A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism...

28
A general pharmacodynamic interaction (GPDI) model Sebastian Wicha, Chunli Chen, Oskar Clewe, Ulrika Simonsson Pharmacometrics Research Group Uppsala Universitet PAGE Meeting, Lisbon, 2016-06-09 1

Transcript of A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism...

Page 1: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

A general pharmacodynamic

interaction (GPDI) model

Sebastian Wicha, Chunli Chen, Oskar Clewe, Ulrika Simonsson

Pharmacometrics Research Group

Uppsala Universitet

PAGE Meeting, Lisbon, 2016-06-09

1

Page 2: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

Combination therapy –

Drug interactions?

Combination therapy is prevalent in many therapeutic areas

– Anti-infectives

– Chemotherapy

– Antiepileptics

– Anaesthesia

What are our current modelling options and their limitations

for characterization of pharmacodynamic (PD) drug

interactions (DDI)?

2

Page 3: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

PD DDI modelling

current options

Mechanistic approaches

• Receptor theory

– Competitive interaction models

– Noncompetitive/uncompetitive models

• Systems biology/pharmacology

Additivity-based empirical models

• Loewe Additivity

– Greco model, …

– Combination indices

• Bliss Independence

– Empiric Bliss model(s)

3

R

CA

CB

R*

R*

E

no E

Page 4: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

Challenges with current

modelling options

Mechanistic approaches

• Lack of knowledge to parameterize mechanistic interaction models

Additivity-based empirical models

4

Page 5: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

5

alpha = 0 Loewe Additivity

alpha > 0 Synergy

alpha < 0 Antagonism

W.R. Greco et al. Cancer Res., 50: 5318–27 (1990).

Greco model

1 =𝐶𝐴

𝐸𝐶50𝐴 ×𝐸

𝐸𝑚𝑎𝑥 − 𝐸

1/𝐻𝐴+

𝐶𝐵

𝐸𝐶50𝐵 ×𝐸

𝐸𝑚𝑎𝑥 − 𝐸

1/𝐻𝐵

+𝛼 × 𝐶𝐴 × 𝐶𝐵

𝐸𝐶50𝐴 × 𝐸𝐶50𝐵 ×𝐸

𝐸𝑚𝑎𝑥 − 𝐸

12𝐻𝐴

+1

2𝐻𝐵

Loewe Additivity

Interaction

term

Page 6: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

Challenges with current

modelling options

Mechanistic approaches

• Lack of knowledge to parameterize mechanistic interaction models

Additivity-based empirical models

• Interaction parameters are not quantitatively interpretable

• Single underlying additivity concept

• Mono-dimensional (‘symmetric’) interactions

• Limitation to two drugs

1 =𝐶𝐴

𝐸𝐶50𝐴 ×𝐸

𝐸𝑚𝑎𝑥 − 𝐸

1/𝐻𝐴+

𝐶𝐵

𝐸𝐶50𝐵 ×𝐸

𝐸𝑚𝑎𝑥 − 𝐸

1/𝐻𝐵

+𝛼 × 𝐶𝐴 × 𝐶𝐵

𝐸𝐶50𝐴 × 𝐸𝐶50𝐵 ×𝐸

𝐸𝑚𝑎𝑥 − 𝐸

12𝐻𝐴

+1

2𝐻𝐵

Greco model

W.R. Greco et al. Cancer Res., 50: 5318–27 (1990).

Page 7: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

Towards a general PD

interaction model

• Receptor-based mechanistic approaches

– Competitive interaction models

– Noncompetitive/uncompetitive models

• Additivity-based empirical models

– Loewe Additivity

• Greco model

– Bliss Independence

• Empiric Bliss model(s)

7

General PD interaction

model

Basis: additivity criterion

Mechanistic elements

Page 8: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

The Emax model for

quantification of drug effects

8

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Drug concentration C [fraction of EC50]

Dru

g effect

E [

frac

tion o

f Em

ax]

