A Fractal Based Cumulus Cloud Shadow Model For Power ...

41
A Fractal Based Cumulus Cloud Shadow Mo For Power System Analysis With High Penetration Photovoltaics (PV) Chengrui Cai Dr. Dionysios Aliprantis (major professor) Iowa State University Department of Electrical and Computer Engineering Sept. 11, 2013 C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 1 / 41

Transcript of A Fractal Based Cumulus Cloud Shadow Model For Power ...

Page 1: A Fractal Based Cumulus Cloud Shadow Model For Power ...

A Fractal Based Cumulus Cloud Shadow ModelFor Power System Analysis With High

Penetration Photovoltaics (PV)

Chengrui CaiDr. Dionysios Aliprantis (major professor)

Iowa State UniversityDepartment of Electrical and Computer Engineering

Sept. 11, 2013

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 1 / 41

Page 2: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Introduction Outline

Outline

Introduction to photovoltaicsMotivationLiterature reviewCloud shadow modelFuture work

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 2 / 41

Page 3: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Introduction Solar energy

Types of solar energy

Concentrating solar power (CSP)

Photovoltaics (PV)

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 3 / 41

Page 4: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Introduction Solar energy

PV development in US

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 20120

1000

2000

3000

4000

5000

6000

7000

8000

Year

MW

7383

US Photovoltaics Capacity

Country Capacity (MW)Germany 32,509

Italy 16,987China 8,043

US 7,383Japan 6,704Spain 4,543

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 4 / 41

Page 5: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Introduction Solar energy

PV potential in US v.s. Germany and Spain

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 5 / 41

Page 6: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development Motivation

MotivationImpact of PV: variability and uncertaintyModeling PV generation considering cloud shadowsPoint measurement v.s. areal averageNo high resolution data (power or irradiance)

Cumulus clouds 25 MW DeSoto PV Plant, FL

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 6 / 41

Page 7: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development Motivation

Problem definition

Develop a package of solar irradiance models that can realisticallygenerate solar irradiance time series for an area of interest underdifferent weather conditions.

Sunlight: clear, partially cloudy or overcast.Cloud coverage ratio: fixed or changing.Wind: speed and direction.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 7 / 41

Page 8: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development Literature review

Literature review

Measurement grid: very expensive.Satellite images: no sequential images with good spatialresolution.Numerically generate cloud patterns.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 8 / 41

Page 9: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development Literature review

Literature reviewW. T. Jewell et al. (1987 to 1990)

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 9 / 41

Page 10: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development Literature review

Literature reviewD. L. Garrett et al. (1989)

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 10 / 41

Page 11: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development Literature review

Literature reviewH. G. Beyer et al. (1994)

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 11 / 41

Page 12: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development Literature review

Literature review

W. T. Jewel and D. L. Garrett:Simple and rigid shape of clouds.No consideration of cloud coverage ratios.

H. G. BeyerSingle frame of cloud pattern.Fixed meteorology conditions, e.g. wind speed and cloudcoverage.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 12 / 41

Page 13: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development Contribution

Contribution

Extend Beyer’s work in:Arbitrary number of frames of cloud pattern to enablelonger-term simulation studies.The global irradiance is modeled by two separate components,e.g. beam and diffuse irradiance.The effect of variable cloud thickness is reproduced;Statistics from measured data are qualitatively applied in thesynthesis of the solar irradiance to obtain a realistic variation.The model can represent variable wind speed and cloud coverageratio.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 13 / 41

Page 14: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development Overview

Overview

Irradiance Model During Days with Cumulus Clouds:

Solar irradiance characteristics.Basics of fractal-based cloud generation.Meteorological and geographic parameters.Cloud pattern Generation.Synthesis of the irradiance pattern.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 14 / 41

Page 15: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Solar irradiance characteristicsExperimental station at Iowa State University.

270 Wp DC-off grid PVstation.

MPPT.

NI ENET 9205 samplingcard.

