A Digital Instantaneous Frequency Measurement Technique

34
A Digital Instantaneous Frequency Measurement Technique Utilising High-Speed ADC’s and FPGA’s 2006 CSIR Research and Innovation Conference CSIR Defence, Peace, Safety and Security Dr PL Herselman Visiting Researcher at the University College London 27 February 2006

Transcript of A Digital Instantaneous Frequency Measurement Technique

A Digital Instantaneous Frequency Measurement Technique Utilising High-Speed ADC’s and FPGA’s

2006 CSIR Research and Innovation Conference

CSIR Defence, Peace, Safety and Security

Dr PL Herselman

Visiting Researcher at the University College Londo n

27 February 2006

Slide 2 © CSIR 2006 www.csir.co.za

Electronic Warfare

Image courtesy of Altera, www.altera.com

Slide 3 © CSIR 2006 www.csir.co.za

Signal Intelligence (SIGINT)

• Complex battlefield � multiple RF emitters• Receiver analyses intercepted waveforms

• Situational awareness• Queuing of defensive/evasive action(s)

• Compact packaging for operational systems• Employed on a range of systems

• Airborne Warning and Control System (AWACS)

Image courtesy of Rockwell Collins

Movie courtesy of Macom

Image courtesy of NATO, www.nato.intImage courtesy of Northrop Grumman

Slide 4 © CSIR 2006 www.csir.co.za

Agenda

• BackgroundDIFM research as part of CSIR Defence, Peace, Safety and Security R&D strategy

• IFM TheoryOverview of basic theory

• Optimal Time DelayLed to DIFM invention

• DIFM BasicsDigital implementation of IFM using innovative parallel DSP techniques

• Example ImplementationShared aperture DIFM on SWIFT500 DRFM system

• Simulation ResultsBit-true functional simulations for a range of input signals

• Experimental VerificationResults of a prototype system

• Conclusions

Background

Slide 6 © CSIR 2006 www.csir.co.za

Digital Radio Frequency Memory (DRFM) Research and Development at the CSIR

• Active R&D field since 1999

• Advanced and highly configurable repeater• Analog to digital converter � memory � digital to analog converter• Information bandwidth limited to half the sampling rate

• Utilised in a range of applications• Field (electronic countermeasures)

• Obscure the platform (e.g aircraft)• Deceive the hostile radar

• Laboratory (test equipment)• Coherently simulate the signals emitted by electronic

countermeasures and the signals reflected from targets

Slide 7 © CSIR 2006 www.csir.co.za

Digital Radio Frequency Memory (DRFM) Research and Development at the CSIR

• Levels of developmentDigital DRFM ModuleDRFM KernelDRFM-based simulator system

Slide 8 © CSIR 2006 www.csir.co.za

Need for Frequency Measurement in DRFM-Based Systems

• Pulse qualificationDeceive and obscure only hostile systems

• Frequency dependant techniquesAccurate Doppler responseRF bandwidth is a scarce resourceMaximise ECM effectiveness

• Compensate DRFM-induced phase perturbationsPoster presentation

Estimate required in less than a

microsecond

Slide 9 © CSIR 2006 www.csir.co.za

Frequency Measurement Solutions

• Instantaneous Frequency Measurement (IFM)• Analog technique• Combined with analog-to-digital

converter � DFD• Multiple parallel IFM’s• Single output• Dual aperture

• Discrete Fourier Transform (DFT)• Measures spectral response• Aliased to [0,fs/2) frequency

range• Multiple input signals• Multiple outputs

Preferred frequency estimation technique

Graph courtesy of AlteraTable taken from Schleher (1986)

Instantaneous Frequency Measurement Theory

Slide 11 © CSIR 2006 www.csir.co.za

Instantaneous Frequency MeasurementDigital Frequency Discriminator

AnalogInput

RL

I

Low-passFilter ADC

c0*arccos[c1*yfilt(tn)]

yfilt(tn) f0(tn)

DigitalOutput

Mixer

3 dBCoupler Analog

Delay lineLookup Table

• Multiply signal with delayed replica

• Low-pass filter

• Inverse cosine operation• Typically preceded with ADC• Lookup table• Digital Frequency Discriminator (DFD)

( ) ( ) ( )[ ]τππτπ 000

20 24cos2cos

8ftff

Atymix −+=

( ) ( ) ( ) ( ) ( )02 , 2cos08 00

20 HfHfH

Aty filt <<≈ τπ

( )( )

0

8arccos

2

120

0 HA

tyf filt

πτ

Optimal Time Delay

Slide 13 © CSIR 2006 www.csir.co.za

Delay Line Calculation

• One-to-one mapping: Input frequency � output value• Maximum one-to-one input frequency calculated as

