A celebration of Peter Schwerdtfeger’s 60th...

19
__________________________________________________________________________ CENTRE FOR THEORETICAL CHEMISTRY AND PHYSICS (CTCP) NEW ZEALAND INSTITUTE FOR ADVANCED STUDY (NZIAS) The Bob-Tindall Building (E-Centre, Gate 5, Albany), 0632 Auckland, New Zealand A celebration of Peter Schwerdtfeger’s 60 th Birthday 09 – 11 February 2016

Transcript of A celebration of Peter Schwerdtfeger’s 60th...

Page 1: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

__________________________________________________________________________

CENTRE FOR THEORETICAL CHEMISTRY AND PHYSICS (CTCP)

NEW ZEALAND INSTITUTE FOR ADVANCED STUDY (NZIAS)

The Bob-Tindall Building (E-Centre, Gate 5, Albany), 0632 Auckland, New Zealand

A celebration of Peter Schwerdtfeger’s 60th Birthday

09 – 11 February 2016

Page 2: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

PROGRAMME AT A GLANCE

Tuesday, 09 February 2016, OR4 Oteha Rohe (Bldg.102) 10h: Welcome address 10h15-11h15: Prof Bartlett 11h15-11h30: Coffee break 11h30-12h30: Prof Gaeggeler 12h30-13h00: Dr Borschevsky 13h00-14h30: Lunch break 14h30-15h00: Prof Calvo 15h00-15h30: Dr Ori 15h30-16h00: Dr Pahl 16h00-16h15: Coffee break 18h00: Welcome BBQ

Wednesday, 10 February 2016, e-centre seminar room

09h15-10h15: Prof Schwarz (Berlin) 10h15-10h30: Coffee break 10h30-11h00: Prof Dzuba (Sydney) 11h00-11h30: Prof Zuelicke (Wellington) 11h30-12h00: Dr Avery (Copenhagen) 12h00-13h30: Lunch break 13h30-14h00: Prof Urban (Bratislava) 14h00-15h00: Prof Bohle (Montreal) 15h00-16h00: Prof Flambaum (Sydney) 16h00-16h15: Coffee break

19h00: Sir Neil Waters public lecture

"The Usefulness of Useless Knowledge" – on the Vital Role of Basic Research in Preserving Societies' Dreams and Aspiration

Prof. Dr. Drs. h.c. H. Schwarz (TU Berlin)

Thursday, 11 February 2016, e-centre seminar room

09h15-09h45: Prof Tallon (Wellington) 09h45-10h15: Prof Sadus (Swinburne) 10h15-10h30: Coffee break 10h30-11h00: Dr Lein (Wellington) 11h00-11h30: Dr Soehnel (Auckland) 11h30-11h45: Concluding remarks 11h45-12h30: Lunch

Concluding at 12.30 pm

Page 3: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

ExcitedStatesFromMulti-ReferenceCoupled-clusterTheorytoanExactOne-

ParticleDFTTheory*

R.J.Bartlett,J.Lutz,P.Verma,Y.Jin,D.Ranasinghe,andA.PereraQuantumTheoryProject,UniversityofFlorida,Gainesville,FL32611

Severaldifferentapproachesforexcitedstateswillbepresentedanddiscussed.TheseincludetheEquation-of-Motioncoupled-clustertheory(EOM-CC),thesimilaritytransformedcoupled-clustertheory(STEOM-CC),andthetwo-determinant,multi-referenceMR-CCSD.Thenanalternativeapproachbasedontime-dependentdensity-functionaltheorywillbeconsideredandappliedtocore-excitationspectra.Toconcludewewillaskthequestion,whatconditionswouldonehaveinanexacteffectiveone-particletheoryandhowclosecanwecometorealizingthat?

*ThisworkissupportedbyU.S.AirForceOfficeofSponsoredResearch&HASI(HPCMO).

