a cosmic test of quantum...

83
11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of quantum entanglement Choosing Experimental Bell Inequality Measurements with Light from High Redshift Quasars UC San Diego Center for Astrophysics and Space Sciences https://asfriedman.physics.ucsd.edu [email protected] Dr. Andrew Friedman

Transcript of a cosmic test of quantum...

Page 1: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium

a cosmic test of quantum entanglement

Choosing Experimental Bell Inequality Measurements with Light from High Redshift Quasars

UC San Diego Center for Astrophysics and Space Scienceshttps://asfriedman.physics.ucsd.edu [email protected]

Dr. Andrew Friedman

Page 2: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 2

Cosmic bell collaboration

Page 3: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 3

Prof. David Kaiser 1

Prof. Jason Gallicchio 3

Prof. Alan Guth 1

Dr. Andrew Friedman 1,5

1: MIT Physics/CTP 2: Vienna IQOQI 3: Harvey Mudd 4: Max Planck MPQ 5: UCSD CASS 6: NASA JPL/Caltech

Other Collaborators Johannes Handsteiner 2,

Dominik Rauch 2, Dr. Thomas Scheidl 2, Dr. Johannes Kofler 4, Dr. Hien Nguyen 6,

Calvin Leung 3

et al.

Prof. Brian Keating 5

Prof. Anton Zeilinger 2

COSMIC BELL Team

Page 4: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 4

“We have an illusion that we can do any experiment that we want. We all, however, come from the same universe, have evolved with it, and don't really have any `real' freedom. For we obey certain laws and have come from a certain past. Is it somehow that we are correlated to the experiments that we do, so that the apparent probabilities don't look like they ought to look if you assume they are random...” – Richard Feynman 1982

Feynman on free will

Page 5: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 5

Outline1. Entanglement Tests

2. Bell’s Inequality vs. Bell’s Theorem

3. Loopholes / Freedom-Of-Choice Loophole

4. Cosmic Bell Test with Milky Way Stars

5. Cosmic Bell Test with Quasars

6. Future Tests

Page 6: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 6

Niels Bohr and Albert Einstein

Erwin Schrödinger

Beginning in the 1930s, the great architects of quantum theory struggled to understand the notion of “entanglement.”

quantum entanglement

Page 7: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 7

State does not factorize: no way to describe behavior of particle 1 (u) without referring to behavior of particle 2 (v).

EPR paradox

E P R

Page 8: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 8

a, b : SettingsA, B : Outcomes

Big question: Are non-quantum explanations for entanglement viable? If yes, QM incomplete Hidden variables

bell tests

Entangled particle source

Page 9: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 9

Outline1. Entanglement Tests

2. Bell’s Inequality vs. Bell’s Theorem

3. Loopholes / Freedom-Of-Choice Loophole

4. Cosmic Bell Test with Milky Way Stars

5. Cosmic Bell Test with Quasars

6. Future Tests

Page 10: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 10

1,2,3 → Bell’s Inequality

http://images.iop.org/objects/ccr/cern/54/7/19/CCfac8_07_14.jpg

John S. Bell (1928-1990)

bell’s inequality assumptions

Upper limits on entangled particle measurement correlations in a “local-realist” model

3. Freedom

2. Locality

1. Realism

Page 11: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 11

1. Realism 2. Locality 3. Freedom

→ At least one of 1,2,3 are false!

But relaxing any assumption → LOOPHOLES

Experiments violate Bell’s inequality as predicted by quantum mechanics!

Relaxing bell’s assumptions

Alternative models could mimic quantum theory

Page 12: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 12

correlations at a distance

S

θ

QM

Loca

l Rea

lism

QM

18090S

Clauser, Horne, Shimony, & Holt

(CHSH) 1969

Angle Between Polarizers

QM prediction: |Smax|= 2√2

correlation function: E(a,b) =�A B�

Dozens of experiments: |Smax|>2

John Clauser, LBNL, 1970s

Alain Aspect, Orsay, 1980s

Bell: if

then | S | ≤ 2. (Locality: A does not depend on b

or B, and vice versa.) Locality: A does not depend on b or B, and vice versa.)

Page 13: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 13

bell’s inequalitycorrelation function: E(a,b) =�A B�

No local-realist theory can reproduce the quantum predictions!bell’s Theorem

e.g. QM prediction: |Smax|=2√2

• Bell’s inequality: Places limits on how correlated measurement outcomes can be in local realistic theories.

