A game of “matching pennies”

33
A game of “matching pennies” column L R row T 2,0 0,1 B 0,1 1,0 People last names A-M play ROW (choose T, B) People last names N-Z play COLUMN (choose L, R) A game of “matching pennies”: Mixed-strategy equilibrium column mixed-strategy L R equilibrium row T 2,0 0,1 .5 B 0,1 1,0 .5 mixed-strategy equilibrium .33 .67

Transcript of A game of “matching pennies”

Page 1: A game of “matching pennies”

1

A game of “matching pennies”

columnL R

row T 2,0 0,1B 0,1 1,0

People last names A-M play ROW (choose T, B)People last names N-Z play COLUMN (choose L, R)

A game of “matching pennies”:Mixed-strategy equilibrium

column mixed-strategyL R equilibrium

row T 2,0 0,1 .5B 0,1 1,0 .5

mixed-strategyequilibrium .33 .67

Page 2: A game of “matching pennies”

2

Behavioral game theory: Thinking, learning & teaching

Colin F. Camerer, CaltechTeck Ho, Wharton

Kuan Chong, National Univ Singapore

• How to model bounded rationality? – Thinking steps (one-shot games)

• How to model equilibration? – Learning model (fEWA)

• How to model repeated game behavior? – Teaching model

Behavioral models use some game theory principles, relax others

Principle Nash Thinking Learning Teachingconcept of a game ! ! ! !

strategic thinking ! ! ! !

best response !

mutual consistency !

learning ! !

strategic foresight ! !

Page 3: A game of “matching pennies”

3

Parametric EWA learning (E’metrica ‘99) • free parameters δ, ϖ, ϕ, κ, N(0)

Functional EWA learning• functions for parameters

• parameter (κ)

Strategic teaching (JEcTheory ‘02)• Reputation-building w/o “types”

• Two parameters (ρ, α)

Thinking steps(parameter τ)

Potential economic applications• Thinking

– price bubbles, speculation, competition neglect • Learning

– evolution of institutions, new industries– Neo-Keynesian macroeconomic coordination – bidding, consumer choice

• Teaching– contracting, collusion, inflation policy

Page 4: A game of “matching pennies”

4

Modelling philosophy• General (game theory)• Precise (game theory)• Progressive (behavioral econ) • Empirically disciplined (experimental econ)

“...the empirical background of economic science is definitely inadequate...it would have been absurd in physics to expect Kepler and Newton without Tycho Brahe” (von Neumann &Morgenstern ‘44)

Modelling philosophy• General (game theory)• Precise (game theory)• Progressive (behavioral econ) • Empirically disciplined (experimental econ)

“...the empirical background of economic science is definitely inadequate...it would have been absurd in physics to expect Kepler and Newton without Tycho Brahe” (von Neumann &Morgenstern ‘44)

“Without having a broad set of facts on which to theorize, there is a certain danger of spending too much time on models that are mathematically elegant, yet have little connection to actual behavior. At present our empirical knowledge is inadequate...” (Eric Van Damme ‘95)

Page 5: A game of “matching pennies”

5

Beauty contest game

• N players choose numbers xi in [0,100]

• Compute target (2/3)*(Σ xi /N)

• Closest to target wins $20

Beauty contest game: Pick numbers [0,100] closest to (2/3)*(average number) wins

Beauty contest results (Expansion, Financial Times, Spektrum)

0.000.050.100.150.20

numbers

rela

tive

fr

eq

ue

nci

es

22 5 0 1 003 3

average 23.07

0

Page 6: A game of “matching pennies”

6

0

6-10

16-2

0

26-3

0

36-4

0

46-5

0

56-6

0

66-7

0

81-9

0

0

0.05

0.1

0.15

0.2

0.25

0.3

frequency

Beauty contest results

Portfolio managersEcon PhDsCEOsCaltech students

0

1~10

11~2

0

21~3

0

31~4

0

41~5

0

51~6

0

61~7

0

71~8

0

81~9

0

91~1

00

1

3

5

7

9

0

0.1

0.2

0.3

0.4

0.5

0.6

Choices

Round

Predictions

0

1~10

11~

20

21~

30

31~

40

41~

50

51~

60

61~

70

71~

80

81~

90

91~

100

1

3

5

7

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Choices

Round

Results

Page 7: A game of “matching pennies”

7

The thinking steps model• Discrete steps of thinking

Step 0’s choose randomly K-step thinkers know proportions f(0),...f(K-1)*

Normalize f’(h)=f(h)/ Σh=0K-1 f(h) and best-respond

A j(K)=Σm ο(sj,sm) (Pm(0) f’(0) + Pm(1) f’(1)+... Pm(K-1) f’(K-1))

logit probability P j(K)=exp(κAj(K))/ Σhexp(κAh(K))

• What is the distribution of thinking steps f(K)?