𝐸 =𝐸𝑚𝑎𝑥 × 𝐶𝐻

𝐸𝐶50𝐻 + 𝐶𝐻

Page 9: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

GPDI model

implementation on EC50

• 𝐸𝐴 =𝐸𝑚𝑎𝑥𝐴×𝐶

𝐴𝐻𝐴

𝐸𝐶50𝐴

× 1+𝐼𝑛𝑡

𝐴𝐵×𝐶𝐵

𝐸𝐶50𝐼𝑁𝑇

,𝐴𝐵

+𝐶𝐵

𝐻𝐴+𝐶𝐴

𝐻𝐴

• 𝐸𝐵 =𝐸𝑚𝑎𝑥𝐵×𝐶

𝐵𝐻𝐵

𝐸𝐶50𝐵

× 1+𝐼𝑛𝑡

𝐵𝐴×𝐶𝐴

𝐸𝐶50𝐼𝑁𝑇

,𝐵𝐴

+𝐶𝐴

𝐻𝐵+𝐶𝐵

𝐻𝐵

• 4 parameter interaction model

– IntAB, IntBA (-1 < Int < Inf) (0: Additivity, <0: Synergy, >0: Antagonism)

– EC50INT,AB , EC50INT,BA

• Simplifications:

– IntAB = IntBA (joint INT parameter)

– EC50Int,AB = EC50B and EC50Int,BA = EC50A

9

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Drug concentration C [fraction of EC50]

Dru

g effect

E [

frac

tion o

f Em

ax]

Page 10: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

GPDI model

implementation on Emax

• 𝐸𝐴 =𝐸𝑚𝑎𝑥𝐴× 1+

𝐼𝑛𝑡𝐴𝐵

×𝐶𝐵𝐸𝐶50

𝐼𝑁𝑇,𝐴𝐵

+𝐶𝐵×𝐶

𝐴𝐻𝐴

𝐸𝐶50𝐴𝐻𝐴+𝐶𝐴

𝐻𝐴

• 𝐸𝐵 =𝐸𝑚𝑎𝑥𝐵× 1+

𝐼𝑛𝑡𝐵𝐴

×𝐶𝐴𝐸𝐶50

𝐼𝑁𝑇,𝐵𝐴

+𝐶𝐴×𝐶

𝐵𝐻𝐵

𝐸𝐶50𝐵𝐻𝐵+𝐶𝐵

𝐻𝐵

• 4 parameter interaction model

– IntAB, IntBA

– EC50INT,AB , EC50INT,BA

• Simplifications:

– IntAB = IntBA (joint INT parameter)

– EC50Int,AB = EC50B and EC50Int,BA = EC50A

10

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Drug concentration C [fraction of EC50]

Dru

g effect

E [

frac

tion o

f Em

ax]

Page 11: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

The GPDI model is compatible with

several additivity criteria

11

𝐸𝐴 =𝐸𝑚𝑎𝑥𝐴 × 𝐶𝐴

𝐻𝐴

𝐸𝐶50𝐴 × 1 +𝐼𝑛𝑡𝐴𝐵 × 𝐶𝐵

𝐸𝐶50𝐼𝑁𝑇, 𝐴𝐵 + 𝐶𝐵

𝐻𝐴

+ 𝐶𝐴𝐻𝐴

𝐸𝐵 =𝐸𝑚𝑎𝑥𝐵 × 𝐶𝐵

𝐻𝐵

𝐸𝐶50𝐵 × 1 +𝐼𝑛𝑡𝐵𝐴 × 𝐶𝐴

𝐸𝐶50𝐼𝑁𝑇, 𝐵𝐴 + 𝐶𝐴

𝐻𝐵

+ 𝐶𝐵𝐻𝐵

Loewe Additivity

Bliss Independence

Effect summation

Highest single agent

Page 12: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

GPDI Model on EC50

Two Drugs

12

Bliss Independence

Bidirectional Synergy

Joint decrease in EC50

Bidirectional Antagonism

Joint increase in EC50

Asymmetric interaction

A increases EC50 of B

B decreases EC50 of A

Page 13: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

GPDI Model

Three Drugs

Bidirectional interactions between three drugs A, B and C:

• 𝐸𝐴 =𝐸𝑚𝑎𝑥𝐴×𝐶𝐴

𝐻𝐴

𝐸𝐶50𝐴 × 1+𝐼𝑁𝑇𝐴𝐵×𝐶𝐵

𝐸𝐶50𝐼𝑁𝑇,𝐴𝐵+𝐶𝐵× 1+

𝐼𝑁𝑇𝐴𝐶×𝐶𝐶𝐸𝐶50𝐼𝑁𝑇,𝐴𝐶+𝐶𝐶

𝐻𝐴+𝐶𝐴𝐻𝐴

Drug C modulates interaction between A and B:

• 𝐸𝐴 =𝐸𝑚𝑎𝑥𝐴×𝐶𝐴

𝐻𝐴

𝐸𝐶50𝐴 × 1+𝐼𝑁𝑇𝐴𝐵× 1+

𝐼𝑁𝑇𝐴𝐵|𝐶×𝐶𝐶𝐸𝐶50𝐼𝑁𝑇,𝐴𝐵|𝐶+𝐶𝐶

×𝐶𝐵

𝐸𝐶50𝐼𝑁𝑇,𝐴𝐵+𝐶𝐵× 1+

𝐼𝑁𝑇𝐴𝐶×𝐶𝐶𝐸𝐶50𝐼𝑁𝑇,𝐴𝐶+𝐶𝐶

𝐻𝐴

+𝐶𝐴𝐻𝐴

13

Page 14: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

Application of the GPDI Model

• Dataset:

Cokol et al. Mol Syst Biol, 7: 544 (2011).

– Target organism:

S. cerevisiae BY4741

– 200 combinations of anti-fungal and

non-antifungal drugs.

• Inhibition of growth model

• GPDI model

– Loewe additivity

– Bliss Independence

• Comparison to Greco model

14

200x

Mono A

Mono B

Fungal lo

ad (

OD

)

Time (h)

Page 15: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

Ind. Prediction of Loewe Additivity

15

Observation

Prediction

Ax Bx (fold MIC)

Page 16: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

Individual predictions using

Greco (left) or GPDI model (right)

16

Observation Prediction Ax Bx (fold MIC)

Page 17: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

INT values at EC50

17

SYN

ANT

AN

T +

SY

N

ANT + SYN

0 2 4 6 8 10

0

2

4

6

8

10

INTAB at EC50A

INT

BA a

t EC

50

B

Page 18: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

INT values at EC50 of

sham combinations

18

SYN

ANT

AN

T +

SY

N

ANT + SYN

0 2 4 6 8 10

0

2

4

6

8

10

INTAB at EC50A

INT

BA a

t EC

50

B

Page 19: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

INT values at EC50 of

sham combinations

19

SYN

ANT

AN

T +

SY

N

ANT + SYN

ADD

0 2 4 6 8 10

0

2

4

6

8

10

INTAB at EC50A

INT

BA a

t EC

50

B

Page 20: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

188/200 PD DDI supported

estimation of full GPDI model*

20

SYN

ANT

AN

T +

SY

N

ANT + SYN

ADD

0 2 4 6 8 10

0

2

4

6

8

10

INTAB at EC50A

INT

BA a

t EC

50

B

* i.e. significant separate INT

value for each drug vs.

joint INT parameter

Page 21: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

PD DDI are often misclassified

by conventional analyses!

21

SYN

ANT

AN

T +

SY

N

ANT + SYN

Result of Greco analysis:

• Antagonism

• Additivity

• Synergy

ADD

0 2 4 6 8 10

0

2

4

6

8

10

INTAB at EC50A

INT

BA a

t EC

50

B

Page 22: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

The choice of additivity criterion

affects the determined interaction

22

0 2 4 6 8 10

0

2

4

6

8

10

INTAB at EC50A

INT

BA a

t EC

50

B

0 2 4 6 8 10

0

2

4

6

8

10

GPDI – Loewe Additivity GPDI – Bliss Independence

76

35 35

54

27

88

27

58

Page 23: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

Conclusions

• The GPDI model combined elements from mechanism-based

interaction models with empirical additivity concepts.

