A Develop Understanding Task - uen.org Vision Project Licensed under the Creative Commons...

9
SECONDARY MATH I // MODULE 6 TRANSFORMATIONS AND SYMMETRY – 6.5 Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org 6. 5 Symmetries of Quadrilaterals A Develop Understanding Task A line that reflects a figure onto itself is called a line of symmetry. A figure that can be carried onto itself by a rotation is said to have rotational symmetry. Every four-sided polygon is a quadrilateral. Some quadrilaterals have additional properties and are given special names like squares, parallelograms and rhombuses. A diagonal of a quadrilateral is formed when opposite vertices are connected by a line segment. Some quadrilaterals are symmetric about their diagonals. Some are symmetric about other lines. In this task you will use rigid-motion transformations to explore line symmetry and rotational symmetry in various types of quadrilaterals. For each of the following quadrilaterals you are going to try to answer the question, “Is it possible to reflect or rotate this quadrilateral onto itself?” As you experiment with each quadrilateral, record your findings in the following chart. Be as specific as possible with your descriptions. Defining features of the quadrilateral Lines of symmetry that reflect the quadrilateral onto itself Center and angles of rotation that carry the quadrilateral onto itself A rectangle is a quadrilateral that contains four right angles. A parallelogram is a quadrilateral in which opposite sides are parallel. CC BY fdecomite https://flic.kr/p/gis7Cj 25

Transcript of A Develop Understanding Task - uen.org Vision Project Licensed under the Creative Commons...

SECONDARY MATH I // MODULE 6

TRANSFORMATIONS AND SYMMETRY – 6.5

Mathematics Vision Project

Licensed under the Creative Commons Attribution CC BY 4.0

mathematicsvisionproject.org

6. 5 Symmetries of Quadrilaterals

A Develop Understanding Task

Alinethatreflectsafigureontoitselfiscalledalineofsymmetry.Afigurethatcanbe

carriedontoitselfbyarotationissaidtohaverotationalsymmetry.

Everyfour-sidedpolygonisaquadrilateral.Somequadrilateralshaveadditionalproperties

andaregivenspecialnameslikesquares,parallelogramsandrhombuses.Adiagonalofa

quadrilateralisformedwhenoppositeverticesareconnectedbyalinesegment.Somequadrilaterals

aresymmetricabouttheirdiagonals.Somearesymmetricaboutotherlines.Inthistaskyouwilluse

rigid-motiontransformationstoexplorelinesymmetryandrotationalsymmetryinvarioustypesof

quadrilaterals.

Foreachofthefollowingquadrilateralsyouaregoingtotrytoanswerthequestion,“Isit

possibletoreflectorrotatethisquadrilateralontoitself?”Asyouexperimentwitheachquadrilateral,

recordyourfindingsinthefollowingchart.Beasspecificaspossiblewithyourdescriptions.

Definingfeaturesofthequadrilateral

Linesofsymmetrythatreflectthequadrilateral

ontoitself

Centerandanglesofrotationthatcarrythequadrilateral

ontoitselfArectangleisaquadrilateralthatcontainsfourrightangles.

Aparallelogramisaquadrilateralinwhichoppositesidesareparallel.

CC

BY

fdec

omite

http

s://f

lic.k

r/p/

gis7

Cj

25

SECONDARY MATH I // MODULE 6

TRANSFORMATIONS AND SYMMETRY – 6.5

Mathematics Vision Project

Licensed under the Creative Commons Attribution CC BY 4.0

mathematicsvisionproject.org

Atrapezoidisaquadrilateralwithonepairofoppositesidesparallel.Isitpossibletoreflectorrotateatrapezoidontoitself?Drawatrapezoidbasedonthisdefinition.Thenseeifyoucanfind:

• anylinesofsymmetry,or• anycentersofrotationalsymmetry,

thatwillcarrythetrapezoidyoudrewontoitself.Ifyouwereunabletofindalineofsymmetryoracenterofrotationalsymmetryforyourtrapezoid,seeifyoucansketchadifferenttrapezoidthatmightpossesssometypeofsymmetry.

Arhombusisaquadrilateralinwhichallsidesarecongruent.

Asquareisbotharectangleandarhombus.

26

SECONDARY MATH I // MODULE 6

TRANSFORMATIONS AND SYMMETRY – 6.5

Mathematics Vision Project

Licensed under the Creative Commons Attribution CC BY 4.0

mathematicsvisionproject.org

6. 5 Symmetries of Quadrilaterals – Teacher Notes A Develop Understanding Task

Purpose:Inthislearningcycle,studentsfocusonclassesofgeometricfiguresthatcanbecarried

ontothemselvesbyatransformation—figuresthatpossessalineofsymmetryorrotational

symmetry.Inthistasktheideaof“symmetry”issurfacedrelativetofindinglinesthatreflecta

figureontoitself,ordeterminingifafigurehasrotationalsymmetrybyfindingacenterofrotation

aboutwhichafigurecanberotatedontoitself.Thisworkisintendedtobeexperimental(e.g.,

foldingpaper,usingtransparencies,usingtechnology,measuringwithrulerandprotractor,etc.),

withthedefinitionsofreflectionandrotationbeingcalledupontosupportstudents’claimsthata

figurepossessessometypeofsymmetry.Theparticularclassesofgeometricfiguresconsideredin

thistaskarevarioustypesofquadrilaterals.