*alternative: K-steps think others are one step lower (K-1)

Poisson distribution of thinking steps• f(K)=τK/eτ K! 56 games: median τ=1.78• Heterogeneous (" “spikes” in data)• Steps > 3 are rare (working memory bound)• Steps can be linked to cognitive measures

Poisson distributions for various τ

00.05

0.10.15

0.20.25

0.30.35

0.4

0 1 2 3 4 5 6number of steps

frequ

ency τ=1

τ=1.5τ=2

Page 8: A game of “matching pennies”

8

00.050.1

0.150.2

0.250.3

0.350.4

1 9 17 25 33 41 49 57 65 73 81 89 97

number choices

pred

icted

freq

uenc

y

Beauty contest results (Expansion, Financial Times, Spektrum)

0.000.050.100.150.20

numbersre

lativ

e fr

eque

ncie

s2 2 50 10 033

average 23.07

0

Thinking steps in entry games

• Entry games: Prefer to enter if n(entrants)<c;

stay out if n(entrants)>cAll choose simultaneously

• Experimental regularity in the 1st period:Close to equilibrium prediction n(entrants) #c

“To a psychologist, it looks like magic”-- D. Kahneman ‘88

Page 9: A game of “matching pennies”

9

How entry varies with capacity (c) , (Sundali, Seale & Rapoport)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

capacity

% e

ntry entry=capacity

experimental data

Thinking steps in entry games

How entry varies with capacity (c) , experimental data and thinking model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

capacity

% e

ntry entry=capacity

experimental dataτ=1.25

Page 10: A game of “matching pennies”

10

0-Step and 1-Step Entry

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percentage Capacity

Perc

enta

ge E

ntry

Capacity0-Level1-Level

`

0-Step and 1-Step Entry

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percentage Capacity

Perc

enta

ge E

ntry

Capacity0+1 Level`

0-Step + 1-Step + 2 Step Entry

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percentage Capacity

Perc

enta

ge E

ntry

Capacity0+1 Level2-Level

`

0-Step + 1-Step + 2 Step Entry

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percentage Capacity

Perc

enta

ge E

ntry

Capacity0+1+2 Level`

Thinking steps estimates of τ• Matrix games range of τ common τ

Stahl, Wilson ( 1.7, 18.3) 8.4Cooper, Van Huyck (.5, 1.3) .8Costa-Gomes, Crawford, Broseta (1.3, 2.4) 2.2

• Mixed-equilibrium games (.3, 2.7) 1.5

• First period of learning (0, 3.9)

• Entry games 2.0

• Signaling games (.3,1.2)(Fits significantly better than Nash, QRE)

Page 11: A game of “matching pennies”

11

Estimates of mean thinking step τ• 33 one-shot matrix games • 15 mixed-equilibrium games

• 1 entry game• 7 thinking-learning games

Distribution of τ estimates (56 games) median=1.68, interquartile range (.8, 2.2)

00.050.1

0.150.2

0.250.3

0.350.4

0-1 1-2 2-3 3-4 4-5 5+

τ interval

frequ

ency

Fitting the model to normal-form games (n=1672 player-games)

Figure : Fit of thinking-steps model to three data sets (R^2=.84)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

thinking steps model (common tau)

data

Stahl-Wilson data (3x3 symmetric)

Cooper-Van Huyck data (2x2asymmetric)

Costa-Gomes-Craw ford-Broseta(2x2-4x2 asymmetric)

Page 12: A game of “matching pennies”

12

Nash equilibrium vs data in normal-form games

Equilibrium predictions vs data in three games (Stahl-Wilson, Cooper-

van Huyck, Costa-Gomes et al)

R2 = 0.4948

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

Data

Eq

uili

bri

um

pre

dic

tion

Thinking steps analysis (τ=1.5)row step thinker choices steps mixed

0 1 2 3 4... overall equilm data2,0 0,1 .5 1 1 0 0 .72 .5 .?0,1 1,0 .5 0 0 1 1 .28 .5 .?

