A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

29
A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8

description

A theory of elastic waves In isotropic media Usually solution of this equation is represented as a sum is a scalar potential is a vector potential however why not to do differently?

Transcript of A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

Page 1: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

 A model of the Earthquake surface waves

V.K.Ignatovich. FLNP JINR

STI2011 June 8

Page 2: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

This report is along the papersV.K. Ignatovich and L.T.N. Phan.

Those wonderful elastic waves. Am.J.Phys.

v. 77, n. 12, pp. 1093-I17, (2009)

A.N. Nikitin, T.I. Ivankina, and V.K. Ignatovich The Wave Field Patterns of the Propagation

of Longitudinal and Transverse Elastic Waves in Grain-Oriented Rocks

Physics of the Solid Earth, 2009, v. 45, n. 5, pp. 424-436

And a little bit more

Page 3: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

A theory of elastic waves In isotropic media

ljlj tu 22 )()( uu jjj u

Usually solution of this equation is represented as a sum

][ φu is a scalar potential

φ is a vector potential

however why not to do differently?)exp(),( tiit rkAru

22)(2 ijuF

u

i

j

j

iij x

uxuu

21

ijijijij uuF 2)( u

)()(22 uuuu t

Page 4: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

)exp(),( 0 tiiut rkAru 10 Au

)()( 22 AkkAAkkA k

)()(22 AκκAAκκA k

2: k

kkκ κttA 32211

κtt ,, 21

02,122 k

02 322 k

22222,1 tck 2tc

2

2223 2 lck

22 2tl cc

)()(22 uuuu t

2/ lt ccAll this is trivial. Reflection from interfaces is less trivial

Page 5: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

Reflection from a free surface

2A 2A3A

)exp()exp()exp()( 3332222222 zikrzikrzikz rri AAAu

ln

)()exp(),( |||| ztiit urkru

2||

22 kck nn tl cccc 23

03 kcAt such a critical angle A Longitudinal Surface wave appears

Page 6: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

Calculations of reflection amplitudes0 jiji n ijijij u 2)( u

0)()( unununΣ tiizik

rzik

rzik

i eereret ||||3223322222),( rkAAAru

03322222 rri rr ΣΣΣΣ

22222 )( iiii k AAnkΣ 22222 )( rrrr k AAnkΣ

333333 )( rrrr kk AAnknΣ

2||2 kki nlk 2||22 kkki nlA

:

2

||22||

22

2

2k

kkkki

nlΣ

Page 7: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

2

||22||

22

2

2k

kkkkr

nlΣ

3

2||

22||3

3

2k

kkkkr

nlΣ

03322222 rri rr ΣΣΣΣ

2

||22||

22

2

2k

kkkki

nlΣ

2||22

||3

3

23222

21

kkkk

kkrr

||2

2||

22

3

23222 2

1kkkk

kkrr

2

||3222

||22

2||

22||2

2

332

4

22

kkkkk

kkkkkkr

2

||3222

||22

22||

22

2||32

224

4

kkkkk

kkkkkr

nl,lc

k 3 2

||233 kkk

Page 8: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

2

||3222

||22

2||

22||2

2

332

4

4

kkkkk

kkkkkkr

22

||22

2||32

22||

22

2||32

224

4

kkkkk

kkkkkr

22

2

3 sinsin ck

k

22232

sinsin)sin()2sin(2)2(cos

)2cos()2sin(sin2

c

cr

-- angle of incidence

sin2|| kk

cos22 kk

222sin ltc cc

)2tan(sin2)(32 cccr

1)( 222 cr

2||

2222

2||

233 kcckkkk lt

1)(22 cr

Page 9: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

sincos2 nlA r lA 3r

cccr 2tansin2)(32

sincos2 nlA i

llA 8.612tantancos2 ccc

65.0sin ltc cc

462 A

1)(22 cr

lAAAA cccrri rr cos22tansin23322222

71)(| 22 Atliss ccEEQ

c

l12tantancos2 ccc

Page 10: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

ctl rrccQ sin)()( 232

232

2

222

232

sinsin)sin()2sin(2)2(cos

)2cos()2sin(sin2

c

cr

Page 11: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

Tomas Lokajicek, Vladimir Rudajev

V.K. Ignatovich. A proposal of a UCN experiment to check an earthquake waves model.Europhys. Lett. 92 (69002-p1-4) 2010.

Page 12: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

Experiments byLokajicek Tomas, Rudajev Vladimir

4E-005 6E-005 8E-005 0.0001time of flight [s]

-0.0 8

-0.0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

-0 .0 8

-0 .0 4

0

0.04

0.08

90 deg., 30 dB

80 deg., 30 dB

70 deg., 30 dB

65 deg., 30 dB

60 deg., 30 dB

55 deg., 30 dB

50 deg., 30 dB

40 deg., 36 dB

30 deg., 36 dB

20 deg., 36 dB

10 deg., 36 dB

5 deg., 36 dB

S5_S5_signal

Page 13: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

4E-005 6E-005 8E-005 0.0001tim e of flight [s]

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

90 deg., 30 dB

80 deg., 30 dB

70 deg., 30 dB

65 deg., 30 dB

60 deg., 30 dB

55 deg., 30 dB

50 deg., 30 dB

40 deg., 36 dB

30 deg., 36 dB

20 deg., 36 dB

10 deg., 36 dB

5 deg., 36 dB

S5_S5_reference

Page 14: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

90 deg.

