A broadband detection algorithm for LIGO-Virgo and KAGRA ...mvputten.org/DOC1/talk-MG14.pdf ·...

29
A broadband detection algorithm for LIGO-Virgo and KAGRA searches of long gravitational wave bursts in energetic core-collapse supernovae Maurice H.P.M. van Putten, Amir Levinson, Filippo Frontera, Cristiano Guidorzi, Massimo Della Valle, Lorenzo Amati MG14 July 2015 1

Transcript of A broadband detection algorithm for LIGO-Virgo and KAGRA ...mvputten.org/DOC1/talk-MG14.pdf ·...

A broadband detection algorithm for LIGO-Virgo and KAGRA searches of long gravitational wave

bursts in energetic core-collapse supernovae

Maurice H.P.M. van Putten, Amir Levinson, Filippo Frontera, Cristiano Guidorzi, Massimo Della Valle, Lorenzo Amati

MG14 July 2015

1

Outline

Gravitational waves

Search algorithm for broadband long-duration GWBs from nearby CC-SNe

2

Lessons from Swift, BeppoSAX, BATSE:

GRB-SNe from spin down of near-extremal black holes

(c)2012 van Putten 3

Dynamical curvature

Rotating tidal field

ω = 2Ωorbit

Ωorbit ≅Ma3

a

h = h0 + h1(t) =MD

+ h1(t)

Dimensionless strain

D

Gravitational waves

GR: a coupled elliptic-hyperbolic system of equations

Newton’s law embodied by elliptic part GW waves embodied by hyperbolic part

Gab(GW) = rotating tidal fields

http://carina.astro.cf.ac.uk/groups/relativity/research/part4.html

(in SO(3,1) four-covariant form, van Putten & Eardley 1996)

4

Gentle sources...

PSR 1913+16

P = 7.75 hre = 0.617F(e) = 11.8LGW = 0.2% LSolar

Hulse-Taylor 1974Nobel Prize 1993

Inspiral rate 1 cm/day

5

(c)2012 van Putten(c)2014 van Putten

GRB 980425/SN1998bw SN1987A Type II

Radio-loud, aspherical

Ek ≅ 2 ×1051 erg Mej / 2M( )

vej ≅ 0.2 cHoeflich et al. 1999Wieringa et al. 1999

Radio-loud, aspherical, relativistic radio jets,

BH remnant?

Ek ≅ 1×1051 erg

Turtle et al. 1987Nisenson & Papaliolios 1999

Eν ≅ 1053 erg

Extreme transient events: CC-SNe and LGRBs

6

Bisnovatyi-Kogan, G. S. 1970, Astron. Zh., 47, 813van Putten, Della Valle, Levinson, 2011, A&A, 535, L6

Probably powered by magnetic winds from an angular momentum-rich inner engine

(c)2012 van Putten 7

Swift phenomenology

LGRBs, SGRBs, SGRBEEs, LGRBNs: soft EE satisfy same Amati relation

Van Putten, Lee, Della Valle, Amati & Levinson, 2014, MNRAS, 444, L58

BHs as a common inner engine

(c)2014 van Putten - HUST 8

Red: 1.26 photons/0.5 ms bin: non-trivial autocorrelation fnWhite: 0.59 photons/0.5 ms bin: trivial autocorrelation fn

BeppoSAX sample of LGRBs at 2 kHz

van Putten, Guidorzi & Frontera, 2014, ApJ, 786, 146

(c)2012 van Putten 9

BeppoSAX phenomenology

Smooth extension of Kolmogorov spectrum

Van Putten, Guidorzi & Frontera, 2014, ApJ, 786, 146

no evidence for proto-PSR

Matched filtering analysis of 2 kHz light curves (1.26 photons/0.5ms bin)

Beloborodov, A. M., Stern, B. E., & Svensson, R. 1998, ApJL, 508, L25Beloborodov, A. M., Stern, B. E., & Svensson, R. 2000, ApJ, 535, 158