|S| 2<latexit sha1_base64="p71xQXbsudfiWI41/CV8e3Aej5w=">AAAB8HicbVDLTgJBEOz1ifhCPXqZSEw8kV1iokeiF48Y5WFgQ2aHXpgws7vOzJoQ4Cu8eNAYr36ON//GAfagYCWdVKq6090VJIJr47rfzsrq2vrGZm4rv72zu7dfODis6zhVDGssFrFqBlSj4BHWDDcCm4lCKgOBjWBwPfUbT6g0j6N7M0zQl7QX8ZAzaqz0ML4btwU+knKnUHRL7gxkmXgZKUKGaqfw1e7GLJUYGSao1i3PTYw/ospwJnCSb6caE8oGtIctSyMqUfuj2cETcmqVLgljZSsyZKb+nhhRqfVQBrZTUtPXi95U/M9rpSa89Ec8SlKDEZsvClNBTEym35MuV8iMGFpCmeL2VsL6VFFmbEZ5G4K3+PIyqZdLnlvybs+LlassjhwcwwmcgQcXUIEbqEINGEh4hld4c5Tz4rw7H/PWFSebOYI/cD5/AEwxkA8=</latexit><latexit sha1_base64="p71xQXbsudfiWI41/CV8e3Aej5w=">AAAB8HicbVDLTgJBEOz1ifhCPXqZSEw8kV1iokeiF48Y5WFgQ2aHXpgws7vOzJoQ4Cu8eNAYr36ON//GAfagYCWdVKq6090VJIJr47rfzsrq2vrGZm4rv72zu7dfODis6zhVDGssFrFqBlSj4BHWDDcCm4lCKgOBjWBwPfUbT6g0j6N7M0zQl7QX8ZAzaqz0ML4btwU+knKnUHRL7gxkmXgZKUKGaqfw1e7GLJUYGSao1i3PTYw/ospwJnCSb6caE8oGtIctSyMqUfuj2cETcmqVLgljZSsyZKb+nhhRqfVQBrZTUtPXi95U/M9rpSa89Ec8SlKDEZsvClNBTEym35MuV8iMGFpCmeL2VsL6VFFmbEZ5G4K3+PIyqZdLnlvybs+LlassjhwcwwmcgQcXUIEbqEINGEh4hld4c5Tz4rw7H/PWFSebOYI/cD5/AEwxkA8=</latexit><latexit sha1_base64="p71xQXbsudfiWI41/CV8e3Aej5w=">AAAB8HicbVDLTgJBEOz1ifhCPXqZSEw8kV1iokeiF48Y5WFgQ2aHXpgws7vOzJoQ4Cu8eNAYr36ON//GAfagYCWdVKq6090VJIJr47rfzsrq2vrGZm4rv72zu7dfODis6zhVDGssFrFqBlSj4BHWDDcCm4lCKgOBjWBwPfUbT6g0j6N7M0zQl7QX8ZAzaqz0ML4btwU+knKnUHRL7gxkmXgZKUKGaqfw1e7GLJUYGSao1i3PTYw/ospwJnCSb6caE8oGtIctSyMqUfuj2cETcmqVLgljZSsyZKb+nhhRqfVQBrZTUtPXi95U/M9rpSa89Ec8SlKDEZsvClNBTEym35MuV8iMGFpCmeL2VsL6VFFmbEZ5G4K3+PIyqZdLnlvybs+LlassjhwcwwmcgQcXUIEbqEINGEh4hld4c5Tz4rw7H/PWFSebOYI/cD5/AEwxkA8=</latexit><latexit sha1_base64="p71xQXbsudfiWI41/CV8e3Aej5w=">AAAB8HicbVDLTgJBEOz1ifhCPXqZSEw8kV1iokeiF48Y5WFgQ2aHXpgws7vOzJoQ4Cu8eNAYr36ON//GAfagYCWdVKq6090VJIJr47rfzsrq2vrGZm4rv72zu7dfODis6zhVDGssFrFqBlSj4BHWDDcCm4lCKgOBjWBwPfUbT6g0j6N7M0zQl7QX8ZAzaqz0ML4btwU+knKnUHRL7gxkmXgZKUKGaqfw1e7GLJUYGSao1i3PTYw/ospwJnCSb6caE8oGtIctSyMqUfuj2cETcmqVLgljZSsyZKb+nhhRqfVQBrZTUtPXi95U/M9rpSa89Ec8SlKDEZsvClNBTEym35MuV8iMGFpCmeL2VsL6VFFmbEZ5G4K3+PIyqZdLnlvybs+LlassjhwcwwmcgQcXUIEbqEINGEh4hld4c5Tz4rw7H/PWFSebOYI/cD5/AEwxkA8=</latexit>

• Until you compare it to quantum theory as a benchmark

• It says nothing directly about quantum mechanics!

Bell: if

then | S | ≤ 2. (Locality: A does not depend on b

or B, and vice versa.) Locality: A does not depend on b or B, and vice versa.)

Page 14: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 14

Outline1. Entanglement Tests

2. Bell’s Inequality vs. Bell’s Theorem

3. Loopholes / Freedom-Of-Choice Loophole

4. Cosmic Bell Test with Milky Way Stars

5. Cosmic Bell Test with Quasars

6. Future Tests

Page 15: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 15

loopholes & why they matter

Understanding reality at a deep level. If universe exploits loopholes, does not mean QM is “wrong”, but perhaps derived from a more fundamental underlying theory. Quantum gravity?

?

Quantum foundations!

Quantum cryptography security Tech applications! Hackers could exploit loopholes to undermine entanglement-based quantum information schemes

The standard interpretation of Bell tests — that “local realism” is incompatible with experiment — relies upon several assumptions.

So What?!

Page 16: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 16

locality loophole

Hidden communication between parties?

Detection Loophole

The standard interpretation of Bell tests — that “local realism” is incompatible with experiment — relies upon several assumptions.

t

x a b

S

A B measurement outcomes

source emits entangled particles

select detector settings

?

?

Page 17: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 17

closing the locality loophole

Detection Loophole

The standard interpretation of Bell tests — that “local realism” is incompatible with experiment — relies upon several assumptions.

Space-like separate relevant pairs of events

t

x

a b S

A B

measurement outcomes space like separated

select detector settings while entangled particles are in flight

detector setting choice a separated from

measurement outcome B (and vice versa)

Page 18: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 18

detection efficiency loophole

Detection Loophole

The standard interpretation of Bell tests — that “local realism” is incompatible with experiment — relies upon several assumptions.

Also called the “fair-sampling” loophole

What if undetected photons skewed the statistics, faking Bell

violation without genuine entanglement?

Garg and Mermin, Phys Rev D (1987), Eberhard, Phys Rev A (1993)

Closing loophole requires detector efficiencies ≥ 83%

No detectors are 100% efficient.