0 .5 .51 .5 .52 0 13 0 14 1 05 1 0

overall .34 .66mixed .33 .67data .? .?

Page 13: A game of “matching pennies”

13

Equilibrium vs thinking-steps (overconfidence version) in mixed-equilibrium games (n=15 games)

Fit of data to equilibrium & thinking steps predictions (game-specific tau) in games with mixed equilibria (tau from .1-2.9, mean 1.45)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

actual frequencies

pred

ictio

ns

thinking steps (r=.93)

equilibrium(r=.91)

Comparing QRE and thinking-steps• Fit (thinking-steps slightly better)• Heterogeneity

``spikes” in p-beauty contestsnoisy cutoff rules in entry gamesendogeneous “purification” in mixed-equil’m games

• Cognitive measuresEffects of “prompting” beliefs-- pushes steps up by 1? Response times (modest correlation with pBC choice)Attention measures in shrinking-pie bargaining

Page 14: A game of “matching pennies”

14

Response times vs deviation from equilibrium in p-beauty contest games

Deviation from equilibrium (x) vs response time (y) (standardized data, n=4 grouped)

R2 = 0.12 (p=.10)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5

absolute deviation from equilibrium

resp

onse

tim

e

Conclusions• Discrete thinking steps, frequency Poisson distributed

(mean number of steps τ$1.5) • One-shot games & initial conditions• Advantages:

Can “solve” multiplicity problemExplains “magic” of entry gamesSensible interpretation of mixed strategies

• Theory: group size effects (2 vs 3 beauty contest)approximates Nash equilm in some games (dominance solvable)refinements in signaling games (intuitive criterion)

Page 15: A game of “matching pennies”

15

Conclusions• Thinking (τ, κ) steps model

τ fairly regular ($1.5) in entry, mixed, matrix, dominance-solvable games

Easy to use• Learning (κ)

Hybrid fits & predicts well (20+ games)One-parameter fEWA fits well, easy to estimate

• Next?Field applicationsTheoretical properties of thinking model

Parametric EWA learning

• Attraction A ij (t) for strategy j updated by

A ij (t) =(ϖA i

j (t-1) + ο(actual))/ (ϖ(1-ϕ)+1) (chosen j)A i

j (t) =(ϖA ij (t-1) + δ ο(foregone))/ (ϖ(1-ϕ)+1) (unchosen

j)

• key parameters: δ imagination, ϖ decay

• “In nature a hybrid [species] is usually sterile, but in sciencethe opposite is often true”-- sFrancis Crick ‘88Weighted fictitious play (δ=1, ϕ=0)Choice reinforcement (δ=0)

Page 16: A game of “matching pennies”

16

Example: Price matching with loyalty rewards (Capra, Goeree, Gomez, Holt AER ‘99)

• Players 1, 2 pick prices [80,200] ¢Price is P=min(P1,,P2)Low price firm earns P+RHigh price firm earns P-R

• What happens? (e.g., R=50)1

3

5

79

80

81~9

0

91~1

00

101~

110

111~

120

121~

130

131~

140

141~

150

151~

160

161~

170

171~

180

181~

190

191~

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Prob

Period

Strategy

Empirical Frequency

Page 17: A game of “matching pennies”

17

1

3

5

79

80

81~9

0

91~1

00

101~

110

111~

120

121~

130

131~

140

141~

150

151~

160

161~

170

171~

180

181~

190

191~

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Prob

Period

Strategy

Belief-based1

3

57

9

80

81~9

0

91~1

00

101~

110

111~

120

121~

130

131~

140

141~

150

151~

160

161~

170

171~

180

181~

190

191~

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Prob

Period

Strategy

Empirical Frequency

1

3

5

79

80

81~9

0

91~1

00

101~

110

111~

120

121~

130

131~

140

141~

150

151~

160

161~

170

171~

180

181~

190

191~

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Prob

Period

Strategy

Choice Reinforcement with PV

1

3

57

9

80

81~9

0

91~1

00

101~

110

111~

120

121~

130

131~

140

141~

150

151~

160

161~

170

171~

180

181~

190

191~

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Prob

Period

Strategy

Empirical Frequency

Page 18: A game of “matching pennies”

