A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to...

73
A Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula 1 and Carles Noguera 2 1 Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic 2 Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic www.cs.cas.cz/cintula/MFL Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 1 / 71

Transcript of A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to...

Page 1: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

A Gentle Introduction to Mathematical Fuzzy Logic6. Further lines of research and open problems

Petr Cintula1 and Carles Noguera2

1Institute of Computer Science,Czech Academy of Sciences, Prague, Czech Republic

2Institute of Information Theory and Automation,Czech Academy of Sciences, Prague, Czech Republic

www.cs.cas.cz/cintula/MFL

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 1 / 71

Page 2: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Outline

1 The Core Theory of MFLII: A General Framework for Mathematical Fuzzy LogicIII. Proof Theory for Mathematical Fuzzy LogicIV. Algebraic Semantics: Semilinear FL-algebrasV. Hájek’s Logic HL and HL-algebrasVI. Łukasiewicz Logic and MV-algebrasVII. Gödel–Dummett LogicsVIII. Fuzzy Logics with Enriched LanguageXI. Free algebras and Functional RepresentationX. Computational Complexity for Propositional Fuzzy LogicsXI. Arithmetical Complexity of First-Order Fuzzy Logics

2 Further topics

3 Bibliography and Conclusions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 2 / 71

Page 3: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

PC, P. Hájek, CN. Handbook of Mathematical Fuzzy Logic.Studies in Logic, Mathematical Logic and Foundations 37 and 38, 2011.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 3 / 71

Page 4: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

PC, P. Hájek, CN. Handbook of Mathematical Fuzzy Logic.Studies in Logic, Mathematical Logic and Foundations 37 and 38, 2011.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 4 / 71

Page 5: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Outline

1 The Core Theory of MFLII: A General Framework for Mathematical Fuzzy LogicIII. Proof Theory for Mathematical Fuzzy LogicIV. Algebraic Semantics: Semilinear FL-algebrasV. Hájek’s Logic HL and HL-algebrasVI. Łukasiewicz Logic and MV-algebrasVII. Gödel–Dummett LogicsVIII. Fuzzy Logics with Enriched LanguageXI. Free algebras and Functional RepresentationX. Computational Complexity for Propositional Fuzzy LogicsXI. Arithmetical Complexity of First-Order Fuzzy Logics

2 Further topics

3 Bibliography and Conclusions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 5 / 71

Page 6: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

An even more general approach

Why should we stop at SL`?

fuzzy logics = logics of chains ⇒ general theory of semilinear logics

Necessary ingredients:

An order relation on all algebras (so, in particular, we have chains)An implication→ s.t. for every a, b ∈ A, a ≤ b iif a→b is true in AThe implication gives a congruence w.r.t. all connectives (so, wecan do the Lindenbaum–Tarski construction)

Using Abstract Algebraic Logic we can develop a theory of weaklyimplicative semilinear logics.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 6 / 71

Page 7: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

An even more general approach

Why should we stop at SL`?

fuzzy logics = logics of chains ⇒ general theory of semilinear logics

Necessary ingredients:

An order relation on all algebras (so, in particular, we have chains)An implication→ s.t. for every a, b ∈ A, a ≤ b iif a→b is true in AThe implication gives a congruence w.r.t. all connectives (so, wecan do the Lindenbaum–Tarski construction)

Using Abstract Algebraic Logic we can develop a theory of weaklyimplicative semilinear logics.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 6 / 71

Page 8: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

An even more general approach

Why should we stop at SL`?

fuzzy logics = logics of chains ⇒ general theory of semilinear logics

Necessary ingredients:

An order relation on all algebras (so, in particular, we have chains)An implication→ s.t. for every a, b ∈ A, a ≤ b iif a→b is true in AThe implication gives a congruence w.r.t. all connectives (so, wecan do the Lindenbaum–Tarski construction)

Using Abstract Algebraic Logic we can develop a theory of weaklyimplicative semilinear logics.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 6 / 71

Page 9: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Basic syntactical notions – 1

Propositional language: a countable type L, i.e. a function ar : CL → N,where CL is a countable set of symbols called connectives, giving foreach one its arity. Nullary connectives are also called truth-constants.We write 〈c, n〉 ∈ L whenever c ∈ CL and ar(c) = n.

Formulae: Let Var be a fixed infinite countable set of symbols calledvariables. The set FmL of formulas in L is the least set containing Varand closed under connectives of L, i.e. for each 〈c, n〉 ∈ L and everyϕ1, . . . , ϕn ∈ FmL, c(ϕ1, . . . , ϕn) is a formula.

Substitution: a mapping σ : FmL → FmL, such thatσ(c(ϕ1, . . . , ϕn)) = c(σ(ϕ1), . . . , σ(ϕn)) holds for each 〈c, n〉 ∈ L andevery ϕ1, . . . , ϕn ∈ FmL.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 7 / 71

Page 10: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Basic syntactical notions – 2

Let L be relation between sets of formulas and formulas, we write‘Γ `L ϕ’ instead of ‘〈Γ, ϕ〉 ∈ L’.

Definition 6.1A relation L between sets of formulas and formulas in L is called a(finitary) logic in L whenever

If ϕ ∈ Γ, then Γ `L ϕ. (Reflexivity)If ∆ `L ψ and Γ, ψ `L ϕ, then Γ,∆ `L ϕ. (Cut)If Γ `L ϕ, then there is finite ∆ ⊆ Γ such that ∆ `L ϕ. (Finitarity)If Γ `L ϕ, then σ[Γ] `L σ(ϕ) for each substitution σ. (Structurality)

Observe that reflexivity and cut entail:

If Γ `L ϕ and Γ ⊆ ∆, then ∆ `L ϕ. (Monotonicity)

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 8 / 71

Page 11: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Basic syntactical notions – 3

Axiomatic system: a set AS of pairs 〈Γ, ϕ〉 closed under substitutions,where Γ is a finite set of formulas. If Γ is empty we speak aboutaxioms otherwise we speak about deduction rules.