Page 19: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 19

toward a loophole free testClosing Method?

Spacelike separated measurements, settings

B. Detection Loophole Measured sub-sample not representative for atoms: Rowe+2001, superconducting qubits: Ansmann+2009, photons: Giustina+2013, Christensen+2013

High efficiency detectors

A. Locality Loophole Hidden communication between parties for photons: Aspect+1982, Weihs+1998

Giustina+2015 (Vienna) Shalm+2015 (NIST) (photons)

Locality & DetectionHensen+2015 (Delft) (electrons)

2 loopholes in same test!

Rosenfeld+2017 (Germany) (atoms)

Page 20: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 20

Locality & Freedom (photons) Handsteiner+2017 (Vienna)

Cosmic bell tests

Settings chosen with Milky Way Stars. Closed locality, constrained freedom-of-choice to ~600 years ago.

Locality & Freedom (photons) Rauch+2018 (Canary Islands) Settings from High Redshift Quasars. Closed locality, constrained freedom-of-choice to ~7.8 Billion years ago!

Locality & Detection & Freedom (photons) Li+2018 (China)

Closed locality and detection, constrained freedom-of-choice to ~11 years ago.

toward a loophole free test

Settings spacelike separated from

EPR source

C. Freedom-of-Choice Loophole Settings correlated with hidden variables partially for photons: Scheidl+2010

Page 21: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 21

First experiment to close both the locality and detection loopholes.

latest experimentsDELFT

Page 22: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 22

latest experimentsVIENNA

NIST

Closed both locality and detection loopholes for the first time with photons

Page 23: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 23

latest experiments

VIENNA

Page 24: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 24

hofburg palace, vienna

Page 25: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 25

hofburg palace

Basement

Page 26: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 26

recent entanglement tests

• Cosmic Bell tests will progressively attempt to do so

• None of these tests designed to fully address “freedom-of-choice” loophole

Hensen+2015 (Delft), Giustina+2015 (Vienna), Shalm+2015 (NIST), Rosenfeld+2017 (Germany)

• Closed“locality” and “detection” loopholes simultaneously

Page 27: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 27

freedom of choice loopholeQM is most vulnerable to the “freedom-of-choice” loophole*:

Are the detector settings correlated with the local hidden variable?

*Also known as the “measurement-independence” and “settings-independence” loophole.

Bell: “It has been assumed that the settings of instruments are in some sense free variables — say at the whim of the experimenters — or in any case not determined in the overlap of the backward light cones.” (1976)

p(A,B|a, b,�) = p(A|a,�)p(B|b,�)<latexit sha1_base64="WZFO5yHPE4X8Y34FBzLI+zOhd90=">AAACHXicbZDLSgMxFIYzXmu9jbp0EyxChVJmpKAbodaNywr2Au1QMpm0Dc1kQpIRyrQv4sZXceNCERduxLcxbQcvrQcCf75zfpLz+4JRpR3n01paXlldW89sZDe3tnd27b39uopiiUkNRyySTR8pwignNU01I00hCQp9Rhr+4GrSb9wRqWjEb/VQEC9EPU67FCNtUMcuifxloTJCBb8A28z4AnQCL6Chhn0Dka+M/J9rx845RWdacFG4qciBtKod+70dRDgOCdeYIaVariO0lyCpKWZknG3HigiEB6hHWkZyFBLlJdPtxvDYkAB2I2kO13BKfzsSFCo1DH0zGSLdV/O9Cfyv14p199xLKBexJhzPHurGDOoITqKCAZUEazY0AmFJzV8h7iOJsDaBZk0I7vzKi6J+WnSdontTypUraRwZcAiOQB644AyUwTWoghrA4B48gmfwYj1YT9ar9TYbXbJSzwH4U9bHFzSynuY=</latexit><latexit sha1_base64="WZFO5yHPE4X8Y34FBzLI+zOhd90=">AAACHXicbZDLSgMxFIYzXmu9jbp0EyxChVJmpKAbodaNywr2Au1QMpm0Dc1kQpIRyrQv4sZXceNCERduxLcxbQcvrQcCf75zfpLz+4JRpR3n01paXlldW89sZDe3tnd27b39uopiiUkNRyySTR8pwignNU01I00hCQp9Rhr+4GrSb9wRqWjEb/VQEC9EPU67FCNtUMcuifxloTJCBb8A28z4AnQCL6Chhn0Dka+M/J9rx845RWdacFG4qciBtKod+70dRDgOCdeYIaVariO0lyCpKWZknG3HigiEB6hHWkZyFBLlJdPtxvDYkAB2I2kO13BKfzsSFCo1DH0zGSLdV/O9Cfyv14p199xLKBexJhzPHurGDOoITqKCAZUEazY0AmFJzV8h7iOJsDaBZk0I7vzKi6J+WnSdontTypUraRwZcAiOQB644AyUwTWoghrA4B48gmfwYj1YT9ar9TYbXbJSzwH4U9bHFzSynuY=</latexit><latexit sha1_base64="WZFO5yHPE4X8Y34FBzLI+zOhd90=">AAACHXicbZDLSgMxFIYzXmu9jbp0EyxChVJmpKAbodaNywr2Au1QMpm0Dc1kQpIRyrQv4sZXceNCERduxLcxbQcvrQcCf75zfpLz+4JRpR3n01paXlldW89sZDe3tnd27b39uopiiUkNRyySTR8pwignNU01I00hCQp9Rhr+4GrSb9wRqWjEb/VQEC9EPU67FCNtUMcuifxloTJCBb8A28z4AnQCL6Chhn0Dka+M/J9rx845RWdacFG4qciBtKod+70dRDgOCdeYIaVariO0lyCpKWZknG3HigiEB6hHWkZyFBLlJdPtxvDYkAB2I2kO13BKfzsSFCo1DH0zGSLdV/O9Cfyv14p199xLKBexJhzPHurGDOoITqKCAZUEazY0AmFJzV8h7iOJsDaBZk0I7vzKi6J+WnSdontTypUraRwZcAiOQB644AyUwTWoghrA4B48gmfwYj1YT9ar9TYbXbJSzwH4U9bHFzSynuY=</latexit><latexit sha1_base64="WZFO5yHPE4X8Y34FBzLI+zOhd90=">AAACHXicbZDLSgMxFIYzXmu9jbp0EyxChVJmpKAbodaNywr2Au1QMpm0Dc1kQpIRyrQv4sZXceNCERduxLcxbQcvrQcCf75zfpLz+4JRpR3n01paXlldW89sZDe3tnd27b39uopiiUkNRyySTR8pwignNU01I00hCQp9Rhr+4GrSb9wRqWjEb/VQEC9EPU67FCNtUMcuifxloTJCBb8A28z4AnQCL6Chhn0Dka+M/J9rx845RWdacFG4qciBtKod+70dRDgOCdeYIaVariO0lyCpKWZknG3HigiEB6hHWkZyFBLlJdPtxvDYkAB2I2kO13BKfzsSFCo1DH0zGSLdV/O9Cfyv14p199xLKBexJhzPHurGDOoITqKCAZUEazY0AmFJzV8h7iOJsDaBZk0I7vzKi6J+WnSdontTypUraRwZcAiOQB644AyUwTWoghrA4B48gmfwYj1YT9ar9TYbXbJSzwH4U9bHFzSynuY=</latexit>