Logging data at 1-secinterval.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 15 / 41

Page 16: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Solar irradiance characteristics

Key questions:

How to model the beam and diffuse component in thecloud-based irradiance model?

What is the duration of shading?

How severe is the shading?

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 16 / 41

Page 17: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Solar irradiance characteristics

100 200 300 400 500 600 700 800 9000

500

1000

(a) / secondW

/m

2

100 200 300 400 500 600 700 800 90051.5

52

52.5

53

(b) / second

Degrees

100 200 300 400 500 600 700 800 9000

500

1000

1500

(c) / second

W/m

2

100 200 300 400 500 600 700 800 900

0

0.5

1

(d) / second

High/L

ow

(a) Global horizontal irradiance (solid) and the estimated diffuse horizontal irradiance (dotted).(b) Zenith angle. (c) Beam normal irradiance (solid) and the digitization threshold (dotted).

(d) Digitized shading condition.C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 17 / 41

Page 18: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Solar irradiance characteristics

Answers:

The beam irradiance will be directly affected by the cloudshadow.

A constant value or a slowly changing profile is used for thediffuse irradiance.

Apply this process to all data collected to get the statistics ofthe beam irradiance.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 18 / 41

Page 19: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Basics of fractal-based cloud generation

What is a fractal?

Mandelbrot:A fractal is defined as a rough or frag-mented geometric shape that can be splitinto parts, each of which is, at least ap-proximately, a reduced-size copy of thewhole.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 19 / 41

Page 20: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Basics of fractal-based cloud generation(1,1) (1,5)

(5,1) (5,5)(a) (b)

(c) (d)

stage 1

stage 2

5x5 grid example (N = 4)

Midpoint displacement algorithm.

Takes logN2 stages to generate a

(N + 1)× (N + 1) fractal surface.

2 steps in each stage.

Added noise ε ∼ N (0, σ2).

In each step σ is reduced.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 20 / 41

Page 21: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Basics of fractal-based cloud generationGenerate a 33 x 33 fractal surface:

Stage 0 (Initialization)

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 21 / 41

Page 22: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Basics of fractal-based cloud generationGenerate a 33 x 33 fractal surface:

Stage 1

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 22 / 41

Page 23: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Basics of fractal-based cloud generationGenerate a 33 x 33 fractal surface:

Stage 2

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 23 / 41

Page 24: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Basics of fractal-based cloud generationGenerate a 33 x 33 fractal surface:

Stage 3

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 24 / 41

Page 25: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Basics of fractal-based cloud generationGenerate a 33 x 33 fractal surface:

Stage 4

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 25 / 41

Page 26: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Basics of fractal-based cloud generationGenerate a 33 x 33 fractal surface:

Stage 5

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 26 / 41

Page 27: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Basics of fractal-based cloud shadow generation

From the fractal surface to the cloud pattern.

513-by-513 fractal surface

513 pixels513 p

ixel

s

Cloud shadow patternobtained with R = 33.4%

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 27 / 41

Page 28: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Basics of fractal-based cloud shadow generation

Relationship between the cutting surface height (h) and the cloudcoverage ratio (R)

−10 −5 0 5 10 150

0.5

1

h

R

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 28 / 41

Page 29: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Meteorological and geographic parameters

14:00 14:10 14:20 14:30 14:40 14:50 15:000

10

20

30

40

50

Clo

ud

co

ver

age

rati

o (

%)

(a)

14:00 14:10 14:20 14:30 14:40 14:50 15:000

5

10

15

Win

d s

pee

d(m

/s)

(b)Time

(a) Cloud coverage ratio.(b) Wind speed at cloud height.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 29 / 41

Page 30: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Meteorological and geographic parameters

0

500

1000

15000 500 1000 1500 2000

dis

tan

ce (

m)

distance (m)

N

Geographic layout of measurement points.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 30 / 41

Page 31: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Cloud pattern Generation

Steps to generate the cloud pattern:

Determine the number of frames to generate, based on the windspeed and simulation time.

