ?– trivial symmetries (identities)

⇔Grassmannian Geometry•strata C∈G(k, n), volume-form ΩC

cluster variety(?) ,(∏

idαiαi

)×JN– 4positroid variety ,

(∏i

dαiαi

)×JN– 4

cluster variety(?),(∏

idαiαi

)×JN– 4

• volume-preserving diffeomorphisms– cluster coordinate mutations

C⊥≡

α1 1 0 α2 0 0 0 0 00 0 α3 1 0 α4 0 0 00 0 0 α5 1 α6 0 0 00 0 0 0 0 1 0 α7 α80 0 0 0 0 α9 1 α10 0α11 0 0 0 0 0 0 1 α120 α13 α14 0 0 0 0 0 1

ΩC ≡

(dα1

α1∧· · ·∧ dα14

α14

)×(1+α2α4α13(α8+α7α12)

)N– 4

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 122: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYMThe Ongoing Revolution: Toward a Complete Reformulation of QFT

Open Directions for Further Research

Classifying On-Shell Functions for General Quantum Field Theoriesnon-planar N=4 SYM, N=8 SUGRA, planar N<4, QCD, . . .

Verifying the All-Loop Recursion Relations Beyond Planar N=4Evaluating Amplitudes (beyond the leading order)

regularization, renormalization, . . .directly evaluating the terms generated by recursionbetter understanding the (motivic?) structure of loop-amplitudes

A Purely Geometric Definition of Scattering Amplitudes?extending the amplituhedron to more general quantum field theories

. . .

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 123: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYMThe Ongoing Revolution: Toward a Complete Reformulation of QFT

Closing Words: Lessons Learned at TASI 2014

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix

Page 124: indico.nbi.ku.dk · A New Class of Physical Observables: On-Shell Functions & Diagrams The On-Shell Analytic S-Matrix: All-Loop Recursion Relations The Combinatorial Simplicity of

A New Class of Physical Observables: On-Shell Functions & DiagramsThe On-Shell Analytic S-Matrix: All-Loop Recursion Relations

The Combinatorial Simplicity of PlanarN =4 SYMThe Ongoing Revolution: Toward a Complete Reformulation of QFT

A Contribution to the 40-Particle Scattering Amplitude

Friday, 29th August 2014 Niels Bohr Institute, København Grassmannian Geometry and the Analytic S-Matrix