locality assumption

Bell tacitly assumed

Bell explicitly assumed

equivalent to

Page 28: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 28

relaxing freedom of choice

A minuscule amount of correlation between λ and a,b would suffice to mimic QM, with

Friedman, Guth, Hall, Kaiser, Gallicchio, 1809.01307

Mutual Information

Only require I = 0.046 ~ 1/22 of a bit!

where

If we do not assume , then local-realist models would be compatible with

Page 29: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 29

http://salsasmexrestaurants.com/test/wp-content/uploads/2014/11/Fajitascombos.jpg

Still have free will!

But limited freedom

xx

x

x

x

freedom of choice loophole

If detector settings depend on hidden variables from past events, our choices might not be perfectly free!

�<latexit sha1_base64="/JI5iynvNWOEKZjLq6ujHWhdsHw=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKJPJpB06mYSZG6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pmCTTjLdZIhPdC6jhUijeRoGS91LNaRxI3g0md3O/+8S1EYl6xGnK/ZiOlIgEo2il7kDaaEiH1Zpbdxcg68QrSA0KtIbVr0GYsCzmCpmkxvQ9N0U/pxoFk3xWGWSGp5RN6Ij3LVU05sbPF+vOyIVVQhIl2j6FZKH+nshpbMw0Dmwypjg2q95c/M/rZxjd+LlQaYZcseVHUSYJJmR+OwmF5gzl1BLKtLC7EjammjK0DVVsCd7qyeukc1X33Lr3cF1r3hZ1lOEMzuESPGhAE+6hBW1gMIFneIU3J3VenHfnYxktOcXMKfyB8/kDPMWPfQ==</latexit><latexit sha1_base64="/JI5iynvNWOEKZjLq6ujHWhdsHw=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKJPJpB06mYSZG6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pmCTTjLdZIhPdC6jhUijeRoGS91LNaRxI3g0md3O/+8S1EYl6xGnK/ZiOlIgEo2il7kDaaEiH1Zpbdxcg68QrSA0KtIbVr0GYsCzmCpmkxvQ9N0U/pxoFk3xWGWSGp5RN6Ij3LVU05sbPF+vOyIVVQhIl2j6FZKH+nshpbMw0Dmwypjg2q95c/M/rZxjd+LlQaYZcseVHUSYJJmR+OwmF5gzl1BLKtLC7EjammjK0DVVsCd7qyeukc1X33Lr3cF1r3hZ1lOEMzuESPGhAE+6hBW1gMIFneIU3J3VenHfnYxktOcXMKfyB8/kDPMWPfQ==</latexit><latexit sha1_base64="/JI5iynvNWOEKZjLq6ujHWhdsHw=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKJPJpB06mYSZG6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pmCTTjLdZIhPdC6jhUijeRoGS91LNaRxI3g0md3O/+8S1EYl6xGnK/ZiOlIgEo2il7kDaaEiH1Zpbdxcg68QrSA0KtIbVr0GYsCzmCpmkxvQ9N0U/pxoFk3xWGWSGp5RN6Ij3LVU05sbPF+vOyIVVQhIl2j6FZKH+nshpbMw0Dmwypjg2q95c/M/rZxjd+LlQaYZcseVHUSYJJmR+OwmF5gzl1BLKtLC7EjammjK0DVVsCd7qyeukc1X33Lr3cF1r3hZ1lOEMzuESPGhAE+6hBW1gMIFneIU3J3VenHfnYxktOcXMKfyB8/kDPMWPfQ==</latexit><latexit sha1_base64="/JI5iynvNWOEKZjLq6ujHWhdsHw=">AAAB7nicbVDLSsNAFL2pr1pfVZduBovgqiQi1GXRjcsK9gFtKJPJpB06mYSZG6GEfoQbF4q49Xvc+TdO2yy09cDA4ZxzmXtPkEph0HW/ndLG5tb2Tnm3srd/cHhUPT7pmCTTjLdZIhPdC6jhUijeRoGS91LNaRxI3g0md3O/+8S1EYl6xGnK/ZiOlIgEo2il7kDaaEiH1Zpbdxcg68QrSA0KtIbVr0GYsCzmCpmkxvQ9N0U/pxoFk3xWGWSGp5RN6Ij3LVU05sbPF+vOyIVVQhIl2j6FZKH+nshpbMw0Dmwypjg2q95c/M/rZxjd+LlQaYZcseVHUSYJJmR+OwmF5gzl1BLKtLC7EjammjK0DVVsCd7qyeukc1X33Lr3cF1r3hZ1lOEMzuESPGhAE+6hBW1gMIFneIU3J3VenHfnYxktOcXMKfyB8/kDPMWPfQ==</latexit>

