A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

30
1 Short and Long Range Mission Analysis for a Geared Turbofan with Active Core Technologies A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis Laboratory of Thermal Turbomachines National Technical University of Athens Short and Long Range Mission Analysis for a Geared Turbofan with Active Core Technologies A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Transcript of A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

Page 1: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

1Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Laboratory of Thermal TurbomachinesNational Technical University of Athens

Short and Long Range Mission Analysis for a Geared Turbofan with Active Core

Technologies

A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Page 2: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

2Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

INTRODUCTION

METHODOLOGY

o Engine Performance

o Aircraft Performance

o NOx Emissions

o Noise

RESULTS

o Engine Performance

o Aircraft Performance & NOx Emissions

o Noise

o Sensitivity Analysis

SUMMARY & CONCLUSIONS

Contents

Page 3: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

3Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

ACARE Targets for Year 2020

The engine contribution towards ACARE goals are:

80% NOx emissions reduction relative to CAEP/2 ICAO LTO cycle limits

20% reduction in fuel consumption (and hence CO2emissions) per passenger-kilometre

10 dB noise reduction per certification point compared to a year 2000 in service engine (e.g. CFM56, Trent 700).

Page 4: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

4Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Geared Turbofan with Active Core Technologies (GTAC)

Active Cooling

Air Cooling

Gearbox

Active Surge

Control

Active Clearance Control

FanLPC

LPTHPCHPT

CCH

High BPR → gives higher Propulsive Efficiency, Lower Jet NoiseGear → allow each LP component to run on optimum speed in terms of efficiency, stage loading, stage count and noise

Page 5: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

5Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Geared Turbofan with Active Core Technologies (GTAC)

Active Cooling

Air Cooling

Gearbox

Active Surge

Control

Active Clearance Control

FanLPC

LPTHPCHPT

CCH

Active Systems→ enable engine to be adjusted for optimum performance and safety at component or engine level according to its actual operating conditions or component/engine health status → increases flexibility during the design phase since it is no longer required to base the design on a worst case scenario.

Page 6: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

6Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Geared Turbofan with Active Core Technologies (GTAC)

Active Cooling

Air Cooling

Gearbox

Active Surge

Control

Active Clearance Control

FanLPC

LPTHPCHPT

CCH

Active Systems→ ACAC (Active Cooling Air Cooling) to minimize the air required for HPT cooling at cruise (increased engine efficiency) → ACC (Active Clearance Control) for minimal tip clearance of HPC last stages→ ASC (Active Surge Control) to improve engine operability at part speed by air injection at front HPC stages

Page 7: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

7Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Geared Turbofan with Active Core Technologies (GTAC)

Active Cooling

Air Cooling

Gearbox

Active Surge

Control

Active Clearance Control

FanLPC

LPTHPCHPT

CCH

•The high values of Turbine Entry Temperature and Overall Pressure Ratio of GTAC require low NOx combustion technology.

•For this reason NEWAC is investigating lean low NOx combustion with either a PERM or LDI fuel system, depending on the application (short and long range respectively).

PERM: Partial Evaporation & Rapid Mixing LDI:Lean Direct Injection

Page 8: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

8Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Paper Objectives

In the present work, an integrated approach is followed to determine the fuel consumption, noise and NOxemissions of this novel engine concept for two different flight missions by coupling together different simulation codes.

For a short range mission (1000 km), a 140 kN take-off SLS thrust version of the GTAC engine is used while a 325 kN one is used for a long range mission (5500 km)

The results are compared with corresponding ones for year-2000 in service engines of similar thrust ratings (baseline engines).

Page 9: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

9Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

INTRODUCTION

METHODOLOGY

o Engine Performance

o Aircraft Performance

o NOx Emissions

o Noise

RESULTS

o Engine Performance

o Aircraft Performance & NOx Emissions

o Noise

o Sensitivity Analysis

SUMMARY & CONCLUSIONS

Contents

Page 10: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

10Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Module Interaction Diagram

Engine PerformanceSimulation

Environment

Engine Deck

Aircraft Performance& EmissionsNoise Module

Page 11: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

11Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Engine Performance (PROOSIS)

PROOSISSimulation

Environment

PROOSIS generated executable

deckIt is an object oriented software with an advanced graphical user interface allowing for modular model building

Page 12: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

12Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Aircraft Performance (CAMACM)

• It covers all segments of a modern commercial aircraft’s typical flight

• The engine model is externally supplied as an independent module.