CoreStandardsFocus:

G.CO.3Givenarectangle,parallelogram,trapezoid,orregularpolygon,describetherotationsand

reflectionsthatcarryitontoitself.

G.CO.6Usegeometricdescriptionsofrigidmotionstotransformfiguresandtopredicttheeffectof

agivenrigidmotiononagivenfigure.

RelatedStandards:G.CO.4,G.CO.5

StandardsforMathematicalPractice:

SMP7–Lookforandmakeuseofstructure

AdditionalResourcesforTeachers:

Acopyofthechartfromthetaskcanbefoundattheendofthissetofteachernotes.Thischartcan

beprintedforusewithstudentswhomaybeaccessingthetaskonacomputerortablet.In

addition,eachofthequadrilateralshasbeenprovidedonamastercopythatcanbereproducedand

SECONDARY MATH I // MODULE 6

TRANSFORMATIONS AND SYMMETRY – 6.5

Mathematics Vision Project

Licensed under the Creative Commons Attribution CC BY 4.0

mathematicsvisionproject.org

distributedtostudents.Studentscancutouttheindividualquadrilateralsinordertomanipulatethem,suchasfoldingthemalongadiagonalorrotatingthemaboutapoint.TheTeachingCycle:

Launch(WholeClass):

Discusstheconceptofsymmetryintermsoffindingarigid-motiontransformationthatcarriesageometricfigureontoitself.Helpstudentsrecognizethattwosuchtypesofsymmetriesexist:alineofsymmetrymightexistthatreflectsafigureontoitself,oracenterofrotationmightexistaboutwhichafiguremightberotatedontoitself.Alsoremindstudentsofthedefinitionsof“quadrilateral”and“diagonal”givingintheintroductionofthetask.Studentsaretoexperimentwiththevarioustypesofquadrilateralslistedinthetasktodetermineiftheycanfindanylinesofsymmetryorcentersandanglesofrotationthatwillcarrythegivenquadrilateralontoitself.Youwillneedtodecidewhattoolstomakeavailableforthisinvestigation.Forexample,youcouldprovidecut-outsofeachofthefigureswhichwouldallowstudentstofindlinesofsymmetrybyfoldingthefiguresontothemselves(notethatahandoutofthesetoffiguresisprovidedattheendoftheteachernotes).Thiswouldalsobeagoodtasktosupportusingdynamicgeometrysoftwareprograms,suchasGeometer’sSketchpadorGeogebra.Ifyouusetechnology,studentswillneedtobeprovidedwithasetofwell-constructedquadrilaterals,sotheycanfocusonsearchingforlinesofsymmetryandcentersofrotation,ratherthanontheconstructionofthegeometricfiguresthemselves.Explore(SmallGroup):

Sincestudentsaredealingwithclassesofquadrilaterals,ratherthanindividualquadrilaterals,inadditiontofindingthelineofsymmetryorthecenterandangleofarotation,theyshouldalsoprovidesometypeofjustificationastohowtheyknowthatthissymmetryexistsforallmembersoftheclass.Thegivendefinitionsforeachquadrilateralshouldsupportmakingsuchanargument.Forexample,ifstudentssaythatthediagonalofasquareisalineofsymmetry,theymightnotethatdistanceandanglearepreservedbythisreflectionsinceadjacentsidesofasquarearecongruent

SECONDARY MATH I // MODULE 6

TRANSFORMATIONS AND SYMMETRY – 6.5

Mathematics Vision Project

Licensed under the Creative Commons Attribution CC BY 4.0

mathematicsvisionproject.org

andoppositeanglesofasquarearebothrightangles.Trytopressstudentstomoveawayfrom

basingtheirdecisionsaboutlinesofsymmetryorcentersofrotationsimplyonintuitionand“it

lookslikeitworks”typeofjustification,andtowardsargumentsbasedonthedefinitionsofthe

rigid-motiontransformationsandthedefiningpropertiesofthegeometricfigures.

Lookforstudentswhofindallofthelinesofsymmetryordescribeallofthepossiblerotationsthat

mightexistforeachtypeofquadrilateral.Forexample,asquarehastwodifferenttypesoflinesof

symmetry:thediagonals,andthelinespassingthroughthemidpointsofoppositesides.Hence,

therearefourlinesofsymmetryinasquare.Thepointwherethetwodiagonalsofasquare

intersectlocatesthecenterofrotationfordescribingtherotationalsymmetryofasquare.Asquare

canberotated90°,180°,270°or360°aboutthiscenterofrotation.Eachreflectionorrotation

carriesasegmentontoanothersegmentofthesamelength,orarightangleontoanotherright

angle,duetothedefiningpropertiesofasquare.