Page 4: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

Peter&Heinzor

Thetwosidesofthesamegoldmedal

H.W.GaeggelerLaboratoriumforRadiochemistryandEnvironmentalChemistry,PaulScherrerInstitut,

5232VilligenandBernUniversity,3000Bern,Switzerland

Goldisthepreferredsurfaceonwhichtheadsorptionbehaviorofheaviestelementsiscurrentlyinvestigatedinordertodeterminetheirvolatilityintheelementalstate.Suchsuperheavyelementsstartwithatomicnumber112(Cn,Copernicium),i.e.haveafilled6d10electronicshellandstartfillingthe7pshell.Experimentswiththeseexoticmembersoftheperiodictableareconductedatacceleratorcentresthatdeliverusuallyveryfewatomswithinweek-longirradiationtimes.We,theexperimentalists,thentendtoconcludethate.g.elementsCnandFl(FleroviumwithZ=114)areveryvolatilemetals,knowingthatsuchstatementsarescientificallyspeakingnonsense:singleatomsarenotvolatilenoraretheymetals!Whatwemeanisthatthesingleatomsunderstudybehave-iftheywereavailableinmacro-amounts-asstated.NowPetercomesintoplay:usingrelativisticmodelsheandhisgroupmembersareabletocalculatesolidstatepropertiesofsuchheavyelements.TheexpressionrelativisticisabsolutelyinstrumentalinsuchapplicationssinceduetotheveryhighCoulombforces(causedbythehighnumberofprotons),electronsofheaviestelements–evenoftheoutershells–havesuchhighvelocitiesthattheirorbitalenergiesandmassesaresignificantlyinfluenced.Thecohesiveenergydeducedfromsolidstatecalculationsthenyieldinformationonvolatility.Thepresentationoutlinesthestrategyhowonecandeducevolatilityfromsingle-atomstudieswhichcouldthenbecomparedwiththeoreticalprediction.Alsoarecentdevelopmentisaddressed,thenewclassofvolatilecompoundsinheaviestelementchemicalstudies,thecarbonyls.FinallysomeprivateimpressionsfromseveralvisitsofPeter’sgroupinNewZealandwillbeaddressed.

Page 5: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

Relativisticcoupledcluster:methodandapplications

A.BorschevskyTheVanSwinderenInstituteforParticlePhysicsandGravity,UniversityofGroningen,

Nijenborgh4,9747AGGroningen,TheNetherlands

Relativisticcoupledclusterisconsideredoneofthemostpowerfulmethodsforaccuratecalculationsofpropertiesofheavyelements.Twovariantsof thismethodareusuallyused. The first variant, the single reference coupled cluster approach (SRCCSD(T)) issuitable for calculations of ground state properties in systems which can be welldescribedby a singledeterminant.This approach canbeused toobtain, for example,ionization potentials and electron affinities. The second variant is themultireferenceFock space coupled cluster method (FSCC), which is particularly useful for highaccuracycalculationsofexcitationspectra.Thetalkwillprovideabriefintroductiontothetwovariantsoftherelativisticcoupledclusterapproach.Themainfocuswillbe,however,ontherecentsuccessfulapplicationsofthesemethodstovariousatomicpropertiesofheavyandsuperheavyelements.

Page 6: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

Coatingpolyaromaticswithhelium:fromclassicaltoquantum...andback

F.CalvoCNRSandUniversityofGrenoble-Alpes,France

Heliumdropletsprovideextremelycoldtemperaturesandweakinteractionswithdopantmolecules,enablingtheirhigh-resolutionspectroscopy.Theyarealsostronglyquantumandinthecaseof4Hepronetosuperfluidity.However,wheninteractionsarestronger,asinthecaseofatomicionsboundbypolarizationforces,superfluidityissuppressedandthefirstsolvationshellsbecomelocalized.Inthiscontributionweexaminethecaseoflargearomaticdopantssuchasfullerenesorpolycyclicaromatichydrocarbons,andshowhowtheinterplaybetweenthemoderatelystrongdispersioninteractionsandtheprecisenumberofheliumatomsproducesintriguingandpossiblyanisotropicsolvationpatterns.Inparticular,thelesserdelocalizationnearthegraphiticplanesallowsmetastabledimerswithanearlyclassicalheliummonolayersandwichedbetweenthemolecules.