• Advantages of the GPDI model over conventional

approaches are:

– interpretable parameters

– Applicability for > 2 interacting drugs

– Compatibility with multiple additivity criteria

– More-dimensional interactions

– Scalability to adapt to complexity of the data

– Applicability in both concentration-effect and longitudinal

modelling

23

Page 24: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

GPDI model application studies

at PAGE 2016

24

II-50 II-44

In vitro and in vivo (acute mouse infection model) drug effects of

rifampicin, isoniazid, ethambutol and pyrazinamide against

M. tuberculosis

Page 25: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

Acknowledgements

PMx research group at Uppsala University

• Elin Svensson

• Anders Kristofferson

PreDiCT-TB consortium

25

The research leading to these results has received funding from the Innovative

Medicines Initiative Joint Undertaking (www.imi.europe.eu) under grant agreement

n°115337, resources of which are composed of financial contribution from the

European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA

companies’ in kind contribution.

Page 26: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

Appendix

26

Page 27: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

Implementation of Combined

Effects on Inhibition of Growth

GPDI within Bliss Independence:

𝐸 = 𝐸𝐴 + 𝐸𝐵 − 𝐸𝐴 × 𝐸𝐵

• 𝐸𝐴 =𝐸𝑚𝑎𝑥𝐴×𝐶𝐴

𝐻𝐴

𝐸𝐶50𝐴 × 1+𝐼𝑛𝑡

𝐴𝐵×𝐶𝐵

𝐸𝐶50𝐼𝑁𝑇

,𝐴𝐵

+𝐶𝐵

𝐻𝐴+𝐶𝐴

𝐻𝐴

• 𝐸𝐵 =𝐸𝑚𝑎𝑥𝐵×𝐶𝐵

𝐻𝐵

𝐸𝐶50𝐵 × 1+𝐼𝑛𝑡

𝐵𝐴×𝐶𝐴

𝐸𝐶50𝐼𝑁𝑇

,𝐵𝐴

+𝐶𝐴

𝐻𝐵+𝐶𝐵

𝐻𝐵

GPDI within Loewe additivity:

27

𝐸𝐶50𝐴 = 𝐸𝐶50𝐴 × 1 +𝐼𝑛𝑡𝐴𝐵 × 𝐶𝐵

𝐸𝐶50𝐼𝑁𝑇, 𝐴𝐵 + 𝐶𝐵

𝐸𝐶50𝐵 = 𝐸𝐶50𝐵 × 1 +𝐼𝑛𝑡𝐵𝐴 × 𝐶𝐴

𝐸𝐶50𝐼𝑁𝑇, 𝐵𝐴 + 𝐶𝐴

*

*

* *

N

kgrowth·(1-E)

[1] W.J. Jusko, J. Pharm. Sci. 60 (1971).

[1]

Page 28: A general pharmacodynamic interaction (GPDI) model€¦ · alpha > 0 Synergy alpha < 0 Antagonism W.R. Greco et al. Cancer Res., 50: 5318–27 (1990). Greco model 1= 𝐸 50

The full GPDI Model is identifiable

on standard checkerboard designs

28

8x8 checkerboard

• 1000 scenarios assessed

• n=3 replicates per scenario

• max. growth: 10 log10 CFU/mL

• 𝜎add = 0.3 log10 CFU/mL

Emax ∈ {0.5,1}

EC50 ∈ {0. 5, 2}

H ∈ {1, 4}

Int ∈ {-0.9, -0.2} ∪ {2, 20}

EC50_Int ∈ {0.1, 1}

Em

ax

A

EC

50

A

HA

Em

ax

B

EC

50

B

HB

Int A

B

Int B

A

EC

50

Int,

AB

EC

50

Int,

BA

0.5

1.0

2.0

5.0

10.0

20.0

50.0

100.0

200.0

exp

ecte

d R

SE

%