18

1

3

5

79

80

81~9

0

91~1

00

101~

110

111~

120

121~

130

131~

140

141~

150

151~

160

161~

170

171~

180

181~

190

191~

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Prob

Period

Strategy

Thinking fEWA1

3

57

9

80

81~9

0

91~1

00

101~

110

111~

120

121~

130

131~

140

141~

150

151~

160

161~

170

171~

180

181~

190

191~

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Prob

Period

Strategy

Empirical Frequency

Studies comparing EWA and other learning modelsReference Type of gameAmaldoss and Jain (Mgt Sci, in press) cooperate-to-compete gamesCabrales, Nagel and Ermenter ('01) stag hunt “global games”Camerer and Anderson ('99, EcTheory)

sender-receiver signaling

Camerer and Ho ('99, Econometrica) median-action coordination4x4 mixed-equilibrium gamesp-beauty contest

Camerer, Ho and Wang ('99) normal form centipedeCamerer, Hsia and Ho (in press) sealed bid mechanismChen ('99) cost allocationHaruvy and Erev (’00) binary risky choice decisionsHo, Camerer and Chong ('01) “continental divide” coordination

price-matchingpatent racestwo-market entry games

Hsia (‘99) N-person call marketsMorgan & Sefton (Games Ec Beh,'01)

“unprofitable” games

Rapoport and Amaldoss ('00OBHDP, '01)

alliancespatent races

Stahl ('99) 5x5 matrix gamesSutter et al ('01) p-beauty contest (groups,

individuals)

Page 19: A game of “matching pennies”

19

20 estimates of learning model parameters

CournotWeighted FictitiousPlay

FictitiousPlay

Average Reinforcement

CumulativCumulativeReinforcement

Model Fit in 7 Games (Hit Rate, BIC and Log Likelihood)

In-sample (Hit Rate/BIC) N f EWA (1) Reinforcement (2) Beliefs(fict. play) (3) EWA (5)Pooled (common param.s) 10573 52% -15306 48% -17742 43% -18880 46% -17742Total (game-specific param.s) 10573 52% -15306 51% -16758 46% -17031 52% -15090

Out-of-sample (Hit Rate/LL) N f EWA Reinforcement Beliefs (fict. play) EWAPooled 4674 52% -6862 49% -7764 44% -8406 46% -7929Total 4674 52% -6862 52% -7426 46% -7474 52% -6738

Note: Bold denotes best fits; italics denotes worst fits

Page 20: A game of “matching pennies”

20

Continental divide game payoffs

Median Choiceyour 1 2 3 4 5 6 7 8 9 10 11 12 13 14

choice1 45 49 52 55 56 55 46 -59 -88 -105 -117 -127 -135 -1422 48 53 58 62 65 66 61 -27 -52 -67 -77 -86 -92 -983 48 54 60 66 70 74 72 1 -20 -32 -41 -48 -53 -58

4 43 51 58 65 71 77 80 26 8 -2 -9 -14 -19 -225 35 44 52 60 69 77 83 46 32 25 19 15 12 106 23 33 42 52 62 72 82 62 53 47 43 41 39 387 7 18 28 40 51 64 78 75 69 66 64 63 62 628 -13 -1 11 23 37 51 69 83 81 80 80 80 81 829 -37 -24 -11 3 18 35 57 88 89 91 92 94 96 9810 -65 -51 -37 -21 -4 15 40 89 94 98 101 104 107 11011 -97 -82 -66 -49 -31 -9 20 85 94 100 105 110 114 11912 -133 -117 -100 -82 -61 -37 -5 78 91 99 106 112 118 12313 -173 -156 -137 -118 -96 -69 -33 67 83 94 103 110 117 12314 -217 -198 -179 -158 -134 -105 -65 52 72 85 95 104 112 120

1

3

5

7

9 11

13

15

S1

S4

S7

S10S13 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Prob

PeriodStrategy

Thinking fEWA

1

3

5

7

9 11

13

15

S1

S4

S7

S10S13 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Prob

PeriodStrategy

Empirical Frequency

Page 21: A game of “matching pennies”