Page 30: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 30

addressing freedom of choice

• If we don’t simply assume , how might we address the “freedom-of-choice” assumption experimentally?

• Such devices produce output strings based on some physical process.

• According to QM, the outputs should be intrinsically random.

• Most recent experiments used QRNGs to select detector settings.

But the purported intrinsic randomness of QM is part of what is at stake in tests of Bell’s inequality…

Page 31: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 31

CHoosing detector settings

yb

xa

Source of Entangled Particles

*Quasar By Quasar Ax

*

S

Star A Star B

Quantum Random Number Generator

Quantum Random Number Generator

Adapted from: Gallicchio, Friedman, & Kaiser 2014

BohrAlbert

yb

xa

Source of Entangled Particles

*Quasar By Quasar Ax

*

S

Source of Entangled Particles

Page 32: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 32

yb

xa

Source of Entangled Particles

*Quasar By Quasar Ax

*

S

Star A Star B

Quantum Random Number Generator

Quantum Random Number Generator

Adapted from: Gallicchio, Friedman, & Kaiser 2014

BohrAlbert

yb

xa

Source of Entangled Particles

*Quasar By Quasar Ax

*

S

CHoosing detector settings

Source of Entangled Particles

Page 33: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 33

yb

xa

Source of Entangled Particles

*Quasar By Quasar Ax

*

S

Star A Star B

Quantum Random Number Generator

Quantum Random Number Generator

Adapted from: Gallicchio, Friedman, & Kaiser 2014

Bohr

Choose settings with

real-time observations

of distant Milky Way

stars

Requires alternative theories to

act hundreds or thousands of years ago

Albert

yb

xa

Source of Entangled Particles

*Quasar By Quasar Ax

*

S→

CHoosing detector settings

Source of Entangled Particles

Page 34: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 34

yb

xa

Source of Entangled Particles

*Quasar By Quasar Ax

*

S

Star B Star A

Quantum Random Number Generator

Quantum Random Number Generator

Adapted from: Gallicchio, Friedman, & Kaiser 2014

Bohr

Choose settings with observations

of high redshift cosmic sources

Relegates alternatives to billions of years ago!

Albert

yb

xa

Source of Entangled Particles

*Quasar By Quasar Ax

*

S

Quasar B Quasar A

CHoosing detector settings

Source of Entangled Particles

Page 35: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 35

yb

xa

Source of Entangled Particles

*Quasar By Quasar Ax

*

S

Star B Star A

Quantum Random Number Generator

Quantum Random Number Generator

Adapted from: Gallicchio, Friedman,

& Kaiser 2014

Bohr

Choose settings with observations

of CMB patches,

etc…

Relegates alternatives to Big Bang, era of early

universe inflation!

Albert

yb

xa

Source of Entangled Particles

*Quasar By Quasar Ax

*

S

CMB Patch A

CMB Patch B

CHoosing detector settings

Source of Entangled Particles

Page 36: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 36

cosmic bell tests

Let the Universe decide how to set up entanglement experiment!

Set a,b by using astronomical sources as cosmic random number generators

Gallicchio, Friedman, & Kaiser 2014, Phys. Rev. Lett., Vol. 112, Issue 11, id. 110405, (arXiv:1310.3288)

Star A Star B

Quasar BQuasar A

Source of Entangled Particles CMB Patch B

CMB Patch A

Page 37: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 37

Outline1. Entanglement Tests

2. Bell’s Inequality vs. Bell’s Theorem

3. Loopholes / Freedom-Of-Choice Loophole

4. Cosmic Bell Test with Milky Way Stars

5. Cosmic Bell Test with Quasars

6. Future Tests

Page 38: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 38

FIRST Cosmic bell test (VIENNA)

Alice: Austrian National Bank

Bob: University of Natural

Resources and Life Sciences

Entangled Particles: Institute for Quantum Optics and Quantum

Information

Handsteiner, Friedman+2017 (arXiv:1611.06985)

Page 39: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 39

vienna cosmic bell test

Johannes Handsteiner with 8-inch stellar photon telescope

Image Credit: Jason Gallicchio

Page 40: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 40

vienna cosmic bell test

Entangled photon receiver and

polarization analyzerImage Credit: Jason Gallicchio

Page 41: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 41

cosmic setting generator

Credit: Jason Gallicchio, Amy Brown, Calvin Leung (HMC)

Light In

Blue Arm

Red Arm Guide Camera

Page 42: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 42

vienna cosmic bell test

Occupational Hazards

Image Credit: Jason Gallicchio

Page 43: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 43

Star Selection

vienna cosmic bell test

Image Credit: Jason Gallicchio

Page 44: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 44

observed bell violation

-E11 -E12 -E21 E220.0

0.5

1.0

1.5

2.0

2.5

a1b1

a1b2

a2b1

a2

b2

Handsteiner, Friedman+2017

Fig. 4

Page 45: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 45

Space-time diagram: stars

Handsteiner, Friedman+2017

Fig. 3

Page 46: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 46

data analysis“Noise Loophole”

• Need triggers by genuine cosmic photons, not local “noise” photons: atmospheric airglow, thermal dark counts, errant dichroic mirror reflections

See Handsteiner, Friedman+2017 (Supplemetal Material)

• Observed sufficient signal-to-noise from cosmic sources

• Conservatively allow S=4 for any background events, S<2 for cosmic photons. Accounts for bias in red/blue ports.