Proof: a proof of a formula ϕ from a set of formulas Γ in AS is a finitesequence of formulas whose each element is either

an axiom of AS, oran element of Γ, orthe conclusion of a deduction rules whose premises are among itspredecessors.

We write Γ AS ϕ if there is a proof of ϕ from Γ in AS.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 9 / 71

Page 12: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Basic syntactical notions – 4

Presentation: We say that AS is an axiomatic system for (or apresentation of) the logic L if L = AS .

Theorem: a consequence of the empty set

Theory: a set of formulas T such that if T `L ϕ then ϕ ∈ T. By Th(L)we denote the set of all theories of L.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 10 / 71

Page 13: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Basic semantical notions – 1

L-algebra: A = 〈A, 〈cA | c ∈ CL〉〉, where A 6= ∅ (universe) andcA : An → A for each 〈c, n〉 ∈ L.

Algebra of formulas: the algebra FmL with domain FmL and operationscFmL for each 〈c, n〉 ∈ L defined as:

cFmL(ϕ1, . . . , ϕn) = c(ϕ1, . . . , ϕn).

FmL if the absolutely free algebra in language L with generators Var.

Homomorphism of algebras: a mapping f : A→ B such that for every〈c, n〉 ∈ L and every a1, . . . , an ∈ A,

f (cA(a1, . . . , an)) = cB(f (a1), . . . , f (an)).

Note that substitutions are exactly endomorphisms of FmL.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 11 / 71

Page 14: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Basic semantical notions – 2

L-matrix: a pair A = 〈A,F〉 where A is an L-algebra called thealgebraic reduct of A, and F is a subset of A called the filter of A. Theelements of F are called designated elements of A.

A matrix A = 〈A,F〉 istrivial if F = A.finite if A is finite.Lindenbaum if A = FmL.

A-evaluation: a homomorphism from FmL to A, i.e. a mappinge : FmL → A, such that for each 〈c, n〉 ∈ L and each n-tuple of formulasϕ1, . . . , ϕn we have:

e(c(ϕ1, . . . , ϕn)) = cA(e(ϕ1), . . . , e(ϕn)).

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 12 / 71

Page 15: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Basic semantical notions – 3

Semantical consequence: A formula ϕ is a semantical consequence ofa set Γ of formulas w.r.t. a class K of L-matrices if for each 〈A,F〉 ∈ Kand each A-evaluation e, we have e(ϕ) ∈ F whenever e[Γ] ⊆ F; wedenote it by Γ |=K ϕ.

L-matrix: Let L be a logic in L and A an L-matrix. We say that A is anL-matrix if L ⊆ |=A. We denote the class of L-matrices by MOD(L).

Logical filter: Given a logic L in L and an L-algebra A, a subset F ⊆ Ais an L-filter if 〈A,F〉 ∈MOD(L). By F iL(A) we denote the set of allL-filters over A.

Example: Let A be a Boolean algebra. Then F iCPC(A) is the class oflattice filters on A, in particular for the two-valued Boolean algebra 2:

F iCPC(2) = 1, 0, 1.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 13 / 71

Page 16: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

The first completeness theorem

Proposition 6.2For any logic L in a language L, F iL(FmL) = Th(L).

Theorem 6.3Let L be a logic. Then for each set Γ of formulas and each formula ϕthe following holds: Γ `L ϕ iff Γ |=MOD(L) ϕ.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 14 / 71

Page 17: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Completeness theorem for classical logic

Suppose that T ∈ Th(CPC) and ϕ /∈ T (T 6`CPC ϕ). We want toshow that T 6|= ϕ in some meaningful semantics.T 6|=〈FmL,T〉 ϕ. 1st completeness theorem

〈α, β〉 ∈ Ω(T) iff α↔ β ∈ T (congruence relation on FmLcompatible with T: if α ∈ T and 〈α, β〉 ∈ Ω(T), then β ∈ T).Lindenbaum–Tarski algebra: FmL/Ω(T) is a Boolean algebra andT 6|=〈FmL/Ω(T),T/Ω(T)〉 ϕ.

2nd completeness theorem

Lindenbaum Lemma: If ϕ /∈ T, then there is a maximal consistentT ′ ∈ Th(CPC) such that T ⊆ T ′ and ϕ /∈ T ′.FmL/Ω(T ′) ∼= 2 (subdirectly irreducible Boolean algebra) andT 6|=〈2,1〉 ϕ. 3rd completeness theorem

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 15 / 71

Page 18: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Weakly implicative logics

Definition 6.4A logic L in a language L is weakly implicative if there is a binaryconnective→ (primitive or definable) such that:

(R) `L ϕ→ ϕ

(MP) ϕ,ϕ→ ψ `L ψ

(T) ϕ→ ψ,ψ → χ `L ϕ→ χ

(sCng) ϕ→ ψ,ψ → ϕ `L c(χ1, . . . , χi, ϕ, . . . , χn)→c(χ1, . . . , χi, ψ, . . . , χn)

for each 〈c, n〉 ∈ L and each 0 ≤ i < n.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 16 / 71

Page 19: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

ExamplesThe following logics are weakly implicative:

CPC, BCI, and Inc

global modal logicsintuitionistic and superintuitionistic logiclinear logic and its variants(the most of) fuzzy logicssubstructural logics

...The following logics are not weakly implicative:

local modal logicsthe conjunction-disjunction fragment of classical logic as it has notheorems

logics of ortholattices...