(c)2012 van Putten 10

BATSE Catalog of LGRBs

van Putten, 2012, PTP, 127, 331

(c)2012 van Putten 11

Spin-down in BATSE light curves of LGRBS

Matched filtering analysis against model of BH spin down against torus at ISCO

−1 0 1 2 30

0.2

0.4

0.6

0.8

1

2 s < T90 < 20 s

coun

t rat

e (a

.u.)

nLCBHS

−1 0 1 2 3−0.5

0

0.5

deviation± 3m

−1 0 1 2 30

0.2

0.4

0.6

0.8

1

T90 > 20 s

coun

t rat

e (a

.u.)

nLCBHS

−1 0 1 2 3−0.5

0

0.5

deviation± 3m

van Putten & Gupta, 2009, MNRAS, 394, 2238van Putten, 2012, Prog. Theor. Phys., 127, 331

LGRBs from near-extremal BHs

van Putten, 1999, Science, 284, 115van Putten & Levinson, 2002, Science, 295, 1874

BH-torus connection

12

Lwi = 4

3Lwc T

τ⎛⎝⎜

⎞⎠⎟

Enhanced luminosity from intermittency

van Putten, 2015, MNRAS, 447, L11

e.g. with random reversals of the orientation of magnetic fields in the inner engine

Intermittent luminosity >> continuous luminosity:

Intermittent black hole-torus magnetosphere

(c)2012 van Putten 13

Intermittent inner engines

y!axi

s

PRESSURE

y!axi

sy!

axi

s

z!axis

y!axi

s

MAGNETIC FIELD STRENGTH

z!axis

van Putten, 2015, MNRAS, 447, L11

LGRB from intermittent outflows

Magnetically striped long-lived relativistic MHD ejecta

van Putten, 2015, MNRAS, 447, L11

14

velocity density

hydrostatic pressure azimuthal magnetic field

“Double shot” experiment:

15

Formation of rapidly rotating BHs

Surge in mass and angular momentumEnd point will be near-extremal close to the Thorne limit

Bardeen accretion:

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

a/M

M1

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

M [Solar]

a/M

0 2 4 6 8 100

500

1000

1500

2000

2500

3000

M [Solar]

f ISC

O [H

z]

4 6 8 105

10

15

20

25

r ISC

O

M [Solar]

M1ISCOM1H

M = e mJ = j m

⎧⎨⎪

⎩⎪

van Putten, 2015, ApJ, in press

16

Modified Bardeen accretion

M = e m − Lj

J = j m − 2Lj

ΩH

⎨⎪⎪

⎩⎪⎪

Hyper-accretion with outflows

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.05

0.1

0.15

0.2

0.25

a/M

accr

etio

n ef

ficie

ncy

1ISCO=const.a/M=const. 1H=const.

Surge continues unless efficiency is anomalously highEnd point is still a rapidly rotating black hole

van Putten, 2015, ApJ, in press

Near-extremal black holes as initial conditions to LGRBs

17

Canonical outcome of hyper-accretion

ALMA/ESO

SDP.81

Non-relativistic frame dragging

Relativistic frame dragging

Gravity Probe B: Everitt et al., 2011, PRL. 106, 221101LAGEOS II: Ciufolini, I., & Pavils, E.C., 2004, Nature, 431, 958

van Putten, 2015, MG13, 1799 Er ≅ 6 ×1054 M

10M

⎛⎝⎜

⎞⎠⎟

erg

(c)2012 van Putten 18

Calorimetric ratios from BH spin down

R* ≡

E*Erot

≅ E*(1− 2)M

:

Rj + Rk + RD + RS ≅ 1Jets kinetic energy

accompanying supernova

dissipation inner disk or torus

entropy creation event horizon

(more detailed balance would include finite efficiencies for j,k)

van Putten, 2015, ApJ, in press

(c)2014 van Putten - HUST 19

ω

ωbag

radiation

van Putten, 1999, Science, 284, 115, van Putten, 2001, Phys. Rev. Lett., 84, 091101; van Putten & Levinson, 2002, Science, 295, 1874; van Putten, 2002, ApJ, 575, L71; Bromberg, Levinson, van Putten, 2006, NewA, 11, 619; van Putten, 2012, Prog. Theor. Phys., 127,331van Putten, 2008, ApJ, 684, L91

