A low energy demand scenario for meeting the 1.5 °C target and … · A low energy demand scenario...

26
A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies Volker Krey IAMC Annual Meeting 2018, Seville, 13-15 November 2018

Transcript of A low energy demand scenario for meeting the 1.5 °C target and … · A low energy demand scenario...

  • A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies

    Volker Krey

    IAMC Annual Meeting 2018, Seville, 13-15 November 2018

  • A people-centredapproach to limiting global warming to 1.5°C

    Volker Krey

    IAMC Annual Meeting 2018, Seville, 13-15 November 2018

  • Credits

    https://doi.org/10.1038/s41560‐018‐0172‐6

  • Illustrative Model Pathways to 1.5°C

    Source: IPCC SR1.5, Figure SPM.3b

    P3: “Conventional wisdom”P1: LED Scenario

    SSP2‐based

  • 2 Perspectives on Meeting 1.5°CGHG Emissions Profiles

    Overshoot assupply‐side optionsscale slowly, but need massivelong‐term deploymentfor high demand scenarios

    Negative emissions, e.g. BECCS

    Rapid Transformationdriven by end‐use changes(efficiency & behavior)

    “Grand Restoration”sink enhancement viareturning land to nature

    Granular, distributed supply sideoptions lead the way for scalingother mitigation options, rapid changeunder low demand

    Inertia in policy,social & technologychange

    “Conventional wisdom” 1.5°C IAM model run LED Scenario narrative and IAM run

  • LED Highlights

    • High levels of energy services• Assuring “decent standards of living” for all (well above

    access and poverty thresholds)• (technological & service) efficiency driven “Peak” Energy• Lowest demand scenario (

  • New Trends in Social and Technological Change

    • Changing consumer preferences (e.g. diets)• Generational change in materialism

    (service rather than ownership)• New business models

    (sharing & circular economy)• Pervasive digitalization and ICT

    convergence• Rapid innovation in granular technologies

    and integrated digital services

  • Social Change: Change in Car Driving Licenses held by YoungTrends: near-term:

  • Mobility: 'usership‘ vs. ownership

  • lumpylarge unit sizehigh unit costindivisiblehigh risk

    granularsmall unit sizelow unit costmodularlow risk

    TechnologyUnit Size

    Source: Grubler,ESA class material

  • y = ‐0.02ln(x) + 0.0822 R² = 0.33179

    ‐40%

    ‐30%

    ‐20%

    ‐10%

    0%

    10%

    20%

    30%

    40%

    1.E‐04 1.E‐03 1.E‐02 1.E‐01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

    De‐scaled

    Learning Ra

    te (C

    umula

    ve Num

    ber o

    f Units)

    Average Unit Size (MW)

    'De‐scaled' Learning Rates (per doubling of cumula ve numbers of units)

    Healey, S. (2015). Separating Economies of Scale and Learning Effects in Technology Cost Improvements. IR-15-009.International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.

    smaller units

    ‐> more units

    ‐> more opportunities to experiment

    ‐> more learning

    geothermal

    nuclear

    Granularity Benefits: faster learningHigher Learning with Smaller Unit Scale after Accounting for Economies of Scale

  • 2000

    2200

    2400

    2600

    2800

    3000

    3200

    LED2020 LED2050

    Food ‐ kcal/day/capita

    0

    5

    10

    15

    20

    25

    30

    35

    LED2020 LED2050

    Thermal comfort ‐ m2/capita

    0

    5

    10

    15

    20

    25

    30

    LED2020 LED2050

    Consumer goods ‐ items/capita

    North2020

    Decent Standards of Living

    0

    2000

    4000

    6000

    8000

    10000

    12000

    LED2020 LED2050

    Mobility ‐ passenger‐km/year/capitaNorth2020

    Decent Standards of Living

    North2020

    Decent Standards of Living

    North2020

    Decent Standards of Living

    Granularity Benefits: equal distribution per capita energy services in the global South

  • Updated (Malmodin & Lundén, 2018; Bento, 2016) from Grubler et al, 2018. Pictorial representation based on Tupy, 2012.

    Resource Impacts of Digital Convergence

    449 Watts

    72 Watts

    Power

    Stand-byenergy use

    1706 kWh

    26 kg

    Embodied energy

    Weight

  • scenario narrative

    drivers of change

    food

    mobility

    thermalcomfort

    consumer goods industry & 

    manufacturing

    freighttransport

    commercial buildings

    bottom‐up quantification of activity and energy intensity

    integrated modelling of system consequences

    MESSAGEix(energy-

    system model)

    GLOBIOM (land-use

    model)

    MAGICC (climate)

    energy supply & land‐use

    climate& health

    GAINS (air pollution)

    ‐ activity levels ‐‐ energy intensities ‐

    ‐ global North vs South ‐

    ‐ discount rate ‐‐ technology costs ‐‐ CCS constraints –

    ‐ cum. emission budget ‐

    downstream … then upstreamPRO

    CESS

    METHOD & TOOLS

    ASSU

    MPT

    IONS

    ‐ probabilistic climate

    sensitivity ‐‐mortality ‐

    ‐ digitalisation ‐‐ end‐use diversity ‐

    ‐ efficiency standards ‐

  • LEDFinal Energy DemandCompared for 2050:

    Scenarios with comparable climate outcomes:

    IPCC Shared Socioeconomic Pathway 2 (SSP2)max. 1.9 W/m2 radiative forcing

    Global Energy Assessment (GEA) Efficiency scenario

    International Energy Agency (IEA)Below 2 Degrees Scenario (B2DS)

    Greenpeace A[R]evolution scenario

  • LED: Factors of Change 2050/2020 GlobalMore services & amenities: Less resource inputs

  • LED Global Thermal Comfort (rel. to 2020): Activity x 1.5, Intensity ÷ 6.3, Energy ÷ 4.3

    Netherlands: Energiesprongprefabricated thermal retrofits, net‐zero housing

    Mexico: NAMAlow energy social housing projects

    Austria: RaiffeisenFirst Passivhausstandard office tower & retrofit

  • Structure of demand remains stable

  • Rapid electrification and decarbonization

  • Rapid diffusion of renewable energy

  • Main Characteristics of Transitions• Scaled-down demand allows faster

    systems transitions:– faster electrification– higher market share of renewables:

    8% (2020), 32% (2030), 60% (2050)– with lower rates of absolute capacity additions

    up to 20-50%/yr historically, 15% (2020-2030), 5-10% (>2040)

    • Outperforming other scenarios on most SDG dimensions

  • Integration of SDGs via Goal 12 addresses 12 SDGs

    LED

  • Pre-mature Deaths from Air Pollution

    0

    1

    2

    3

    4

    5

    2015 2015 with2050's agestructure

    SSP2 1.5°C LED LED with MFR only naturalPM sources

    Million pe

    ople / year

    1.4 Million deaths/year avoided

    MFR= maximum feasible emissions reductions (near‐term technology) Source: GAINS model

  • Conclusion• Demand (technological and service efficiency)

    key for SDGs and 1.5°C• Transition acceleration possible with end-use &

    granularity focus• Global scenario quantification informed by recent

    trends and advances in transition modeling• Implications for Policy Makers: Forget global climate

    policy architecture, actor coalitions with urban citizens and farmers, challenge: systemic incentives (land-use, transport, infrastructure)

    • Implications for Business: New opportunities with service-oriented business models, building efficiency, granular end-use technology innovation

  • Thank You!

    Volker KreyIIASA Energy Programhttp://www.iiasa.ac.at 

    [email protected]