Highly significant Bell violation still observed: Run 1: 7.31 sigma, Run 2: 11.93 sigma

Page 47: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 47

Outline1. Entanglement Tests

2. Bell’s Inequality vs. Bell’s Theorem

3. Loopholes / Freedom-Of-Choice Loophole

4. Cosmic Bell Test with Milky Way Stars

5. Cosmic Bell Test with Quasars

6. Future Tests

Page 48: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 48

Friedman, Kaiser, & Gallicchio 2013a, Phys. Rev. D, Vol. 88, Iss. 4, id. 044038, 18 p. (arXiv:1305.3943)

z > 3.65 quasars at 180 deg have no shared causal past since inflation

Why use quasars? Brightest continuous cosmological sources.

Experiment feasible with existing technology!Gallicchio, Friedman, & Kaiser 2014, Phys. Rev. Lett., Vol. 112, Issue 11, id. 110405, (arXiv:1310.3288)

z > 3.65 quasars bright enough CMB an intriguing possibility

cosmic bell design concept

Page 49: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 49

1+1D spacetime diagramAdapted From

FIG. 1 (Rauch+2018, Supplemental

Material)

• Schematic cosmic Bell test space-time diagram (not to scale) in (dimensionless) conformal time η vs. comoving distance !.

• In these coords, null geodesics on 45o diagonals.

•Meanwhile, spacelike-separated from events x,y, and a,b, source S emits entangled pairs,which are measured at events A,B

•Light received on Earth used to set detectors at events a,b

a b

BA

x

y

•On each side, quasar emits light at events x,y

Page 50: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 50

SDSS quasars - photometric and spectroscopic redshifts

quasar FLUX vs. redshift

Adapted from Fig. 3

(GFK14)

Ground based optical flux.

IR only usable from space

Local Sky noise!

z~3.65 : FOpt ~ 3 × 104 photons s-1 m-2 180 degreesz~4.13 : FOpt ~ 2 × 104 photons s-1 m-2 130 degrees

Redshift (z)

Flux

(ugr

iz b

ands

) pho

tons

s-1

m-2

Page 51: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 51

Prof. Anton Zeilinger

zeilinger group experiments

Page 52: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 52

Image Credit: Jason Gallicchio (Harvey Mudd)

Rauch, D. + 2018, Physical Review Letters, Vol. 121, Issue 8, id. 080403 (arXiv:1808.05966)

Roque de los Muchachos Observatory on Canary Island of La Palma

cosmic bell test with quasars

Page 53: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 53

Rauch, D. + 2018, Physical Review Letters, Vol. 121, Issue 8, id. 080403 (arXiv:1808.05966)

cosmic bell test with quasars

FIG. 1, Rauch + 20184.2-m (WHT) 3.6-m (TNG)Entangled Particle

Source

Page 54: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 54

Rauch, D. + 2018, Physical Review Letters, Vol. 121, Issue 8, id. 080403 (arXiv:1808.05966)

Standard Deviations

cosmic bell test with quasars

FIG. 1, Rauch + 2018

Page 55: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 55

FIG. 4 (Rauch+2018)

• Mechanism must affect detector settings + measurement outcomes from within QA (blue), QB (red), past light cones (or their overlap), a region with only 4.0% of physical space-time volume within our past light cone.

• Big Bang 13.80 Gyr ago

• Local-realist mechanism would need to have acted at least 7.78 Gyr ago.

2+1D spacetime diagram• Past light cone of pair 1

experiment (gray)

• Quasar emission events QA (blue, 7.78 Gyr ago), QB (red, 12.21 Gyr ago)

• Rules out 96% of space-time from causally influencing our experiment!

• Past light cones overlap 13.15 Gyr ago

Page 56: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 56

Image ©2018 DigitalGlobe (Google Earth)

cosmic bell test with quasars

William Herschel Telescope (WHT)

Nordic Optical Telescope (NOT)

Entangled Particle Source

Telescope Nazionale Galileo

(TNG)

Page 57: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 57

Nordic Optical Telescope (NOT)

Cosmic Bell Test Entangled

Particle Source (Shipping Container)

Image Credit: Dominik Rauch (Vienna)

la palma cosmic bell test

Page 58: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 58

near disaster!

Nordic Optical Telescope (NOT)

Cosmic Bell Test Shipping

Container

Image Credit: Dominik Rauch (Vienna)

Page 59: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 59

near disaster!

Image Credit: Dominik Rauch (Vienna)

Page 60: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 60

near disaster!

Image Credit: Dominik Rauch (Vienna)

Page 61: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 61

Image Credit: Dominik Rauch (Vienna)

Cosmic Bell Test Shipping

Container

disaster averted

Page 62: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 62

disaster averted

Image Credit: Dominik Rauch (Vienna)

Cosmic Bell Test Shipping

Container

Entangled photon source fixed, reinstalled in now secured shipping container control room.