Page 7: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

Topological evolution stable-nodes in a growing 5-Nanocone

O.Ori1ActiniumChemicalResearch,Rome,Italy

2LaboratoryofComputationalandStructuralPhysical-ChemistryforNanosciencesandQSAR,Biology-Chemistry

Department,WestUniversityofTimisoara,Timisoara,Romania In this talk a pure topological approach provides a detailed descriptions of a 5-nanocone, e.g the basic unit for Ih Cn fullerenes, during its infinite growth around the pivotal pentagon. By adding an increasing number of concentric circles made only with hexagons, typical polynomial rules for the main topological indices related to the Wiener index W(N) are derived. We also show how a peculiar migration effect affecting the vertices giving minimum contribution to W; these vertices migrate as the structure grows, drifting in the lattice along typical paths, proposing the tendency of the central pentagon area to become (topologically) chemically reactive. Moreover, topological computation not only indicate that the stable region of the lattice migrates with the size of the nanocone, but also that for some magic sizes the structure reaches peculiarly stable configurations. Present results evidence the descriptive power of topological modeling methods in fullerenic structures. Computations are made in both lattices, the dual and the direct one.

Page 8: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

PlayingDicetoMeltClustersandExtendedSystems

E.PahlCentreforTheoreticalChemistryandPhysics,

InstituteforNaturalandMathematicalSciences,MasseyUniversityAuckland

Whyismercury,Hg,liquidatroomtemperature?Whydoraregasesalwayscrystalizeinface-centredcubic(fcc)structuresatambientconditionsandnotintheenergeticallyverysimilarhexagonalclosedpackedstructure;whynotinarandomclosed(Barlow)packing?Howdoesultra-highpressureinfluencethephasetransitions?Canconceptsofstatisticalphysics,derivedforaverylargenumberofparticles,stillbeappliedtothedescriptionofclusterswithonlyafewatoms?Isanextrapolationofclusterresultstothebulkbehaviourpossible?Simple,fundamentalquestionsliketheseprovidethemotivationandguidanceofallworkIhavedonetogetherwithPeterinthelast10yearssinceIjoinedMassey.Here,Iwillconcentrateonourmeltingworkonmercuryandtheraregases:BasedonveryaccurateinteractionpotentialsfortheN-atomicsystems,MonteCarlosimulationshaveproventobeverysuccessfulinlocatingthemeltingtransitionforfiniteaswellasextendedsystems.Researchhighlightsasdepictedinthefiguresbeloware:1)Confirmationthatindeedrelativisticeffects(inconjunctionwithcomplicatedmany-bodyeffects)causetheexceptionallylowmeltingtemperatureofmercury,seeFig.1.2)AccurateabinitiosimulationdataofthemeltingofArgonuptopressuresof100GPa,1milliontimesatmosphericpressure,reachorevensurpassexperimentalaccuracy,seeFig.2.Figure1:IncludingrelativisticeffectsintothemeltingsimulationofHglowersthetransitiontemperaturebymorethan100degreesmakingHgliquidatroomtemperature(F.Calvo,E.Pahl,M.Wormit,P.Schwerdt-feger,Angew.Chem.Int.Ed.,52,7583(2013)).

Figure2:High-Pressuremeltingsimulationresultscomparedwithexperimentaldata(J.Wiebke,E.Pahl,P.Schwerdtfeger,Angew.Chem.Int.Ed.52(2013)).

0 100 200 300 400 500Temperature (K)

0

2

4

6

8

He

at

ca

pa

city C

p (

kB/a

tom

)

relativistic

non-relativistic

no spin-orbit

105 K!

!