Watchformisconceptionsthatmightarise,suchasthediagonalsofaparallelogrambeingidentified

aslinesofreflection.Experimentationwithtechnologyorpaperfoldingwilldisprovethis

conjecture,butitisimportanttohavestudentsdescribewhytheyinitiallythoughtitwastrue,and

howtheymightconvincethemselvesthatthisconjectureisn’ttruebasedonthedefinitionofa

reflection.

Discuss(WholeClass):

Startthediscussionbyaskingifthediagonalsofaparallelogramarelinesofsymmetryforthe

parallelogram.Askstudentshowtheyknowadiagonalisnotalineofsymmetry.Iftheironly

argumentsareexperimentalinnature(e.g.,“ifyoufolditonthediagonal,oppositeverticesdon’t

matchup”or“whenIusedthediagonalasamirrorlineinGSPitdidn’twork”),pressforan

explanationbasedontheessentialideasofareflection(e.g.,“sinceadjacentsidesofaparallelogram

aren’tnecessarilycongruent,wecan’tfindalineofreflectionthatwillreflectasideofa

parallelogramontoanadjacentsidesothatdistanceispreserved”).

SECONDARY MATH I // MODULE 6

TRANSFORMATIONS AND SYMMETRY – 6.5

Mathematics Vision Project

Licensed under the Creative Commons Attribution CC BY 4.0

mathematicsvisionproject.org

Askstudentshowtheydeterminedwherethecenterofrotationislocatedinvariousclassesofquadrilaterals.Thisshouldleadtoadiscussionaboutthepointofintersectionofthediagonals.Askstudentswhichtypeofquadrilateralhasthemosttypesofsymmetry,andwhythismightbeso.AlignedReady,Set,Go:TransformationsandSymmetry6.5

SECONDARY MATH I // MODULE 6

TRANSFORMATIONS AND SYMMETRY – 6.5

Mathematics Vision Project

Licensed under the Creative Commons Attribution CC BY 4.0

mathematicsvisionproject.org

6.5

READY Topic:Polygons,definitionandnames

1.Whatisapolygon?Describeinyourownwordswhatapolygonis.

2.Fillinthenamesofeachpolygonbasedonthenumberofsidesthepolygonhas.

NumberofSides NameofPolygon

3

4

5

6

7

8

9

10

SET Topic:Kites,Linesofsymmetryanddiagonals.3.Onequadrilateralwithspecialattributesisakite.Findthegeometricdefinitionofakiteandwriteitbelowalongwithasketch.(Youcandothisfairlyquicklybydoingasearchonline.)4.Drawakiteanddrawallofthelinesofreflectivesymmetryandallofthediagonals.

LinesofReflectiveSymmetry Diagonals

READY, SET, GO! Name PeriodDate

27

SECONDARY MATH I // MODULE 6

TRANSFORMATIONS AND SYMMETRY – 6.5

Mathematics Vision Project

Licensed under the Creative Commons Attribution CC BY 4.0

mathematicsvisionproject.org

6.5

5.Listalloftherotationalsymmetryforakite.

6.Arelinesofsymmetryalsodiagonalsinapolygon?Explain.

6.Arealldiagonalsalsolinesofsymmetryinapolygon?Explain.

7.Whichquadrilateralshavediagonalsthatarenotlinesofsymmetry?Namesomeanddrawthem.

8.Doparallelogramshavediagonalsthatarelinesofsymmetry?Ifso,drawandexplain.Ifnotdrawand

explain.

28

SECONDARY MATH I // MODULE 6

TRANSFORMATIONS AND SYMMETRY – 6.5

Mathematics Vision Project

Licensed under the Creative Commons Attribution CC BY 4.0

mathematicsvisionproject.org

6.5

GO Topic:Equationsforparallelandperpendicularlines.

FindtheequationofalinePARALLELtothegiveninfoandthroughtheindicated

y-intercept.

FindtheequationofalinePERPENDICULARtothe

givenlineandthroughtheindicatedy-intercept.

9.Equationofaline:! = 4! + 1.

a.Parallellinethroughpoint(0,-7):

b.Perpendiculartothelinelinethroughpoint(0,-7):

10.Tableofaline:

x y3 -84 -105 -126 -14

a.Parallellinethroughpoint(0,8):

b.Perpendiculartothelinethroughpoint(0,8):

11.Graphofaline:

a.Parallellinethroughpoint(0,-9):

b.Perpendiculartothelinethroughpoint(0,-9):

-5

-5

5

5

29