• Inverse of twice the maximum input frequency

• IFM with frequency range equal to ADC IBW• Unambiguous input frequency range [0,fs/2) chosen

• Optimal time delay = one ADC sampling period

( )( )

( )( )

( )0 ,

2

121

2

11arccos

2

1

max0max0max0

==+=−= nf

nff

πππ

τ

( )s

ss

tfff

==

== 1

22

1

2

1

max0

τ

Digital Instantaneous Frequency Measurement Basics

Slide 15 © CSIR 2006 www.csir.co.za

Steps 1&2: Sampling, Quantisation and Multiplication

• Sampling and quantisation

• Multiplication with time-delayed replica

( ) ( )[ ] ( )[ ]

( ) ( ) ( )nnFD

AnF

D

Around

f

fFnFAQn

f

fAQntyQny

qNN

sssq

εππ

ππ

+=

=

==

==

−0

00

10

0000

00

2cos22cos22

, 2cos2cos

( ) ( ) ( )

( ) ( )[ ]

( ) ( ) ( )[ ] ( ){ } ( ) ( )112cos12cos2

24cos2cos2

1

000

00012

2

20

−+−+−+

−+=

−=

nnnnFnnFD

A

FnFFD

A

nynyny

qqqqN

N

qqmix

εεεπεπ

πππ

Slide 16 © CSIR 2006 www.csir.co.za

Step 3: Low-Pass Filtering

• Finite Impulse Response (FIR) digital filter

where

( ) ( )

( ) ( ) ( ) ( )( )[ ] ( ) 22cos2cos02 0000012

2

20

0

nFHFnFFHFHD

A

knycny

qLPFLPFLPFN

N

kmixkfilt

επππ ′+′∠+−′′+=

−=

=∑

4 , 21

4 , 2

000

000

s

s

ffFF

ffFF

>−=′

≤=′

Slide 17 © CSIR 2006 www.csir.co.za

Step 3: Low-Pass Filtering

• Interactive filter design tools (e.g. MATLAB FDATool)

Slide 18 © CSIR 2006 www.csir.co.za

Step 4: Inverse Cosine Operation

• Digital inverse cosine estimation• Cordic algorithm• Lookup table

• Output of low-pass filter is used as the input to a lookup table• Lookup table output estimates frequency of the input signal

( ) ( )( )

−= − 02arccos

2

12122

0

2

LPFN

filtN

out HA

Dnyny

out

π

Slide 19 © CSIR 2006 www.csir.co.za

Digital Instantaneous Frequency Measurement

• Advantages

Mixing product relatively linear yielding lower spurious response

Filter response can be optimised for the specific requirements, i.e. fast response versus measurement accuracy

• Issues

FPGA clock speeds > 100 MHz

DIFM up to 50 MHz bandwidth with serial processing

Exhibit the same amplitude sensitivity as an analog IFM

Slide 20 © CSIR 2006 www.csir.co.za

Parallel Processing DIFM

• High-speed flash converter ADC’s • > 10 bits • > 2 GSPS

• Techniques often employed include time-domain demultiplexing, i.e. wider bus, lower data rate• ASIC or commercial demultiplexers• For 1.2 GSPS 10-bit ADC

• 16x demulitplex• 75 MSPS 160-bit

• Calculate in a single FPGA clock cycle• 15 multiplications• 14th order FIR filter

• Possible to artificially extend the bus width

Slide 21 © CSIR 2006 www.csir.co.za

Amplitude Insensitive DIFM

• Suppose an estimate of the input amplitude was available

• Technique analogous to DIFM with time delay equal to 0

• Multiply

• Low-pass

( ) ( )( )

( )( )[ ]

( ) ( )

( ) ( ) ( ) ( )( )[ ] ( )20

0000012

2

020

20

2

22cos2cos024

,

A

nFHFnFFHFH

D

nAA

ny

nA

ny

nA

nyny

qLPFLPFLPF

N

afilt

a

filtfiltdiv

επππ

εε

′+′∠+−′′+≈

>>≈+

==

( ) ( ) ( ) ( ) ( ) ( )ny0 2q==−=′ nynynynyny qqqqmix

( ) ( ) ( ) ( )( )[ ] ( )nFHnFFHHD

Any qLPFLPFLPF

Nfilt επ ′′+′∠+′′+=′ −

00012

2

20 2cos02

Slide 22 © CSIR 2006 www.csir.co.za

Amplitude Insensitive DIFM

• Divide basic DIFM filter output with amplitude estimation

• Inverse cosine lookup table yield frequency estimation

• Advantages• Amplitude estimation exactly aligned with frequency estimation• No external calibration or alignment required• Time-domain multiplex hardware