Page 9: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

HowdoMetalOxidesActivateMethane?AMechanisticExercise1)

H.SCHWARZandM.SchlangenInstitutfürChemiederTechnischenUniversitätBerlinStraßedes17.Juni135,10623Berlin

[email protected]

Hydrogen-atomtransfer(HAT)constitutesakeyprocessinabroadrangeofchemicaltransformationsasitcoversheterogeneous,homogeneous,andenzymaticreactions.Whileopen-shellmetaloxospecies[MO]•arenolongerregardedasbeinginvolvedintheheterogeneouslycatalyzedoxidativecouplingofmethane(2CH4+<O>→C2H6+H2O),thesereagentsareratherversatileinbringingabout(gas-phase)hydrogen-atomtransfer,evenfrommethaneatambientconditions.Inthismini-review,variousmechanisticscenarioswillbepresented,anditwillbedemonstratedhowtheseareaffectedbythecompositionofthemetal-oxideclusterions.Exampleswillbediscussed,how‘doping’theclusterspermitsthecontrolofthechargeandspinsituationattheactivesiteand,thus,thecourseofthereaction.Also,theinterplaybetweensupposedlyinertsupportmaterialandtheactivesite–theso-called‘aristocraticatoms’–ofthegas-phasecatalystwillbeaddressed.Finally,gas-phaseHATfrommethanewillbeanalyzedinthebroadercontextofthermalactivationofinertC−Hbondsbymetal-oxospecies.1)Forrecentreviews,see:(a)N.Dietl,M.Schlangen,H.Schwarz,Angew.Chem.Int.Ed.2012,51,5544;(b)H.Schwarz,Chem.Phys.Lett.2015,629,91;(c)H.Schwarz,Angew.Chem.Int.Ed.2015,54,10090.

Page 10: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

SearchforlocalLorentzinvarianceviolationinatoms

V.DzubaSchoolofPhysics,UniversityofNewSouthWales,Sydney,NewSouthWales2052,

Australia

Page 11: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

Quasi-relativisticbehaviourofelectronsinsolids

U.ZuelickeSchoolofChemicalandPhysicalSciences,VictoriaUniversityofWellington,POBox600,

Wellington614,NewZealand

Page 12: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

TheShapesofFullerenes

J.AveryNielsBohrInstitute,UniversityofCopenhagen,Blegdamsvej17,BuildingC,2100

Copenhagen,DenmarkFullerenesarecarbonmoleculesthatformpolyhedralcageswithsurfacessimilartographenesheets,andwhosebondstructuresareexactlythoseplanarcubicgraphsthathaveonlypentagonandhexagonfaces.Theirgeometricalpropertiesmakesomefullerenesincrediblystrong,whilethe12-pentagonruleallowsopeningthehollowshellbychangingasinglepentagontoahexagon.Thismakestheminterestingasdeliverysystems,reflectedbytheiroccurrenceinnatureinotherformsinadditiontocarbonstructures.Forexample,anumberofviruscapsids,whichprotectanddelivergeneticmaterial,arefullereneanalogs.Manychemicalandphysicalpropertiesoffullerenesareuniquelydeterminedbytheirbondgraphs,andcanbeapproximatedveryrapidlydirectlyfromthegraph.Thisisimportantwhenwewishtosearchthroughmillionsoffullereneisomerstoselectafewaccordingtodesiredproperties,suchasstability,shapes,malleability,electricalproperties,etc.Inthistalk,Iwilldescribeamethodthatderivesonesuchproperty,thethree-dimensionalshapeofafullerene,fromitsgraphbywayofitsinducedRiemanniansurfacemetric,atspeedsthatallowsautomaticstudyofmillionsoffullereneisomers.Themethodisinanexperimentalstage,buthasshownpromisingpreliminaryresults.

Page 13: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

ComplexesofAu(n)clusterswithclosedshellandopenshellligandsupto„golden“

analoguesofhydrocarbons

M.Urban1.2,T.Rajský1,M.Blaško1,A.Antušek1,L.F.Pašteka1,31ComeniusUniversity,FacultyofNaturalSciences,DepartmentofPhysicaland

TheoreticalChemistry,84215Bratislava,Slovakia2SlovakUniversityofTechnologyinBratislava,FacultyofMaterialsScienceandTechnology,AdvancedTechnologiesResearchInstitute,91724Trnava,Slovakia