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 17 / 71

Page 20: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Congruence Property

ConventionsUnless said otherwise, L is a weakly implicative in a language L withan implication→. We write:

ϕ↔ ψ instead of ϕ→ ψ,ψ,→ ϕΓ ` ∆ whenever Γ ` χ for each χ ∈ ∆

Theorem 6.5Let ϕ,ψ, χ be formulas. Then:`L ϕ↔ ϕ

ϕ↔ ψ `L ψ ↔ ϕ

ϕ↔ δ, δ ↔ ψ `L ϕ↔ ψ

ϕ↔ ψ `L χ↔ χ, where χ is obtained from χ by replacingsome occurrences of ϕ in χ by ψ.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 18 / 71

Page 21: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Lindenbaum–Tarski matrix

Let L be a weakly implicative logic in L and T ∈ Th(L). For everyformula ϕ, we define the set

[ϕ]T = ψ ∈ FmL | ϕ↔ ψ ⊆ T.

The Lindenbaum–Tarski matrix with respect to L and T, LindTT , hasthe filter [ϕ]T | ϕ ∈ T and algebraic reduct with the domain[ϕ]T | ϕ ∈ FmL and operations:

cLindTT ([ϕ1]T , . . . , [ϕn]T) = [c(ϕ1, . . . , ϕn)]T

What are Lindenbaum–Tarski matrices in general?Recall that Lindenbaum matrices have domain FmL and

F iL(FmL) = Th(L).

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 19 / 71

Page 22: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Leibniz congruence

A congruence θ of A is logical in a matrix 〈A,F〉 if for each a, b ∈ A ifa ∈ F and 〈a, b〉 ∈ θ, then b ∈ F.

Definition 6.6Let A = 〈A,F〉 be an L-matrix. We define the Leibniz congruenceΩA(F) of A as

〈a, b〉 ∈ ΩA(F) iff a↔A b ⊆ F

Theorem 6.7Let A = 〈A,F〉 be an L-matrix. Then ΩA(F) is the largest logicalcongruence of A.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 20 / 71

Page 23: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Algebraic counterpart

Definition 6.8A L-matrix A = 〈A,F〉 is reduced, A ∈MOD∗(L) in symbols, if ΩA(F) isthe identity relation IdA (iff ≤A is an order).

An algebra A is L-algebra, A ∈ ALG∗(L) in symbols, if there a setF ⊆ A such that 〈A,F〉 ∈MOD∗(L).

Example: it is easy to see that

Ω2(1) = Id2 i.e., 2 ∈ ALG∗(CPC).

Actually for any Boolean algebra A:

ΩA(1) = IdA i.e., A ∈ ALG∗(CPC).

But: Ω4(a, 1) = IdA ∪ 〈1, a〉, 〈0,¬a〉 i.e. 〈4, a, 1〉 /∈MOD∗(CPC).

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 21 / 71

Page 24: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Factorizing matricesLet us take A = 〈A,F〉 ∈MOD(L). We write:

A∗ for A/ΩA(F)

[·]F for the canonical epimorphism of A onto A∗ defined as:

[a]F = b ∈ A | 〈a, b〉 ∈ ΩA(F)

A∗ for 〈A∗, [F]F〉.

Theorem 6.9Let T be a theory, A = 〈A,F〉 ∈MOD(L), and a, b ∈ A. Then:

1 LindTT = 〈FmL,T〉∗2 a ∈ F iff [a]F ∈ [F]F.3 [a]F ≤A∗ [b]F iff a→A b ∈ F.4 A∗ ∈MOD∗(L).

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 22 / 71

Page 25: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

The second completeness theorem

Theorem 6.10Let L be a weakly implicative logic. Then for any set Γ of formulas andany formula ϕ the following holds:

Γ `L ϕ iff Γ |=MOD∗(L) ϕ.

Proof.Using just the soundness part of the FCT it remains to prove:

Γ |=MOD∗(L) ϕ implies Γ `L ϕ.

Assume that Γ 6`L ϕ and take the theory T = ThL(Γ). ThenLindTT = 〈FmL,T〉∗ ∈MOD∗(L) and for LindTT -evaluatione(ψ) = [ψ]T holds e(ψ) ∈ [T]T iff ψ ∈ T

Thus e[Γ] ⊆ e[T] = [T]T and e(ϕ) /∈ [T]T

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 23 / 71

Page 26: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Order and Leibniz congruence

Definition 6.11Let A = 〈A,F〉 be an L-matrix. We define the matrix preorder ≤A of Aas

a ≤A b iff a→A b ∈ F

Note that

〈a, b〉 ∈ ΩA(F) iff a ≤A b and b ≤A a.

Thus the Leibniz congruence of A is the identity iff ≤A is an order, andso all reduced matrices of L are ordered by ≤A.

Weakly implicative logics are the logics of orderedmatrices.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 24 / 71

Page 27: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Linear filters

Definition 6.12Let A = 〈A,F〉 ∈MOD(L). Then

F is linear if ≤A is a total preorder, i.e. for every a, b ∈ A,a→A b ∈ F or b→A a ∈ F

A is a linearly ordered model (or just a linear model) if ≤A is alinear order (equivalently: F is linear and A is reduced).

We denote the class of all linear models as MOD`(L).

A theory T is linear in L if T `L ϕ→ ψ or T `L ψ → ϕ, for all ϕ,ψ

Lemma 6.13Let A ∈MOD(L). Then F is linear iff A∗ ∈MOD`(L). In particular: atheory T is linear iff LindTT ∈MOD`(L)

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 25 / 71

Page 28: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Semilinear implications and semilinear logics

Definition 6.14We say that→ is semilinear if

`L = |=MOD`(L).

