A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

13
A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui http://research.microsoft.com/en-us/projects/medicalimageanalysis/

Transcript of A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

Page 1: A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

http://research.microsoft.com/en-us/projects/medicalimageanalysis/

Page 2: A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

One-click visual navigation

Better visualization (class-driven col. transfer functions)

Initialization for organ-specific processing

Content-driven image search

Applications

One-click visual navigation

Page 3: A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

Setting up the ideal 3D view for diagnosing problems with heart valves is laborious.

Applications One-click visual navigation

Better visualization (class-driven col. transfer functions)

Initialization for organ-specific processing

Content-driven image search

Page 4: A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

If we know where the liver is then we can start an automatic process for detecting calcifications.

Applications One-click visual navigation

Better visualization (class-driven col. transfer functions)

Initialization for organ-specific processing

Content-driven image search

Page 5: A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

If we know where the liver is then we can start an automatic process for detecting calcifications.

Applications One-click visual navigation

Better visualization (class-driven col. transfer functions)

Initialization for organ-specific processing

Content-driven image search

Page 6: A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

No contrast agent

Considerable geometric variations. Conventional atlas-based techniques would not work.

Page 7: A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

Labelling via axis aligned 3D bounding boxes.

Classes = heart, liver, l. kidney, r. kidney, l. lung, r. lung, l. eye, r. eye, head, background

Positive and negative training examples for organ centres.

Page 8: A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

Node optimization functionNode optimization function

Training a single tree

class

class

class

class

class

S

S1 S2

During training each node “sees” only a random subset of all available features

Each tree is training independently, using the same procedure

Page 9: A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

Posterior output of classifierPosterior output of classifier

Organ detectionOrgan detection

Organ localizationOrgan localization

Testing

Using multiple trees has been shown to improve generalization.

Page 10: A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

Context-rich visual features, a 2D illustration

Feature response Feature response

Lots and lots of randomly generated features. Out of those the most discriminative ones are selected automatically during training.

Long-range spatial context is captured bythe displaced integration regions.

Page 11: A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

Results of automatic organ detection and localization for three different patients.

Page 12: A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

• Our algorithmOur algorithm

• Gaussian Mix. ModelGaussian Mix. Model

• Template matchingTemplate matching

(multiple runs on multiple train/test (multiple runs on multiple train/test splits)splits)

Page 13: A. Criminisi, J. Shotton, S. Bucciarelli and K. Siddiqui

More anatomical structures

Hierarchical -> Finer structures

Spatial priors for greater robustness to noise

Larger training database

http://research.microsoft.com/en-us/projects/medicalimageanalysis/