3MasseyUniversityAuckland,NZIAS,CTCP,Auckland0632,NewZealand

Wehaveshowninourpreviouspaper[1]thattheinteractionenergybetweenthegoldatomandalone-pairligandismuchhigherthanwithCuandAgthankstolargerelativisticenhancementoftheelectronaffinity(EA)ofAu.Thepatternofinteractionenergies(ΔE)inAu-Lcomplexesisalsolinkedwithionizationpotentials(IPs)ofligands.StronginteractionofAuwithPcontainingligandsisattributedtotheirlowerIPandthelonepair→metalelectrondonationaccompaniedwiththeback-donationcharacteristicforPcontainingligands.SmallAunclustersexhibitoscillatorypatternofEA’s[2].InlinewiththisweconfirmedthatinteractionenergiesinoddAunLclusters(n=1,11)arealsooscillatoryandfollowelectronaffinitiesofAunclustersconfirmingthesamebondingmechanismasitholdsforAu1-Lcomplexes.ThemechanismofinteractionsofevenAunclusters(closedshells)withligandsisdifferent[3].Thisisconsistentwithaviewthatpropertiesofsmallnanoclustersaresensitivetothenumberandthestructureofatomsinacluster.InrelationtoSelfAssembledMonolayers,weanalysedinteractionsofsmallAunclusterswithSCH3andamodelcarboncontainingsystem,theCH2radical,indifferentspinstates.Whileinteractionwithadoublyoccupiedlone-pairofSCH3(leadingtoatripletAu-SCH3)issimilaraswithclosedshellligands,thesingletAu-SCH3complexisboundbyastrongcovalentbond.ThesameholdsforSCH3interactingwithsmallAuclusters.EvenstrongerbondsexhibitAun-CH2complexes.TheAu2-CH2complexisa„golden“analogueofthemethanemolecule.Similarly,thereexistsalsoa„golden“analogueofethylene.Thisleadsustotheideaofcreatingotheranalogs,like„golden“polyethylene,polyvinylbromineandpossiblyotherpolymers.

Figure1:Computationalsimulationofa„golden“polyacethylene

[1]L.F.Pašteka,T.RajskýandM.Urban,J.Phys.Chem.A117,(2013)4472.[2]B.AssadollahzadechandP.Schwerdfeger,J.Chem.Phys.131(2009)064306.[3]D.MollenhauerandN.Gaston,J.Comp.Chem.35(2014)984.

Page 14: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

NewChemistryofCoordinatedNO:HowUsefulistheOftToutedIsolobal

RelationshipofNO+andCO?

S.BohleDepartmentofChemistryandCenterforSelfAssembledChemicalStructures,McGill

University,801SherbrookeStreetWest,Montreal,QuebecH3A2K6,Canada

Thediscoveryofnitricoxide’scriticalbiochemistrychallengedmanyofournotionsofitsreactivityandchemistry.NO’sbiologicalreceptorsarefrequentlymetalloproteins,andthemetal’saffinityandbondingtoNOrepresentacrossofconventionalorganometallicandbioinorganicmodels.ButperhapsthedeeperproblemisrelatedtoaideacentraltoteachingLigandFieldandTransitionMetalMolecularOrbitaltheory:COandNO+areisolobalandthereforebythissimplemodelshouldhavesimilarchemistry.ButwhydoesthisfrontierorbitalapproachfailtodescribemanyofthekeyaspectsofNO’sremarkablecoordinationchemistry.Inthispresentationsomeofthesefailingswillbeoutlined,andtwoexamplesofrecentmetallonitrosylchemistrywheretheoreticalinsightisprovinginvaluableindeterminingkeycatalyticandbiochemicalpathwayswillbepresented.TheanswertoSchwerdtfegerianquestionof,“aretherecalculationsonthistheme?”nowbecomeshowdowegetthemostfromthecalculationswehave?