We say that L is semilinear if it has a semilinear implication.

(Weakly implicative) semilinear logics are the logics oflinearly ordered matrices.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 26 / 71

Page 29: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Characterization of semilinear logics

Theorem 6.15Let L be a finitary weakly implicative logic. TFAE:

1 L is semilinear.2 L has the Semilinearity Property, i.e., the following meta-rule is

valid:Γ, ϕ→ ψ `L χ Γ, ψ → ϕ `L χ

Γ `L χ.

3 L has the Linear Extension Property, i.e., if for every theoryT ∈ Th(L) and every formula ϕ ∈ FmL \ T, there is a linear theoryT ′ ⊇ T such that ϕ /∈ T ′.

4 MOD∗(L)RFSI = MOD`(L).

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 27 / 71

Page 30: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Outline

1 The Core Theory of MFLII: A General Framework for Mathematical Fuzzy LogicIII. Proof Theory for Mathematical Fuzzy LogicIV. Algebraic Semantics: Semilinear FL-algebrasV. Hájek’s Logic HL and HL-algebrasVI. Łukasiewicz Logic and MV-algebrasVII. Gödel–Dummett LogicsVIII. Fuzzy Logics with Enriched LanguageXI. Free algebras and Functional RepresentationX. Computational Complexity for Propositional Fuzzy LogicsXI. Arithmetical Complexity of First-Order Fuzzy Logics

2 Further topics

3 Bibliography and Conclusions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 28 / 71

Page 31: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Calculus for FLew: structural rules

A sequent is a pair Γ⇒ ∆ where Γ is a multiset of formulas and∆ is a formula or the empty set.

The calculus has the following axiom and the structural rules:

(ID) ϕ⇒ ϕΓ⇒ ϕ ϕ,∆⇒ χ

(Cut)Γ,∆⇒ χ

Γ⇒ χ(W-L)

ϕ,Γ⇒ χΓ⇒(W-R)Γ⇒ ϕ

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 29 / 71

Page 32: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Calculus for FLew: operational rules

ϕ,Γ⇒ χ(∧-L)

ϕ ∧ ψ,Γ⇒ χ, ditto ψ Γ⇒ ϕ Γ⇒ ψ

(∧-R)Γ⇒ ϕ ∧ ψ

ϕ,ψ,Γ⇒ χ(&-L)

ϕ& ψ,Γ⇒ χ

Γ⇒ ϕ ∆⇒ ψ(&-R)

Γ,∆⇒ ϕ& ψ

ϕ,Γ⇒ χ ψ,Γ⇒ χ(∨-L)

ϕ ∨ ψ,Γ⇒ χ

Γ⇒ ϕ(∨-R)

Γ⇒ ϕ ∨ ψ, ditto ψ

Γ⇒ ϕ ψ,∆⇒ χ(→-L)

ϕ→ ψ,Γ,∆⇒ χ

ϕ,Γ⇒ ψ(→-R)

Γ⇒ ϕ→ ψ

Γ⇒ ϕ(¬-L) ¬ϕ,Γ⇒

ϕ,Γ⇒(¬-R)

Γ⇒ ¬ϕ

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 30 / 71

Page 33: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

From sequents to hypersequents

A hypersequent is a multiset of sequents. We add hypersequentcontext G to all rules:

(ID)G | ϕ⇒ ϕ

G | Γ⇒ ϕ(∨-R)

G | Γ⇒ ϕ ∨ ψ, ditto ψ

What we need is Avron’s communication rule

G | Γ1,Π1 ⇒ χ1 G | Γ2,Π2 ⇒ χ2(COM)G | Γ1,Γ2 ⇒ χ1 | Π1,Π2 ⇒ χ2

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 31 / 71

Page 34: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Outline

1 The Core Theory of MFLII: A General Framework for Mathematical Fuzzy LogicIII. Proof Theory for Mathematical Fuzzy LogicIV. Algebraic Semantics: Semilinear FL-algebrasV. Hájek’s Logic HL and HL-algebrasVI. Łukasiewicz Logic and MV-algebrasVII. Gödel–Dummett LogicsVIII. Fuzzy Logics with Enriched LanguageXI. Free algebras and Functional RepresentationX. Computational Complexity for Propositional Fuzzy LogicsXI. Arithmetical Complexity of First-Order Fuzzy Logics

2 Further topics

3 Bibliography and Conclusions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 32 / 71

Page 35: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Characterizations of completeness properties

Let L be core semilinear logic and K a class of L-chains.

Theorem 6.16 (Characterization of strong K-completeness)1 For each T ∪ ϕ holds: T `L ϕ iff T |=K ϕ.2 L = ISPσ-f (K).3 Each countable L-chain is embeddable into some member of K.

Theorem 6.17 (Characterization of finite strong K-completeness)1 For each finite T ∪ ϕ holds: T `L ϕ iff T |=K ϕ

2 L = Q(K), i.e., K generates L as a quasivariety.3 Each countable L-chain is embeddable into some ultrapower of K.4 Each finite subset of an L-chain is partially embeddable into an

element of K.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 33 / 71

Page 36: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Completeness properties

Let L be a core semilinear logic and K a class of L-chains.

Definition 6.18L has the SKC if:

for every Γ ∪ ϕ ⊆ FmL, Γ `L ϕ iff Γ |=K ϕ

L has the FSKC if:

for every finite Γ ∪ ϕ ⊆ FmL, Γ `L ϕ iff Γ |=K ϕ

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 34 / 71

Page 37: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Distinguished semantics

Typical instances: K ∈ R,Q,F (real, rational, finite-chainsemantics).