( ) ( ) ( )( ) ( )( ) ( )

( )0

0000

0

2cos

22cos0

2cos

F

nFHFnFH

FHFny qLPF

LPF

LPFdiv

π

επππ

′′′+′∠+−′′

+≈

( )s

lt f

fFny 0

0 22 ππ =≈

Example Implementation

Slide 24 © CSIR 2006 www.csir.co.za

SWIFT500 Digital DRFM Module with Built-In Amplitude Insensitive DIFM

• 1.2 GSPS , 500 MHz IBW• 16x demultiplexing• Stratix 1S30 with 96 9x9 multipliers

Slide 25 © CSIR 2006 www.csir.co.za

SWIFT500 Digital DRFM Module with Built-In Amplitude Insensitive DIFM

yq(n)yq(n-1)

yq(n-15)

yq(n-2)

InputCast0InputCast1InputCast2

InputCast15UnitDelay0UnitDelay1UnitDelay2

UnitDelay15UnitDelay16UnitDelay17UnitDelay18

UnitDelay24

y'q(n-32)y'q(n-33)

y'q(n-40)

y'q(n-31)

y'q(n-18)y'q(n-17)y'q(n-16)

y'q(n-2)y'q(n-1)y'q(n)

y'q(n-15)

Uni

tD

elay

8

MuxMult24

14c0

22c1

38c2

57c3

81c4

109c5

138c6

168c7

196c8

221c9

240c10

252c11

255c12

252c13

240c14

221c15

196c16

168c17

138c18

109c19

81c20

57c21

38c22

22c23

14c24

y'q(

n-24

)y'

q(n-

25)

Flip-Flop

MuxMult1

MuxMult0

Adder

DeMux1Select

0 1

DeMux2Select

0 1

UnitDelay25

UnitDelay26

InverseLookupTable

Multiply

ArccosLookupTable

yout

y1mm

y2mm

y24mmya

UnitDelay25

ydm1 ydm2

ym

Mux#A

Mux#BSelect

0

1

Select

0

1y'q(n-#)

y'q(n-#-1)

y'q(n-#-16)

Select In

Multiply#A Multiply

#B

Coeff In #

Y#mm(m+d1)

Slide 26 © CSIR 2006 www.csir.co.za

SWIFT500 Digital DRFM Module with Built-In Amplitude Insensitive DIFM

• Key specifications• 9-bit multiplication • 24th order low-pass FIR filter with Chebyshev windowing• Cut-off frequency of 100 MHz and 48 dB side-lobe suppression• Frequency response 50 MHz to 550 MHz• Time-multiplexed resources to estimate amplitude and frequency• Division implemented in a two-step process

• Inversion of denominator using lookup table (12-bit x 12-bit)• Multiplication of numerator with inversed denominator

• 12-bit by 10-bit inverse cosine lookup table

Simulation Results

Slide 28 © CSIR 2006 www.csir.co.za

Monochromatic Input Signal With Additive Coloured Noise

Slide 29 © CSIR 2006 www.csir.co.za

Analysis of DIFM Accuracy

Slide 30 © CSIR 2006 www.csir.co.za

Key Performance Specifications• High signal-to-noise ratios

• Mean deviation less than ± 2 MHz• Absolute error less than 6 MHz across bandwidth• Absolute error less than 2 MHz in > 300 MHz bandwidth• RMS error less than 3 MHz across bandwidth• RMS error less than 1 MHz in > 300 MHz bandwidth

• Low signal-to-noise ratios• Bias in frequency estimation• Due to bias in amplitude estimation• Reduced by implementing higher order FIR filter (longer latency)

• Latency (processing time)• 13 FGPA clock cycles (173.33 ns)

• Throughput rate• 2 FGPA clock cycles (37.5 MHz)

Experimental Verification

Slide 32 © CSIR 2006 www.csir.co.za

Quantitative Laboratory Experiments

Conclusions

Slide 34 © CSIR 2006 www.csir.co.za

Conclusions

• Viable, shared aperture, frequency estimation technique• Implemented efficiently in current commercial hardware• Results comparable to existing analog techniques• Flexibility and ability to be optimised for the specific

requirements• Real-time changing the filter coefficients• Insensitive to temperature• Does not require periodic calibration to maintain accuracy• Operationally superior to its analog counterparts

• South African provisional patent application 2006/00946, 2006-02-01