Page 63: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 63

adventures in la palma

Image Credit: David Kaiser (MIT)

Dominik Rauch (Vienna)

Anton Zeilinger (Vienna)

Thomas Scheidl (Vienna)

Armin Hochrainer (Vienna)

Chris Benn, Head of Astronomy, Isaac Newton Group of

Telescopes, La Palma

Page 64: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 64

cosmic bell test (summary)

• Excludes any such mechanism from 96% of the space-time volume of our experiment’s past light cone since Big Bang. (Previous tests 10-5%). (~All vs. nothing!)

• Pushes back to ≳7.8Gyr ago most recent time when any local-realist influences could have exploited “freedom-of-choice” loophole to engineer observed Bell violation. (Previous tests ~600yr ago. 6 more orders of mag better!)

• Observed statistically significant 9.3" Bell inequality violation (p-value ≤ 7.4 x 10-21) for quasar pair 1.

• Assumptions: 1) fair sampling for all detected photons, 2) quasar photon wavelengths had not been selectively altered or previewed between emission and detection

• Experiment simultaneously ensures locality

• Free space Bell test with polarization-entangled photons • Detector settings from real-time wavelength measurements of

high-z quasar photons, light emitted billions of years ago

Page 65: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 65

cosmic bell in the news

Page 66: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 66http://web.mit.edu/asf/www/media_coverage.shtml

cosmic bell in the news

Page 67: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 67

https://asfriedman.physics.ucsd.edu/media_coverage.shtml

cosmic bell in the news

Page 68: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 68

game of telephone

MIT press release Author read actual paper! Interviewed scientists. Fact checked!

Read press release (maybe) Read 2nd and 3rd round articles

https://asfriedman.physics.ucsd.edu/media_coverage.shtml

Page 69: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 69

Outline1. Entanglement Tests

2. Bell’s Inequality vs. Bell’s Theorem

3. Loopholes / Freedom-Of-Choice Loophole

4. Cosmic Bell Test with Milky Way Stars

5. Cosmic Bell Test with Quasars

6. Future Tests

Page 70: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 70

12 labs in 11 countries on 5 continents, plus 105 “Bellster” volunteers who produced 108 (quasi) random 0’s and 1’s

BIG bell test

Page 71: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 71

detection loophole progress

Li et al., 1808.07653

Progress in closing detection loophole in a cosmic Bell test

Closed locality and fair sampling, and constrained freedom-of-choice to ~11 years ago.

Jian-Wei Pan

Page 72: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 72

Standard Bell Testspace-time diagrams

Cosmic Bell Test

Past light cones from random number generators overlap milliseconds before test.

Past light cones from quasars don’t overlap since big bang, 13.8 billion years ago.

Adapted from: Friedman, Kaiser, & Gallicchio 2013a, Phys. Rev. D, Vol. 88, Iss. 4, id. 044038, 18 p. (arXiv:1305.3943)

Page 73: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 73

Standard Bell Testspace-time diagrams

Cosmic Bell Test

Past light cones from random number generators overlap milliseconds before test.

Past light cones from quasars don’t overlap since big bang, 13.8 billion years ago.

Adapted from: Friedman, Kaiser, & Gallicchio 2013a, Phys. Rev. D, Vol. 88, Iss. 4, id. 044038, 18 p. (arXiv:1305.3943)

Page 74: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 74

2+1D conformal spacetime diagram

FIG. 2a (Rauch+2018, Supplemental

Material)

La Palma cosmic Bell test didn’t completely remove causal overlap

Page 75: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 75

future cosmic bell tests

z>3.65 for 180 degree separation to remove causal overlap since Big Bang after any early universe inflation

Page 76: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 76

no shared causal past

z>3.65 for 180 degree separation to remove causal overlap since Big Bang after any early universe inflation

Page 77: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 77

no shared causal past

z>3.65 for 180 degree separation to remove causal overlap since Big Bang after any early universe inflation

Page 78: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 78

2 (EPR) or 3 or more (GHZ) entangled particlesGreenberger, Horne, Zeilinger 1989; Greenberger+1990; Mermin 1990

2 or more cosmic sources

Gallicchio, Friedman, & Kaiser 2014; Friedman+2019 in prep.

Each cosmic source pair in set of N=2, 3 (or > 3) satisfies pairwise constraints from Friedman+2013 for no shared causal past since the Big Bang at the end of

inflation

Page 79: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 79

ghz WITH quasars?

Will be difficult to remove all pairwise causal overlap in a ground based test.

But GHZ pilot test with stars and with brighter, moderate redshift quasars is technologically

possible

3+ particles, Bell’s theorem without inequalitiesQM, Local realism give opposite answers to yes/no questions

Greenberger, Horne, Zeilinger 1989; Greenberger+1990; Mermin 1990

Page 80: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 80

ghz WITH CMB?

Easy! Pick 3 CMB patches, each

separated by 2.3o

Hard! Local noise dominates from ground (GFK14)

Balloon based test in Antarctica?

3+ particles, Bell’s theorem without inequalitiesQM, Local realism give opposite answers to yes/no questions

Greenberger, Horne, Zeilinger 1989; Greenberger+1990; Mermin 1990

Noise loophole limits better than 2-

particle Bell test (Hall 2011)

Page 81: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 81

Safe Bet Bell or GHZ/Mermin inequalities always violated.

Strengthen evidence for quantum theory.

Rule out alternative theories, progressively close freedom-of-choice loophole as much as possible.

possible outcomes

Longshot Experimental results depends on which cosmic

sources we look at. Maybe Bell’s limit is not violated for very distant sources.