Theorem 6.19 (Strong finite-chain completeness)1 L enjoys the SFC,2 all L-chains are finite,3 there exists n ∈ N such each L-chain has at most n elements,4 there exists n ∈ N such that `L

∨i<n(xi → xi+1).

Theorem 6.20 (Relation of Rational and Real completeness)1 L has the FSQC iff it has the SQC.2 If L has the RC, then it has the QC.3 If L has the FSRC, then it has the SQC.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 35 / 71

Page 38: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Known results and open problems

Logic SRC FSRC SQC FSQC FSFCFL` No No No No NoFL`c No No No No ?FL`e = UL Yes Yes Yes Yes NoFL`w = psMTLr Yes Yes Yes Yes YesFL`ew = MTL Yes Yes Yes Yes YesFL`ec ? ? ? ? ?FL`wc = G Yes Yes Yes Yes Yes

Problem 6.21Solve the missing cases.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 36 / 71

Page 39: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Known results and open problems

Logic SRC FSRC SQC FSQC FSFCInFL` No No No No NoInFL`c No No No No ?InFL`e = IUL ? ? ? ? NoInFL`w Yes Yes Yes Yes ?InFL`ew = IMTL Yes Yes Yes Yes YesInFL`ec ? ? ? ? ?InFL`wc = CL No No No No Yes

Problem 6.22Solve the missing cases.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 37 / 71

Page 40: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Known results in non-associative logics

Logic SRC FSRC SQC FSQC FSFCSL` Yes Yes Yes Yes YesSL`c Yes Yes Yes Yes YesSL`e Yes Yes Yes Yes YesSL`w Yes Yes Yes Yes YesSL`ew Yes Yes Yes Yes YesSL`ec Yes Yes Yes Yes YesSL`wc = G Yes Yes Yes Yes Yes

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 38 / 71

Page 41: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

More interesting questions (no one addressed yet)

Logic SRC FSRC SQC FSQC FSFCInSL` ? ? ? ? ?InSL`c ? ? ? ? ?InSL`e ? ? ? ? ?InSL`w ? ? ? ? ?InSL`ew ? ? ? ? ?InSL`ec ? ? ? ? ?InSL`wc = CL No No No No Yes

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 39 / 71

Page 42: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Outline

1 The Core Theory of MFLII: A General Framework for Mathematical Fuzzy LogicIII. Proof Theory for Mathematical Fuzzy LogicIV. Algebraic Semantics: Semilinear FL-algebrasV. Hájek’s Logic HL and HL-algebrasVI. Łukasiewicz Logic and MV-algebrasVII. Gödel–Dummett LogicsVIII. Fuzzy Logics with Enriched LanguageXI. Free algebras and Functional RepresentationX. Computational Complexity for Propositional Fuzzy LogicsXI. Arithmetical Complexity of First-Order Fuzzy Logics

2 Further topics

3 Bibliography and Conclusions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 40 / 71

Page 43: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

An extensive research field . . .

based on the structural description of HL-chainsclassification and axiomatization of subvarietiesamalgamation, interpolation, and Beth propertiescompletions theoryetc.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 41 / 71

Page 44: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Outline

1 The Core Theory of MFLII: A General Framework for Mathematical Fuzzy LogicIII. Proof Theory for Mathematical Fuzzy LogicIV. Algebraic Semantics: Semilinear FL-algebrasV. Hájek’s Logic HL and HL-algebrasVI. Łukasiewicz Logic and MV-algebrasVII. Gödel–Dummett LogicsVIII. Fuzzy Logics with Enriched LanguageXI. Free algebras and Functional RepresentationX. Computational Complexity for Propositional Fuzzy LogicsXI. Arithmetical Complexity of First-Order Fuzzy Logics

2 Further topics

3 Bibliography and Conclusions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 42 / 71

Page 45: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

We have heard a lot about it already . . .

If you want to know more, read:

D. Mundici. Advanced Łukasiewicz calculus and MV-algebras.Trends in Logic, Vol. 35 Springer, New York, 2011.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 43 / 71

Page 46: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Outline

1 The Core Theory of MFLII: A General Framework for Mathematical Fuzzy LogicIII. Proof Theory for Mathematical Fuzzy LogicIV. Algebraic Semantics: Semilinear FL-algebrasV. Hájek’s Logic HL and HL-algebrasVI. Łukasiewicz Logic and MV-algebrasVII. Gödel–Dummett LogicsVIII. Fuzzy Logics with Enriched LanguageXI. Free algebras and Functional RepresentationX. Computational Complexity for Propositional Fuzzy LogicsXI. Arithmetical Complexity of First-Order Fuzzy Logics

2 Further topics

3 Bibliography and Conclusions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 44 / 71

Page 47: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

We have heard a lot about it already . . .

If you want to know more, read:

anything from Vienna school: M. Baaz, N. Preining, C. Fermüller,R. Zach, etc.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 45 / 71

Page 48: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Outline

1 The Core Theory of MFLII: A General Framework for Mathematical Fuzzy LogicIII. Proof Theory for Mathematical Fuzzy LogicIV. Algebraic Semantics: Semilinear FL-algebrasV. Hájek’s Logic HL and HL-algebrasVI. Łukasiewicz Logic and MV-algebrasVII. Gödel–Dummett LogicsVIII. Fuzzy Logics with Enriched LanguageXI. Free algebras and Functional RepresentationX. Computational Complexity for Propositional Fuzzy LogicsXI. Arithmetical Complexity of First-Order Fuzzy Logics

2 Further topics

3 Bibliography and Conclusions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 46 / 71

Page 49: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

A plethora of results not only about . . .