Calculate the cutting surface, based on the cloud coverage ratio.

Represent the change of thickness of clouds by a multi-layertechnique.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 31 / 41

Page 32: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Cloud pattern Generation

Determine the number of frames:

F = ceil(∑ke−1

k=ks vw(tk) ∆t(N + 1)s

)+ 1 (1)

where:F is the number of frames to generate.ks and ke are the start and end index of the simulation time step.vw is the wind speed.∆t is the step size, here 1 second.s is the scale.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 32 / 41

Page 33: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Cloud pattern Generation

Calculate the cutting surface:

S1 S2 S3 S4 S5

frames of fractal surface1st window at time ts2nd window at time ts + 60∆t3rd window at time ts + 120∆t

Wind direction

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 33 / 41

Page 34: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Cloud pattern Generation

Interpolate the cutting surface value:

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−20

0

20

column index

h

Comparison of the cutting surface height before and after interpolation.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 34 / 41

Page 35: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Cloud pattern Generation

Represent the change of the thickness of cloud (multi-layertechnique):

Create K -1 more cutting surface below the original one.Each cutting surface is lowered by a factor l = (hmax − hmin)/α.Assign clouded pixels in k-th layer values using a uniformdistribution U(a, b), where a = (k − 1)/K , b = k/K , andk = 1, 2, ...,K .

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 35 / 41

Page 36: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Cloud pattern Generation

Result of generated cloud shadow pattern.

Frame number

1 2 3 4 5 6 7 8 9 10 11

3591m

A

14:00 14:05 14:10 14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 14:55 15:00

(Top) Generated binary cloud shadow pattern for time period between 2:00 and 3:00 PM. Thewind direction is SW. A is the study area.

(Bottom) Final cloud shadow pattern, using a multi-layer rendering technique. The pixels of thehatched area on the right were not needed in this simulation.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 36 / 41

Page 37: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Cloud pattern Generation

1260 m

1260 m

Magnified cloud shadow pattern.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 37 / 41

Page 38: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

Synthesis of the irradiance pattern

14:00 14:10 14:20 14:30 14:40 14:50 15:00

0

0.5

1

1−

sp

(a)

14:00 14:10 14:20 14:30 14:40 14:50 15:00350

400

450

500

W/m

2

(b)

14:00 14:10 14:20 14:30 14:40 14:50 15:000

350

700

W/m

2

(c)

14:00 14:10 14:20 14:30 14:40 14:50 15:000

350

700

W/m

2

(d)

(a) Cloud transparency level.(b) Beam horizontal irradiance under clear sky condition.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 38 / 41

Page 39: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Model development

14:00 14:10 14:20 14:30 14:40 14:50 15:00

0

0.5

1

1−

sp

(a)

14:00 14:10 14:20 14:30 14:40 14:50 15:00350

400

450

500

W/m

2(b)

14:00 14:10 14:20 14:30 14:40 14:50 15:000

350

700W

/m2

(c)

14:00 14:10 14:20 14:30 14:40 14:50 15:000

350

700

W/m

2

(d)

(c) Synthesized global horizontal irradiance pattern.(d) Averaged irradiance pattern.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 39 / 41

Page 40: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Future work

Future work

Complete the solar irradiance package for three majorconditions:

I Fully clear day.I Partially cloudy day.I Overcast day.

Establish a PV panels model library.Improve the test feeder model by adding location of each house.Perform simulation studies to investigate the impact of highpenetration PV.Test the performance of control methods under different weatherconditions.

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 40 / 41

Page 41: A Fractal Based Cumulus Cloud Shadow Model For Power ...

Q & A

Thank you!Questions?

Chengrui [email protected]

http://home.eng.iastate.edu/˜ccai

C. Cai, D. C. Aliprantis (ECpE, ISU) ECpE Graduate Seminar Sept. 11, 2013 41 / 41