Perhaps experimenter’s lack complete freedom!

Future 2-quasar Cosmic Bell tests with no causal overlap 3 CMB patch or 3-quasar GHZ test from ground, balloon, or space

Page 82: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 82

COSMIC BELL Publications

Cosmic Bell Test: Measurement Settings from Milky Way Stars, Handsteiner, J., Friedman, A.S. + 2017, Physical Review Letters, Vol. 118, Issue 6, id. 060401, (arXiv:1611.06985 | PDF) (DOI) (Supplemental Material) [Featured in Physics, Editors’ Suggestion]

Can the Cosmos Test Quantum Entanglement?, Friedman, A.S. 2014, Astronomy, Vol. 42, Issue 10, October 2014, pg. 28-33 [PDF]

Testing Bell's Inequality with Cosmic Photons: Closing the Setting-Independence Loophole, Gallicchio, J., Friedman, A.S., and Kaiser, D.I. 2014, Physical Review Letters, Vol. 112, Issue 11, id. 110405, 5 pp. (arXiv:1310.3288) (DOI)

The Shared Causal Pasts and Futures of Cosmological Events, Friedman, A.S., Kaiser, D.I., and Gallicchio, J. 2013, Physical Review D, Vol. 88, Issue 4, id. 044038, 18 pp. (arXiv:1305.3943) (DOI)

The Universe Made Me Do It? Testing “Free Will” With Distant Quasars, Friedman, A.S., NOVA, The Nature of Reality, PBS, WGBH Boston, March 19, 2014 [PDF]

Cosmic Bell Test Using Random Measurement Settings from High-Redshift Quasars, Rauch, D., Handsteiner, J., Hochrainer, A., Gallicchio, J., Friedman, A.S. + 2018, Physical Review Letters, Vol. 121, Issue 8, id. 080403 (arXiv:1808.05966 | PDF) (DOI) (Supplemental Material) [Editors' Suggestion]

Astronomical Random Numbers for Quantum Foundations Experiments, Leung, C., Brown, A., Nguyen, H., Friedman, A.S., Kaiser, D.I., and Gallicchio, J., 2018, Physical Review A, Vol. 97, Issue 4, id. 042120 (arXiv:1706.02276) (DOI) [Featured in Physics]

Page 83: a cosmic test of quantum entanglementweb.mit.edu/asf/www/SDSU/SDSU_Colloquium_11_30_2018b.pdf11/30/2018 San Diego State University, Physics and Astronomy Colloquium a cosmic test of

11/30/2018 San Diego State University, Physics and Astronomy Colloquium 83

Ade+2013, A & A sub., (arXiv:1303.5076) Aspect+1982, Phys. Rev. Lett., Vol. 49, 25, December 20, p. 1804-1807 Barret & Gisin 2011, Phys. Rev. Lett., vol. 106, 10, id. 100406 Bell 1964, Physics Vol. 1, No. 3, p. 195-200, Physics Publishing Co. Bell+1989, Speakable & Unspeakable in Quantum Mechanics, American Journal of Phys., Vol. 57, Issue 6, p. 567 Clauser, Horne, Shimony, & Holt 1969, PRL 23, 880 Clauser & Shimony 1978, Rep. Prog. Phys. 41, 1881 Christensen+2013, Phys. Rev. Lett., 111, 120406 Einstein, Podolsky, & Rosen 1935, Phys. Rev., Vol. 47, 10, p. 777-780 Freedman & Clauser 1972, Phys. Rev. Lett., vol. 28, 14, p. 938-941 Friedman, Kaiser, & Gallicchio 2013a, Phys. Rev. D, Vol. 88, Iss. 4, id. 044038, 18 p. (arXiv:1305.3943) Gallicchio, Friedman, & Kaiser 2014=GFK14, Phys. Rev. Lett., Vol. 112, Issue 11, id. 110405, (arXiv:1310.3288) Giustina+2013, Nature, Vol. 497, 7448, p. 227-230 Greenberger, Horne, & Zeilinger 1989, “Going Beyond Bell’s Theorem”, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, Ed. M. Kafatos, Kluwer Academic, Dordrecht, The Netherlands, p. 73-76 Greenberger+1990, American Journal of Physics, Volume 58, Issue 12, pp. 1131-1143 Guth 1981, Phys. Rev. D, Vol. 23, 2, p. 347-356 Guth & Kaiser 2005, Science, Vol. 307, 5711, p. 884-890 Handsteiner, J., Friedman, A.S. + 2017, Physical Review Letters, Vol. 118, Issue 6, id. 060401, (arXiv:1611.06985) Hall 2010, Phys. Rev. Lett., vol. 105, 25, id. 250404 Hall 2011, Phys. Rev. A, vol. 84, 2, id. 022102 Leung, C.+2018, Physical Review A, Vol. 97, Issue 4, id. 042120 (arXiv:1706.02276) Maudlin 1994, “Quantum Non-Locality and Relativity”, Wiley-Blackwell; 1st edition Mermin 1990, American Journal of Physics, Volume 58, Issue 8, pp. 731-734 Rauch, D.+ 2018, Physical Review Letters, Vol. 121, Issue 8, id. 080403 (arXiv:1808.05966) t'Hooft 2007, (arXiv:quant-ph/0701097) Scheidl+2010, PNAS, 107, 46, p. 19708-19713 Weihs+1998, Phys. Rev. Lett., Vol. 81, 23, Dec 7, p. 5039-5043 Zeilinger 2010, “Dance of the Photons”, Farrar, Straus & Giroux; 1st Ed.

References