0 deg.

113,5 mm

90 deg.

recieverS-wave transducer5 MHz resonant frequencydiameter 5 mm

transmitterS-wave transducer5 MHz resonant frequencydiameter 5 mm

material:

in 90 deg. P-wave time propagation: 41,8 s

perpsexthickness: 20 mmP-wave velocity: 2,72 km/sS-wave velocity: 1,37 km/s

[ ]S-wave time propagation: s82.9 [ ]

reference transducerP-wave transducer1 MHz resonant frequencydiameter 10 mm

Page 15: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.
Page 16: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

012tantancos2 lA ccc

5.0sin l

tc cc

0)30cos()60cos()60sin()30sin(12tantancos

ccc

62tansin4 2 cc

232rQ

02 A

Page 17: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

57.0sin l

tc cc

llA 4.112tantancos2 ccc

steel

So, to observe an effect we need a material with

ct/cl>0.6

Page 18: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

Anisotropic media

jlljut

2

2

ijklc -- a set of phenomenologocal constants

klijklij uc

j

l

l

jjl x

uxu

u21

In general 21 constants

222 )(2 jljljll uauuF

lmjmmlmjjllljljl

jl auaauauuuF

22

)()(22 AkkAA k

)]())[(()])(()([ 2 AakAakakAkakAaa k

But anisotropy means a vector and an additional constant. So we can define

)exp(),( tiit rkAru

Page 19: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

kkκ cbκA |][|][ κaκac

κa

aκaκκcb

][

))(())(()( 222 AaakAkkAak k

))(()(2 AkakAaa k

0)( 222 akk

κaab

0)(2 22 kakka

0)(2)(42 222 akkaakk

All we need is a linear vector algebra

κbc ,,

Page 20: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

0)(2 22 kakka

0)(2)(42 222 akkaakk

)cos4)(1(2sin 2222 czz

22sin4))cos41(1()cos41(1

12222222

cc

z

22 kz 222 2 tl ccc

Page 21: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

2cos1)( vt

)(cos κa

22sin4))cos41(1()cos41(1

1)(2222222

cc

vql

22sin4))cos41(1()cos41(1

1)(2222222

cc

vqt

1tc

58.1 tl ccc

5.0

)()( vqlcc tql

)()( vqtcc tqt

Page 22: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

It is important to saythat we cannot exclude

by averaging of values over alldirections of propagation,

because all the values depend on

22 )()(cos aκ

Page 23: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

Polarization of waves

babaκκabaκ

babaκκA ))((2

)()(41

))((2122222

2

EV

V

ql

qlql

κabaκbabaκ

babaκκA ))((2

)()(41

))((2122222

2

EV

V

qt

qtqt

122 qtql AA 0qtqlAA

))((212 abaκ VbκA

2

)()(16)(411)(411 22222222 abaκaκaκ

cc

κ a

b

22

c

12,qtqlV

Page 24: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

In an anisotropic medium propagate plane waves of only 3 modes

• transverse with Аt~[kxa] and ct2=ct0(1+)

• quasi transverse with Аqt in the plane [k,a]

• quasi longitudinal with Аql in the plane [k,a]

quasi longitudinalquasi transverse

)exp(),( tiit krAru

a akk

2Atransverse

a k1A 3A

Page 25: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

Reflection of a quasi transverse wave from a free surface

0,,, rqlltrqtttiqt rr ΣΣΣΣ

)()()( AknAnkAknΣ

)()()())(())(( AakAkaanAnkaAakna

One can find an analytical solution

Page 26: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

of two reflected waves

2.0)cos( a)(

sin)(

sin)(

sin

qtrqlrql

rql

rqtrqt

rqt

VVV

5.222

c

5.0

nl a

a rqt

rql

quasi longitudinal wave becomes surface one at 6.0

Page 27: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

It seems possible to find such a direction of vector a

that for given elastic parameters the amplitude of the

surface longitudinal wave becomes maximal.

2)2()2(

2

2

ql

qt

VV

For instance

Page 28: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

Summary• Reflection of elastic waves from free surfaces is

accompanied by beam splitting.• At some critical angle of the incident shear

wave polarized in the incidence plane a longitudinal surface wave is created.

• Its amplitude and energy can be large, and its polarization along the surface is alike to devastating earthquake waves.

• For observation of such waves the materials with ratio ct/cl>0.6 are needed.

Page 29: A model of the Earthquake surface waves V.K.Ignatovich. FLNP JINR STI2011 June 8.

Thanks