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 47 / 71

Page 50: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Outline

1 The Core Theory of MFLII: A General Framework for Mathematical Fuzzy LogicIII. Proof Theory for Mathematical Fuzzy LogicIV. Algebraic Semantics: Semilinear FL-algebrasV. Hájek’s Logic HL and HL-algebrasVI. Łukasiewicz Logic and MV-algebrasVII. Gödel–Dummett LogicsVIII. Fuzzy Logics with Enriched LanguageXI. Free algebras and Functional RepresentationX. Computational Complexity for Propositional Fuzzy LogicsXI. Arithmetical Complexity of First-Order Fuzzy Logics

2 Further topics

3 Bibliography and Conclusions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 48 / 71

Page 51: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Basic notions

We fix a logic L which is standard complete w.r.t. [0, 1]L.

Definition 6.23Function f : [0, 1]n → [0, 1] is represented by formula ϕ of logic L ife(ϕ) = f (e(v1), e(v2), . . . , e(vm)) for each [0, 1]L-evaluation e.

Definition 6.24Functional representation of logic L is a class of functions from anypower of [0, 1] into [0, 1] s.t. each C ∈ C is represented by some formulaϕ and vice-versa (i.e., for each ϕ there is C ∈ C represented by ϕ).

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 49 / 71

Page 52: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

An overview

Łukasiewicz logic:Operations: truncated sum min1, x + y and involutive negation 1− xFunctions: continuous piece-wise linear functions with integer coeff.

f (x1, . . . , xn) = a1x1 + . . .+ anxn + a0 , ai ∈ Z

Ext. Added operations FunctionsP multiplication polynomial

RP rational constants rational shift (a0 ∈ Q)

44(x) = 1 if x = 1

4(x) = 0 if x < 1non-continuity

δ dividing by integers rational coefficients (ai ∈ Q)

Π fractions fractions of functions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 50 / 71

Page 53: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Some known results

Definition 6.25A subset S of [0, 1]n is Q-semialgebraic if it is a Boolean combination ofsets of the form

〈x1, . . . , xn〉 ∈ [0, 1]n | P(〈x1, . . . , xn〉) > 0

for polynomials P with integer coefficients. If all of the polynomials arelinear, then S is linear Q-semialgebraic.

Logic Contin. Domains Pieces yes linear linear functions with integer coefficients4 no linear linear functions with integer coefficientsRPL yes linear linear integer coefficients and a rational shiftδ yes linear linear rational coefficientsP′ yes ? ??? Pierce-Birkhoff conjecture ???P′

4 no all polynomials with integer coefficientsΠ no all fractions of polynomials with integer coeff.Π 1

2 no all as above plus f [0, 1n] ⊆ 0, 1

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 51 / 71

Page 54: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Outline

1 The Core Theory of MFLII: A General Framework for Mathematical Fuzzy LogicIII. Proof Theory for Mathematical Fuzzy LogicIV. Algebraic Semantics: Semilinear FL-algebrasV. Hájek’s Logic HL and HL-algebrasVI. Łukasiewicz Logic and MV-algebrasVII. Gödel–Dummett LogicsVIII. Fuzzy Logics with Enriched LanguageXI. Free algebras and Functional RepresentationX. Computational Complexity for Propositional Fuzzy LogicsXI. Arithmetical Complexity of First-Order Fuzzy Logics

2 Further topics

3 Bibliography and Conclusions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 52 / 71

Page 55: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Known results (see Handbook ch. X)

Logic L THM(L) CONS(L) expansion by rational constantsHL coNP-c. coNP-c. – coNP-c. coNP-c. coNP-c.

L ⊃ coNP-c. coNP-c. –G coNP-c. coNP-c. coNP-c.Π coNP-c. coNP-c. ∈ PSPACE

L(∗) ⊃ HL coNP-c. coNP-c. –Π 1

2 ∈ PSPACE ∈ PSPACE –MTL decidable decidable –

IMTL decidable decidable –ΠMTL decidable decidable –

NM coNP-c. coNP-c. coNP-c.WNM coNP-c. coNP-c. –

Problem 6.26Determine the precise complexity in all cases.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 53 / 71

Page 56: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Outline

1 The Core Theory of MFLII: A General Framework for Mathematical Fuzzy LogicIII. Proof Theory for Mathematical Fuzzy LogicIV. Algebraic Semantics: Semilinear FL-algebrasV. Hájek’s Logic HL and HL-algebrasVI. Łukasiewicz Logic and MV-algebrasVII. Gödel–Dummett LogicsVIII. Fuzzy Logics with Enriched LanguageXI. Free algebras and Functional RepresentationX. Computational Complexity for Propositional Fuzzy LogicsXI. Arithmetical Complexity of First-Order Fuzzy Logics

2 Further topics

3 Bibliography and Conclusions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 54 / 71

Page 57: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Known results (see Handbook ch. XI)

Logic stTAUT1 stSAT1 stTAUTpos stSATpos

(I)MTL∀ Σ1-complete Π1-complete Σ1-complete Π1-completeWCMTL∀ Σ1-hard Π1-hard Σ1-hard Π1-hardΠMTL∀ Σ1-hard Π1-hard Σ1-hard Π1-hard(S)HL∀ Non-arithm. Non-arithm. Non-arithm. Non-arithm.∀ Π2-complete Π1-complete Σ1-complete Σ2-completeΠ∀ Non-arithm. Non-arithm. Non-arithm. Non-arithm.G∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

CnMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-completeCnIMTL∀ Σ1-complete Π1-complete Σ1-complete Π1-completeWNM∀ Σ1-complete Π1-complete Σ1-complete Π1-completeNM∀ Σ1-complete Π1-complete Σ1-complete Π1-complete

Problem 6.27Determine the precise complexity in all cases.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 55 / 71