From forced turbulence,Non-axisymmetric instabilities excited by heating, magnetic pressure

(Dirchlet BC)

(Ingoing radiative BC)

(outgoing radiative BC at infinity))

Magnetic moment in lowest energy state

Black hole in its lowest energy state supports open flux tubes from H to infinity

Near-extremal black holes as initial conditions to LGRBs

(c)2012 van Putten 20

Rj ≡Ej

Erot

≅ 0.2% ε0.16

⎛⎝⎜

⎞⎠⎟−1

Rk ≡ESN

Erot

≅ 0.5%

Effective calorimetric ratios

Spin down against HD matter:

Jet-to-rotational energy: Kinetic energy-to-rotational energy:

RD =O(1), RjD =Rj

RD

<<1 van Putten, 2015, ApJ, in press

(c)2014 van Putten - HUST 21

Probing inner engines by matched filtering

Side step Fourier by TSMF using a bank of chirp templates

van Putten, Guidorzi & Frontera, 2014, ApJ, 786, 146

(c)2012 van Putten 22

Did SN1987A produce a GWB?

40

All ingredients are there !Aspherical explosion and massive MeV burst with no PSR remnant:

angular momentum-rich high density matter around newly formed BH

LGW ~ 1051 erg s−1

?van Putten, 2008, ApJ,684, L91

−40 −30 −20 −10 0 10 20 30 40−20

−10

0

10

20

x axis (a.u.)

y ax

is (a

.u.)

100 101 102 103

100

Fourier index k

sign

al |c

k2 | (a.

u.)

b m

b r1b r2

Levinson, van Putten & Pick, 2015, under review

(c)2012 van Putten

Gravitational-wave Detectors in US, EU and Japanhttp://www.ligo.caltech.edu, http://www.ego-gw.it

(c)2014 van Putten 23

(c)2012 van Putten 24

heff ~MD

⎛⎝⎜

⎞⎠⎟EGW

M⎛⎝⎜

⎞⎠⎟

12~ 10−21

heff(r ) = heff

τT

⎛⎝⎜

⎞⎠⎟

12~ 10−22

Probing CC-SNe by TSMF

Expected sensitivity distance ~ 100 Mpc for Adv LIGO-Virgo (at high laser power)

Chirp detection by TSMF (tau=1 s)van Putten, Tagoshi, Tatsumi, Masa-Katsu & Della Valla,

2011, PRD, 83, 044046

(c)2014 van Putten - HUST 25

0 1 2 3 4 5 6 7 8 9 10x 105

−5

0

5x 10−19

sample index

synt

hetic

stra

in

0 500 1000 1500 2000 2500 3000 3500 4000

10−16

10−15

frequency [Hz]

Four

ier c

oeffi

cien

tFourier versus TSMF

Fourier spectrum

Spectrum extracted by TSMFusing 8.64 million chirp templates

van Putten, 2015, ApJ, in press

(c)2012 van Putten 26

Maximal sensitivity source detection by TSMF

45van Putten, 2015, ApJ, in press

Broadband GW emission from CC-SNe

27

van Putten, Levinson, Frontera, Guidorzi, Amati &

Della Valle

(under review)

(c)2012 van Putten 28

Conclusions and outlook Swift, BeppoSAX, BATSE:

LGRBs from spin down of near-extremal black holes

GWBs expected from energetic CC-SNe forming near-extremal BHs

- High density matter in aspherical SN1987A- SNIc association with normal long GRBs- SNIc event rate of ~100/yr within 100 Mpc

GWBs from SNIc are competitive with mergers if just 1% is successful

We propose

(a) Search for the most nearby CC-SNe by dedicated optical surveys e.g., one every decade in M51, M82 (J.-E. Heo et al., NewA, to appear)

(b) Probe nearby CC-SNe with TSMF using ~10 million chirp templates

Sensitivity range ~100 Mpc for Advanced LIGO-Virgo, KAGRA

(c)2012 van Putten 29van Putten, Della Valle & Levinson, 2011, A&A, 535, L6

Supplementary slide