Page 15: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

LinkbetweendarkmatterandvariationofthefundamentalconstantsofNatureleadstoamajorbreakthroughinthesensitivityofdarkmattersearches

V.Flambaum

SchoolofPhysics,UniversityofNewSouthWales,Sydney,NewSouthWales2052,Australia

Astrophysicalobservationsindicatethat85%ofthemattercontentintheUniverseisduetodarkmatter,theidentityandpropertiesofwhichremainamystery.Traditionalsearchesforthescatteringofdarkmatterparticlesoffnucleihavenotyetproducedastrongpositiveresult.Thechallengewiththesetraditionalsearchesisthattheylookforeffectsthatarefourthpowerinaverysmallinteractionconstant.Weproposetosearchforlowmassdarkmatterthatformcoherentlyoscillatingclassicalfieldsandtopologicaldefects,viaeffectsthatarefirstpowerintheinteractionconstant[1-6].Wehaveshown[1]thatdarkmattercanproduceacosmologicalevolutionofthefundamentalconstantsofNature.Thefundamentalconstantsgovernthestrengthofthefundamentalforces(includingelectromagnetism),aswellasthemassesoftheparticlesthatconstitutetheordinarymatterthatweseearoundus.VariationsinthesephysicalconstantsleavecharacteristicfingerprintsonphysicalprocessesthattakeplacefromasearlyasasecondafterthebirthoftheUniverseuntilthepresentday.BystudyingtheeffectsofdarkmatterontheprimordialabundanceofheliumproducedinthefirstfewminutesoftheUniverseandonatomicsystemsinthelaboratory,wehavederivedlimitsonthequadraticinteractionsofdarkmatterwiththephoton,electronandquarks,whichimproveonexistingconstraintsbyupto15ordersofmagnitude,aswellasthefirsteverlimitsontheinteractionsofdarkmatterwiththeWandZbosonsthatmediatetheweakinteractions.Thevastlyimprovedsensitivitytodarkmatterthroughitseffectsonthefundamentalconstantsopensexcitingnewpathsintheglobalhuntfordarkmatter.Othereffectsofdarkmatterincludeoscillatingspin-precessionandoscillatingparityandtimereversalviolatingeffects[2-4].Furtherprogressmaybeachievedwithlaserinterferometryexperiments[5]andpulsartiming[6].[1]CandarkmatterinducecosmologicalevolutionofthefundamentalconstantsofNature?Y.V.StadnikandV.V.Flambaum.Phys.Rev.Lett.2015.[2]Axion-inducedeffectsinatoms,moleculesandnuclei:Paritynonconservation,anapolemoments,electricdipolemoments,andspin-gravityandspin-axionmomentumcouplings.Y.V.StadnikandV.V.Flambaum.Phys.Rev.D89,043522(2014).[3]LimitingP-oddInteractionsofCosmicFieldswithElectrons,ProtonsandNeutrons.B.M.Roberts,Y.V.Stadnik,V.A.Dzuba,V.V.Flambaum,N.LeeferandD.Budker.Phys.Rev.Lett.113,081601(2014).[4]Parity-violatinginteractionsofcosmicfieldswithatoms,moleculesandnuclei:Conceptsandcalculationsforlaboratorysearchesandextractinglimits.B.M.Roberts,Y.V.Stadnik,V.A.Dzuba,V.V.Flambaum,N.LeeferandD.Budker.Phys.Rev.D90,096005(2014).[5]SearchingforDarkMatterandVariationofFundamentalConstantswithLaserandMaserInterferometry.Y.V.StadnikandV.V.Flambaum.Phys.Rev.Lett.114,161301(2015).[6]SearchingforTopologicalDefectDarkMatterviaNongravitationalSignatures.Y.V.StadnikandV.V.Flambaum.Phys.Rev.Lett.113,151301(2014).

Page 16: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

Lightions/heavyions-meltingandsuperconductivity

JeffTallonRobinsonResearchInstitute,VictoriaUniversityofWellington,P.O.Box33436,Lower

Hutt5046,NewZealandFollowingPeterSchwertfeger’slongstandinginterestinheavyionsthistalkcontrastslightionsandheavyionsinmeltingandsuperconductivity.Forexample,thethree-decades-longfocuson2Dlayeredcupratesastheparadigmforhightransitiontemperaturesuperconductorsseemstoinsistonthepresenceofhighlypolarisableheavyions.Ontheotherhandtherecentdiscoveryofsuperconductivityat203KincompressedH2Sshiftsattentionbacktoverylightionsand3Dsystems.Isthereperhapssomewayofcombiningtheseextremestobettereffectstill?