21

1

3

5

7

9 11

13

15

S1

S4

S7

S10S13 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Prob

PeriodStrategy

Empirical Frequency

1

3

5

7

9 11

13

15

S1

S4

S7

S10S13 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Prob

PeriodStrategy

Choice Reinforcement with PV 1

3

5

7

9 11

13

15

S1

S4

S7

S10S13 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Prob

PeriodStrategy

Empirical Frequency

1

3

5

7

9 11

13

15

S1

S4

S7

S10S13 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Prob

PeriodStrategy

Belief-based

Page 22: A game of “matching pennies”

22

Simulations vs data: fEWA

1

3

5

7

9 11

13

15

S1

S4

S7

S10S13 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Prob

PeriodStrategy

Empirical Frequency

t=1

t=8

t=15

1

6

11 0.00000.05000.1000

0.15000.2000

0.2500

0.3000

0.3500

timestrategy

Simulated Choice Frequency: CDG (Lite)

Simulations vs data: belief learning

1

3

5

7

9 11

13

15

S1

S4

S7

S10S13 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Prob

PeriodStrategy

Empirical Frequency

t=1

t=8

t=15

1

5

913

00.050.10.150.20.250.3

0.35

timestrategy

Simulated Choice Frequency: CDG (BB)

Page 23: A game of “matching pennies”

23

Simulations vs data: reinforcement

1

3

5

7

9 11

13

15

S1

S4

S7

S10S13 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Prob

PeriodStrategy

Empirical Frequency

t=1

t=8t=15

14

71013

00.050.10.150.20.25

0.3

0.35

timestrategy

Simulated Choice Frequency: CDG (REL)

Behavior in “continental divide game”

1

3

5

7

9 11

13

15

S1

S4

S7

S10S13 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Prob

PeriodStrategy

Empirical Frequency

Page 24: A game of “matching pennies”

24

Functional fEWA (one parameter κ)• Substitute functions for parameters

Easy to estimateAllows change within game

• “Change detector” for decay rate ϖϖ(i,t)=1-.5[Σk ( S-i

k (t) - Στ=1t S-i

k(τ)/t ) 2 ]ϖ close to 1 when stable, dips to 0 when unstable

• δ(i,t)=ϖ(i,t)/W (W=support of Nash equil’m)

1

3

5

79

80

81~9

0

91~1

00

101~

110

111~

120

121~

130

131~

140

141~

150

151~

160

161~

170

171~

180

181~

190

191~

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Prob

Period

Strategy

Belief-based

Page 25: A game of “matching pennies”

25

Teaching in repeated games• Finitely-repeated trust game (Camerer & Weigelt E’metrica ‘88)

borrower actionrepay default

lender loan 40,60 -100,150no loan 10,10

• 1 borrower plays against 8 lendersA fraction (p(honest)) borrowers prefer to repay (controlled by experimenter)

Empirical results (conditional frequencies of no loan and default)

12

34

5 67 81 2 3 4 5 6 7

8 9

0.00000.10000.20000.30000.40000.50000.60000.70000.80000.90001.0000

Freq

PeriodSequence

Figure a: Empirical Frequency for No Loan

12

34

5 6 7 81 2 3 4 5 6 7 8 9

-0.10000.00000.10000.20000.30000.40000.50000.60000.70000.80000.90001.0000

Freq

PeriodSequence

Figure b: Empirical Frequency for Default conditional on Loan (Dishonest Borrower)

Page 26: A game of “matching pennies”

26

Teaching in repeated trust games• Some (α=89%) borrowers know lenders learn by fEWA.