Page 58: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Outline

1 The Core Theory of MFLII: A General Framework for Mathematical Fuzzy LogicIII. Proof Theory for Mathematical Fuzzy LogicIV. Algebraic Semantics: Semilinear FL-algebrasV. Hájek’s Logic HL and HL-algebrasVI. Łukasiewicz Logic and MV-algebrasVII. Gödel–Dummett LogicsVIII. Fuzzy Logics with Enriched LanguageXI. Free algebras and Functional RepresentationX. Computational Complexity for Propositional Fuzzy LogicsXI. Arithmetical Complexity of First-Order Fuzzy Logics

2 Further topics

3 Bibliography and Conclusions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 56 / 71

Page 59: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Volume III of the Handbook (in preparation)

XII Algebraic Semantics: Structure of Chains (Vetterlein)XIII Dialogue Game-based Interpretations of Fuzzy Logics (Fermüller)XIV Ulam–Rényi games (Cicalese, Montagna)XV Fuzzy Logics with Evaluated Syntax (Novák)XVI Fuzzy Description Logics (Bobillo, Cerami, Esteva,

García-Cerdaña, Peñaloza, Straccia)XVII States of MV-algebras (Flaminio, Kroupa)

XVIII Fuzzy Logics in Theories of Vagueness (Smith)

(edited by Cintula, Fermüller, and Noguera)

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 57 / 71

Page 60: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Those that would deserve a Handbook chapter insome of the future volumes, but are not ready yet . . .

Model Theory of Fuzzy LogicsModel Theory in Fuzzy LogicsFuzzy Modal LogicsDuality TheoryFragments of Fuzzy LogicsHigher-Order Fuzzy logicsFuzzy Set TheoriesFuzzy Arithmetics

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 58 / 71

Page 61: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Example I: model theory in fuzzy logics

Definition 6.28Let 〈B1,M1〉 and 〈B2,M2〉 be two P-models. 〈B1,M1〉 is elementarilyequivalent to 〈B2,M2〉 if for each ϕ:

〈B1,M1〉 |= ϕ iff 〈B2,M2〉 |= ϕ

Definition 6.29An elementary embedding of a P1-model 〈B1,M1〉 into a P2-model〈B2,M2〉 is a pair (f , g) such that:

1 f is an injection of the domain of M1 into the domain of M2.2 g is an embedding of B1 into B2.3 g(‖ϕ(a1, . . . , an)‖〈B1,M1〉) = ‖ϕ(f (a1), . . . , f (an))‖〈B2,M2〉 holds for

each P1-formula ϕ(x1, . . . , xn) and a1, . . . , an ∈M.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 59 / 71

Page 62: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

The characterization of conservative expansions

Theorem 6.30Let L be a canonical fuzzy logic, T1 and T2 theories over L∀. Then thefollowing claims are equivalent:

1 T2 is a conservative extension of T1.2 Each model of T1 is elementarily equivalent with restriction of

some model of T2to the language of T1 .3 Each exhaustive model of T1 is elementarily equivalent with

restriction of some model of T2to the language of T1.4 Each exhaustive model of T1 can be elementarily embedded into

some model of T2.

But it is not equivalent to6 Each model of T1 can be elementarily embedded into some model

of T2.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 60 / 71

Page 63: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Example II: evaluation games for Łukasiewicz logicLet M be a witnessed P-structure, then the labelled evaluation gamefor M is

win-lose extensive game of two players (Eloise E and Abelard A);its states are tuples 〈ϕ, e, ./, r〉, where

I ϕ is a P-formulaI e is an M-evaluationI ./ ∈ ≤,≥I r ∈ [0, 1]

it has terminal states 〈ϕ, e, ./, r〉 where eitherI ϕ is atomic formula,I ./ = ≤ and r = 1, orI ./ = ≥ and r = 0

Eloise winning in first type of TS if ||ϕ||M,v ./ r and is‘automatically’ winning in the other twothe game moves given by the following rules . . .

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 61 / 71

Page 64: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Rules of the game — negation and disjunction(s)

(¬) (¬ψ, v, ./, r): the game continues as (ψ, v, ./−1, 1− r)

(⊕) (ψ1 ⊕ ψ2, v, ./, r):E chooses r′ ≤ r,A chooses whether to play (ψ1, v, ./ r′) or (ψ2, v, ./ r − r′).

(∨≥) (ψ1 ∨ ψ2, v,≥, r):E chooses whether to play (ψ1, v, r) or (ψ2, v, r).

(∨≤) (ψ1 ∨ ψ2, v,≤, r):A chooses whether to play (ψ1, v, r) or (ψ2, v, r).

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 62 / 71

Page 65: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Rules of the game — general quantifier

((∀x)ψ, v,≥, r): E claims that min||ψ||v[x] | x ∈ M ≥ r

A has to provide a counterexample - an a such that (||ψ||v[x→a] < r)

(∀≥) ((∀x)ψ, v,≥, r):A chooses a ∈ M,game continues as (ψ, v[x→a],≥, r).

((∀x)ψ, v,≤, r): E claims that min||ψ||v[x] | x ∈ M ≤ r

E has to provide a witness - an a such that (||ψ||v[x→a] ≤ r)

(∀≤) ((∀x)ψ, v,≤, r):E chooses a ∈ M,game continues as (ψ, v[x→a],≤, r).

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 63 / 71

Page 66: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Correspondence theoremLet us by GM(ϕ, v, ./, r) denote that labelled evaluation game for Mwith initial state (ϕ, v, ./, r). Then by Gale–Steward theorem:

Theorem 6.31 (Determinedness)Either Eloise or Abelard has a winning strategy for every GM(ϕ, v, ./, r).

Theorem 6.32 (Correspondence)Let M be a structure, ϕ a formula, v an M-valuation, ./ ∈ ≤,≥, andr ∈ [0, 1]. Then

Eloise has a winning strategy in GM(ϕ, v, ./, r) iff ||ϕ||M,v ./ r.