Page 17: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

Water–notyoureverydaytriatomicmolecule

R.J.SadusCentreforMolecularSimulation,SwinburneUniversityofTechnology,POBox218,

Hawthorn3122,VIC,AustraliaWater isarguablyoneof thebest-knownmoleculesonEarth[1]. It iscertainlyoneofthemost important,playinganessential role in supporting life.Wequenchour thirstwithit,growourcropswithit,batheinit,skionitandunfoldumbrellastoprotectusfromit.It’ssimple.Ifyoustopalaypersoninthestreet,thereisaveryhighlikelihoodthat they will know its chemical formula (H2O), most will be able to identify itsconstituent atoms (hydrogen and oxygen) and some will also recall its triangularstructure from their school days. An educated layperson might also recall the termhydrogenbondingassociatedwithwater.Inviewthisfamiliarity,weshouldbeabletopredictitspropertieswithoutdifficultybutwecan’t.It’scomplicated.Indeed,predictingitpropertieshasbeenidentified[2]asoneofthegreatchallengesinscience.The theoretical treatmentofwaterhas advanced significantly since thepre-computerdays thatwere reliant literallyon “ball andstick”modelling [3].Themain theoreticaladvanceshavecomecourtesyofmolecularsimulationtechniques[4]thatmakeuseofsupercomputing to directly calculate the forces and energies of a givenwatermodel.Despitethesecomputationaladvances,andindeedtheapparentmolecularsimplicityofwater,anaccuratemodelhasprovedelusive.Ithasbeenestimated[5]thatthereareatleast 80 water models, some more commonly used than others. Typically a modeldesigned specifically for one property such as diffusion, yields inadequate agreementforanotherproperty,suchphasecoexistence.Overcomingthissituation is imperative,because accurately modelling water impacts on our ability to correctly model largesystems, such as biological entities. This work surveys progress in this field andhighlights the importance of an often-neglected aspect of modelling water, namelycorrectlyaccountingfortheeffectsofpolarization[6].[1] P.Ball,Chem.Rev.108,74(2008).[2] D.KennedyandC.Norman,Science309,75(2005).[3] J.D.BernalandR.H.Fowler,J.Chem.Phys.1,515(1933).[4] R. J. Sadus, Molecular Simulation of Fluids: Theory, Algorithms and Object-

Orientation,Elsevier,Amsterdam,1999.[5] I.ShvabandR.J.Sadus,FluidPhaseEquil.(2015)

http://dx.doi.org/10.1016/j.fluid.2015.07.040.[6] I. Shvab and R. J. Sadus, Phys. Rev. E. 92, 012124 (2015).

Page 18: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

Automaticoptimizationoftransitionstructuresfrommolecule-specificempiricalforce-fields

MatthiasLeina,b)andKimberleyJ.Savilla)

a)SchoolofChemicalandPhyscialSciences,VictoriaUniversityofWellington,Wellington,NewZealand

b)NewZealandInstituteforAdvancedStudy,CentreforTheoreticalChemistryandPhysics,MasseyUniversity,Auckland,NewZealand