Actions in t “teach” lenders what to expect in t+1 (Fudenberg and Levine, 1989)

• Teaching: Strategies have reputations• QR Equilibrium: Borrowers have reputations (types)

Empirical results (top) andteaching model (bottom)

12

34

5 67 81 2 3 4 5 6 7

8 9

0.00000.10000.20000.30000.40000.50000.60000.70000.80000.90001.0000

Freq

PeriodSequence

Figure a: Empirical Frequency for No Loan

12

3 45 6 7 81 2 3 4 5 6 7 8 9

-0.10000.00000.10000.20000.30000.40000.50000.60000.70000.80000.90001.0000

Freq

PeriodSequence

Figure b: Empirical Frequency for Default conditional on Loan (Dishonest Borrower)

1 2 3 4 5 6 78 9 1

23

45 6

7 80.00000.10000.20000.30000.40000.50000.60000.70000.80000.90001.0000

Freq

SequencesPeriod

Figure c: Predicted Frequency for No Loan

1 2 3 4 5 6 7 8 9 12

34

5 6 7 8-0.10000.00000.10000.20000.30000.40000.50000.60000.70000.80000.90001.0000

Freq

SequencesPeriod

Figure d: Predicted Frequency for Default conditional on Loan (Dishonest Borrower)

Page 27: A game of “matching pennies”

27

Teaching in repeated trust games• Some (α=89%) borrowers know lenders learn by fEWA.

Actions in t “teach” lenders what to expect in t+1• ρ (=.93) is “peripheral vision” weight

16 1 2 3 4 5 6 7 8Repay Repay Repay Default .....

↑look “peripherally” (ρ weight)

17 1 2 3 ← look backRepay No loan Repay

• Teaching: Strategies have reputations• QREequilibrium: Borrowers have reputations (types)

Empirical results vs AQRE fits

12

34

5 67 81 2 3 4 5 6 7

8 9

0.00000.10000.20000.30000.40000.50000.60000.70000.80000.90001.0000

Freq

PeriodSequence

Figure a: Empirical Frequency for No Loan

12

34

5 6 7 81 2 3 4 5 6 7 8 9

-0.10000.00000.10000.20000.30000.40000.50000.60000.70000.80000.90001.0000

Freq

PeriodSequence

Figure b: Empirical Frequency for Default conditional on Loan (Dishonest Borrower)

12

34

5 67 81 2 3 4 5 6 7

8 9

0.00000.10000.20000.30000.40000.50000.60000.70000.80000.90001.0000

Freq

PeriodSequence

Figure c: Predicted Frequency for No Loan

12

34

5 6 7 81 2 3 4 5 6 7 8 9

-0.10000.00000.10000.20000.30000.40000.50000.60000.70000.80000.90001.0000

Freq

PeriodSequence

Figure d: Predicted Frequency for Default conditional on Loan (Dishonest Borrower)

Page 28: A game of “matching pennies”

28

1

3

57

9

80

81~9

0

91~1

00

101~

110

111~

120

121~

130

131~

140

141~

150

151~

160

161~

170

171~

180

181~

190

191~

200

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Prob

Period

Strategy

Empirical Frequency

1

4

7

10

80

81~9

0

91~1

00

101~

110

111~

120

121~

130

131~

140

141~

150

151~

160

161~

170

171~

180

181~

190

191~

200

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Prob

Period

Strategy

Quantal Response

Boxscore (out-of-sample calibration)

hit % LL parameters• AQRE 72% -1543 η=.91• Teaching 76% -1467 τ=.93

α=.89• # sessions teaching

wins 7 of 8 6 of 8

Page 29: A game of “matching pennies”

29

Why do this?• Models make precise predictions• Predict effects of p(continuation) (horizon T), payoff,

P(nice)• Potential applications:

Contracting & strategic alliancesPolitics (lame duck effects, e.g. Clinton pardons)Macroeconomic time-consistency problem (Does gov’t “teach” public to expect low inflation?)

Table 2: Parameter Estimate τ and fit of thinking steps and QRE

Projection Relative Opponent OpponentBias Proportion Level k-1 Levels k-1 to 0 QRE

Stahl and Wilson (1995) 3

cross game min 0.00 0.03 0.00 0.00(12 games) median 0.88 0.87 1.23 3.45

max 8.46 3.81 2.56 24.11Pooled 1 13.46 2.68 136.69 3.37

fit(sqrt(MSD)) 0.18 0.15 0.15 0.15 0.18LL -1176 -1118 -1107 -1106 -1176

Cooper and Van Huyck (2001)min 0.61 0.20 0.08 0.20

(8 games) median 1.15 1.13 1.25 1.10max 5.01 1.73 1.87 1.75

Pooled 0.79 0.91 0.92 0.81fit(sqrt(MSD)) 0.16 0.15 0.11 0.12 0.16

LL -193 -192 -185 -186 -197Costa-Gomes, Crawford and Broseta (2001)

min 0.48 1.44 1.23 1.04(13 games) median 0.54 1.81 1.92 1.87

max 1.08 2.96 2.42 2.37Pooled 0.65 1.79 1.74 1.94fit(sqrt(MSD)) 0.17 0.09 0.09 0.08 0.13LL -649 -565 -553 -555 -599