Corollary 6.33Let M be a structure and ϕ a formula. Then M |= ϕ iff Eloise has awinning strategy for the game GM(ϕ, v,≥, 1) for each M-valuation v

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 64 / 71

Page 67: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

This all is just a beginning . . . (see Handbook ch. XIII)

Indeed, having a (labelled evaluation) game semantics opens doors tomany interesting opportunities, in particular

it allows for including inperfect information, which lead tostudy of branching quantifiers anda new way of combining probability and vagueness.It provides a useful characterization of safe structures (in otherthan [0, 1]-based models) andgives some notion of ‘truth’ even in the non-safe ones.It gives a novel ‘explanation/justification’ of the semantics ofŁukasiewicz logic. . .

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 65 / 71

Page 68: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Outline

1 The Core Theory of MFLII: A General Framework for Mathematical Fuzzy LogicIII. Proof Theory for Mathematical Fuzzy LogicIV. Algebraic Semantics: Semilinear FL-algebrasV. Hájek’s Logic HL and HL-algebrasVI. Łukasiewicz Logic and MV-algebrasVII. Gödel–Dummett LogicsVIII. Fuzzy Logics with Enriched LanguageXI. Free algebras and Functional RepresentationX. Computational Complexity for Propositional Fuzzy LogicsXI. Arithmetical Complexity of First-Order Fuzzy Logics

2 Further topics

3 Bibliography and Conclusions

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 66 / 71

Page 69: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Bibliography

Libor Behounek, Ondrej Majer. A semantics for counterfactualsbased on fuzzy logic. In M. Peliš, V. Puncochar (eds.), The LogicaYearbook 2010, pp. 25–41, College Publications, 2011.Libor Behounek. Fuzzy logics interpreted as logics of resources.In M. Peliš (ed.): The Logica Yearbook 2008, pp. 9–21, CollegePublications 2009.Libor Behounek, Petr Cintula. From fuzzy logic to fuzzymathematics: a methodological manifesto. Fuzzy Sets andSystems 157(5): 642–646, 2006.Roberto Cignoli, Itala M.L. D’Ottaviano and Daniele Mundici,Algebraic Foundations of Many-Valued Reasoning, Trends inLogic, vol. 7, Kluwer, Dordrecht, 1999.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 67 / 71

Page 70: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Bibliography

Petr Cintula, Francesc Esteva, Joan Gispert, Lluís Godo, FrancoMontagna and Carles Noguera. Distinguished AlgebraicSemantics For T-Norm Based Fuzzy Logics: Methods andAlgebraic Equivalencies, Annals of Pure and Applied Logic160(1): 53–81, 2009.Petr Cintula, Petr Hájek, Carles Noguera (eds). Handbook ofMathematical Fuzzy Logic. Studies in Logic, Mathematical Logicand Foundations, vol. 37 and 38, London, College Publications,2011.Petr Cintula, Rostislav Horcík and Carles Noguera.Non-Associative Substructural Logics and their SemilinearExtensions: Axiomatization and Completeness Properties, TheReview of Symbolic Logic 6(3):394–423, 2013.Michael Dummett. A propositional calculus with denumerablematrix. Journal of Symbolic Logic, 24:97–106, 1959.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 68 / 71

Page 71: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Bibliography

Nikolaos Galatos, Peter Jipsen, Tomasz Kowalski, and HiroakiraOno. Residuated Lattices: An Algebraic Glimpse at SubstructuralLogics, Studies in Logic and the Foundations of Mathematics, vol.151, Amsterdam, Elsevier, 2007.Joseph Amadee Goguen. The logic of inexact concepts.Synthese, 19:325–373, 1969.Siegfried Gottwald. A Treatise on Many-Valued Logics, volume 9of Studies in Logic and Computation. Research Studies Press,Baldock, 2001.Petr Hájek. Metamathematics of Fuzzy Logic, volume 4 of Trendsin Logic. Kluwer, Dordrecht, 1998.Jan Łukasiewicz and Alfred Tarski. Untersuchungen über denAussagenkalkül. Comptes Rendus des Séances de la Société desSciences et des Lettres de Varsovie, 23:30–50, 1930.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 69 / 71

Page 72: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Bibliography

George Metcalfe, Nicola Olivetti and Dov M. Gabbay, Proof Theoryfor Fuzzy Logics, Applied Logic Series, vol. 36, Springer, 2008.Daniele Mundici, Advanced Łukasiewicz Calculus andMV-Algebras, Springer, New York, 2011.Vilém Novák, Irina Perfilieva, and Jirí Mockor. MathematicalPrinciples of Fuzzy Logic. Kluwer, Dordrecht, 2000.Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8:338–353,1965.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 70 / 71

Page 73: A Gentle Introduction to Mathematical Fuzzy Logiccintula/slides/MFL-6.pdfA Gentle Introduction to Mathematical Fuzzy Logic 6. Further lines of research and open problems Petr Cintula1

Conclusions

MFL is a well-developed field, with a genuine agenda ofMathematical Logic: axiomatization, completeness, proof theory,functional representation, computational complexity, model theory,etc.All these areas are active, mathematically deep and posechallenging open problems.The objects studied by MFL are semilinear logics, i.e. logics ofchains.Graduality in the semantics (linearly ordered truth-values) is aflexible tool amenable for many interesting applications.MFL, its extensions and applications has still a long way to go, thebest is yet to come, and so there are plenty of topics for potentialPh.D. theses.

Petr Cintula and Carles Noguera (CAS) Mathematical Fuzzy Logic www.cs.cas.cz/cintula/MFL 71 / 71