Whiletheempiricalforce-fieldsthatareemployedinmolecularmechanicscalculationsprovideaconvenientwayforthefastcomputationofpotentialenergysurfacesoflargemolecules,theirrelativecomputationalefficiencyisoffsetbytheirrelativelylowaccuracyforanyparticularmolecularsystem.Thisisinmostlyduetothecombinationoftheneglectofthequantumnatureofmolecularspeciesincombinationwiththenecessitytoparameterizeforce-fieldstoshowanevenperformanceacrossawiderangeossystems.Itispossiblehowever,toconstructmolecule-specificforce-fieldsthatdrawtheoreticalparametersdirectlyfromhighlyaccurateQuantumChemicalcalculationsusingtheQuantumMechanicalDerivedForceField(QMDFF)approach[1].Thisallowsthefastcalculationofaccuratepotentialenergysurfaceswithintherealmofmolecularmechanics.WeproposeanewmethodthatcombinesGrimme’sQMDFFapproachwithJensen’sSEAMprocedure[2-4].Thatoptimizestransitionstatestructuresontheseamwherethepotentialenergysurfacesofreactantsandproductsintersect.Tothisend,wehavegeneralizedGrimme’sforce-fieldandestablishhowthecombinationofbothmethodscanbeusedtogeneratecandidatetransitionstatestructuresforsubsequentoptimisationbyconventionalquantumchemicalcalculations.Wedemonstratetheperformanceandgeneralapplicabilityofourmethodoverawiderangeofsystems.[1]Grimme,S.J.Chem.TheoryComput.2014,10(10),4497-4514.[2]Jensen,F.J.Comput.Chem.1994,15(11),1199-1216.[3]Olsen,P.T.;Jensen,F.J.Chem.Phys.2003,118(8),3523-3531.[4]Jensen,F.J.Chem.Phys.2003,119(17),8804-8808.

Page 19: A celebration of Peter Schwerdtfeger’s 60th Birthdayctcp.massey.ac.nz/publicity/ProgrammeProfPS60thbirthday.pdfThe Shapes of Fullerenes J. Avery Niels Bohr Institute, University

Mössbauer spectroscopy on Fe, Ru and Ir-Sn cluster compounds – Some theory and experiment

T.SöhnelSchoolofChemicalSciences,TheUniversityofAuckland,PrivateBag92019,Auckland,

NewZealand

Mixedtin-transitionmetalclustercompoundsformnovelnano-scaleclusterswithawidevarietyofdifferentcombinationsofmetalsandresultingarchitectureswhicharesizetunable.ThecentralandmoststrikingstructuralfeatureofallthesestannatesistheformationSn6-octahedra,whicharefilledwiththedifferenttransitionmetals.InthispresentationsomeFe,RuandIrcontainingexampleswillbediscussedinmoredetail.TheFebasedclustersFe4-xMnxSi2Sn7O16providesanovelsituationinoxidecompounds.Itcanbedescribedasacompositeofintermetallic(FeSn6)clustersand(Fe/MnO6)/(SnO6)oxidelayerswithintheonestructure.SiO4tetrahedraseparatetheselayerswhichleadstoelectronicandmagneticisolationoftherepeatedlayersbyabout7Åresultinginanearlyperfectly2Doxidesystemcomparabletoaonelayerthickoxide“thinfilm”.57Fe-MössbauerspectraseemtoconfirmaclearpreferenceofMnsittingintheoxidelayersandFeintheclusterlayers(Fig.1).In RuSn6[FeO4]O4 the RuSn6 octahedra are isolated from each other in contrast to most of the other compounds in this group where a condensation via common corners and edges can be found. The structure of RuSn6[FeO4]O4 is cubic and the isolated RuSn6- octahedra are connected via oxygen atoms and FeO4 tetrahedra. For RuSn6[FeO4]O4 a tetragonal distortion which should be expected for the d6 ion Fe2+ centering the FeO4 tetrahedra could not be observed. This can be explained with a dynamic Jahn-Teller distortion. Measurements of magnetic susceptibility confirmed the spin only behaviour of Fe2+ from room temperature until 56 K. Below 56 K spin - orbit coupling takes place. At the same time a distortion of the local coordination of the Fe2+ atoms seems to occur as Mössbauer measurements show.

In Ir3Sn8O4, the oxygen poorest of all compounds in this group of clusters, IrSn6 octahedra are partly side-linked in contrast to most of the other compounds in this group. This compound shows an incommensurately modulated structure due to Ir-Ir interactions within the condensed IrSn6 octahedra. 193Ir- and 119Sn-Mössbauer spectra seem to agree with this interpretation. This paper gives an overview about the preparation, crystallographic and Mössbauer spectroscopic

characterization of this new group of cluster compounds.

Figure 1: Crystal structure (left) and 57Fe- Mössbauer spectra of FeFe3-xMnxSi2Sn7O16.