Self-awareness Over-confident

Page 30: A game of “matching pennies”

30

Predictive fit of various models

Sample Size %Hit LL %Hit LL %Hit LL %Hit LL %Hit LL %Hit LL

Mixed Strategies 960 35% -1387 36% -1382 36% -1387 34% -1405 33% -1392 35% -1400Patent Race 1760 64% -1931 65% -1897 65% -1878 53% -2279 65% -1864 40% -2914

Continental Divide 315 43% -485 47% -470 47% -460 25% -565 44% -573 6% -805Median Action 160 68% -119 74% -104 79% -83 82% -95 74% -105 49% -187

Pot Games 739 67% -431 70% -436 70% -437 66% -471 70% -432 65% -505Traveller's Dilemma 160 41% -484 46% -445 43% -443 36% -465 41% -561 27% -720p-Beauty Contest 580 6% -2022 8% -2119 6% -2042 7% -2051 7% -2494 3% -2502

Pooled 4674 49% -6860 51% -6852 49% -7100 40% -7935 46% -9128 36% -9037

Out-of-sample ValidationThinking EWA Belief-based Reinforcement with PV QREEWA Lite

Page 31: A game of “matching pennies”

31

Feeling: How adding social preferences helps

• Social prefs: u1(x1,x2)=x1+αx2 (Edgeworth 1898+)• game 6 L R data fit(.19) fit(0) equil’m

t 6,3 2,1 .38 .45 .66 1b 4,5 4,5 .62 .55 .34 0data .89 .11

fit(α=.19) .69 .31fit(α=0) .73 .27equil’m 1 0

• social preference makes (2,1) unattractive, increases unpredicted choice of b

Thinking and learning: Why?• Cognitive limits on iterated thinking• Why?

Limited working memoryDoubts about rationality or payoffs of others (and doubts about doubts...)

• Why learning?Efficient compared to thinking“Only academics learn by thinking and reading...” (Vernon Smith ‘94)

Page 32: A game of “matching pennies”

32

Table 4: Economic Value of Advice from Different Learning Theories

ObservedContinental Divide 2 837 861 2.9% 856 2.3% 738 -11.8% 867 3.5%Median Action 2 503 510 1.4% 507 0.9% 508 1.1% 509 1.3%Mixed Strategies 334 321 -4.0% 325 -2.8% 324 -3.0% 315 -5.7%Patent Race 467 474 1.5% 473 1.2% 472 1.1% 473 1.2%p-Beauty Contest 2 519 625 20.4% 625 20.4% 606 16.9% 642 23.8%Pot Games 4244 4964 17.0% 4800 13.1% 4642 9.4% 4633 9.2%Traveller's Dilemma 540 589 9.1% 571 5.8% 556 3.1% 592 9.8%total 7444 8343 12.1% 8157 9.6% 7848 5.4% 8031 7.9%

Note: Bold is "best practice" in row/measure; underline is worst

Total Payoff and Percentage Improvement for Bionic Subjects 1

EWA Lite Belief-based Reinforcement EWA

1

3

57

9

80

81~9

0

91~1

00

101~

110

111~

120

121~

130

131~

140

141~

150

151~

160

161~

170

171~

180

181~

190

191~

200

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Prob

Period

Strategy

Empirical Frequency

Page 33: A game of “matching pennies”

33

1

3

5

79

80

81~9

0

91~1

00

101~

110

111~

120

121~

130

131~

140

141~

150

151~

160

161~

170

171~

180

181~

190

191~

200

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Prob

Period

Strategy

EWA Lite1

3

57

9

80

81~9

0

91~1

00

101~

110

111~

120

121~

130

131~

140

141~

150

151~

160

161~

170

171~

180

181~

190

191~

200

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

Prob

Period

Strategy

Empirical Frequency