Page 13: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

13Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

NOx Emissions (CAMACM)

5.0

GTAC,3BASE,3

GTAC,3GTAC,3GTAC,3BASE,xGTAC,x )T(P

)T(P)T(EINOEINO ⎥

⎤⎢⎣

⎡⋅=

3451471T8.137.0

34x

3

e267985.30PT0075492.0EINO

−⋅

⋅⎟⎠⎞

⎜⎝⎛⋅⋅=

Eq. 1

( )[ ] 36.03

68.03

32.11853T

x %PPPFARe104.0EINO −Δ⋅⋅⋅⋅=

NOx emissions calculated using the Boeing Fuel Flow Method 2

Since there are no ICAO data for GTAC engines then:

Approach 1: Assume same combustor technology as Baseline engines and a modified P3T3 method:

Approach 2: Use publicly available correlations for new technology combustors such as:

or

Eq. 2

Eq. 3

Page 14: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

14Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Noise (AERONOISE)

Engine Performance &

Engine Geometry Data

In order to compare the noise emitted by the examined engines, the three ICAO noise certification points during the LTO cycle were considered

incorporates publicly available noise prediction methods based on empirical functions and experimental data

Page 15: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

15Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

INTRODUCTION

METHODOLOGY

o Engine Performance

o Aircraft Performance

o NOx Emissions

o Noise

RESULTS

o Engine Performance

o Aircraft Performance & NOx Emissions

o Noise

o Sensitivity Analysis

SUMMARY & CONCLUSIONS

Contents

Page 16: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

16Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

PARAMETER BASESR BASELRAltitude (m) 10668 11500

Mach Number 0.78 0.82 FN (kN) 21.0 47.4

SFC (gr/kN·s) 17.5 17.0 W1 (kg/s) 134 306

BPR 5.2 5.2 OPR 26.6 32.4

PARAMETER BASESR BASELRBPR 5 5 OPR 29 36

W1 (kg/s) 360 920 FN (kN) 120 315

SFC (gr/kN?s) 10.4 10.1

Baseline Engines Performance

Main Cycle Parameters for Baseline Engines

at T/O SLS

Predicted Main Cycle Parameters for Baseline Engines

at Mid-Cruise (ISA, installed)

Publicly available data have been used in order to ensure that the models are representative of in service engines with a technology level of year-2000.

Page 17: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

17Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

8

10

12

14

0 20 40 60 80 100% max Thrust SLS

SFC

(gr/(

kN.s

))

BASESR Engine ModelBASELR Engine Model

SFC-FN variation of Baseline Engines at SLS

Page 18: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

18Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

FAN

LPC

HPC HPT

LPT

CCH

HEX

GBX

ATM

INL

NBP

NCODLP

DHP

DBP DHX

D30

RBP

HPS

LPS

D51

FAN

LPC

HPC HPT

LPT

CCH

HEX

GBX

ATM

INL

NBP

NCODLP

DHP

DBP DHX

D30

RBP

HPS

LPS

D51

GTAC Performance Model & Data

Page 19: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

19Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0% Difference from Specifications

FNSFCOPRW31

Take-off

Top-of-Climb

Mid-Cruise

ICAO SLS 100% FN

ICAO SLS 85% FN

ICAO SLS 30% FN

ICAO SLS 7% FN

Comparison of Model Predictions and NEWAC Specifications for GTACSR

For both SR and LR applications, the agreement between model predicted and specified values is less than 2%.

Page 20: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

20Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Aircraft Performance

Aircraft Characteristics

Main Mission Parameters

Typical aircrafts and missions for short and long range applications are modelled and simulated.

Page 21: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

21Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Overall Mission Results for Baseline Engines

NOx production at cruise is not covered by regulations for emissions

Page 22: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

22Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Comparison of GTAC with BASE Engines

Page 23: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

23Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Variation of SFC and NOx with Mission Time for LR

Page 24: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

24Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

LTO Cycle NOx Emissions

ShortRange

LongRange

Page 25: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

25Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

ICAO-LTO Cycle NOx Emissions Predictions

Page 26: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

26Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Noise Results

Effect of -1 EPNdB per source on total noise

Short Range Long Range

Page 27: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

27Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Fuel Burn and NOx Variation for 1% Increase of Selected Core Design Parameters (GTACSR)

HPT and HPC efficiencies have the larger influence

-2.0% -1.5% -1.0% -0.5% 0.0% 0.5% 1.0% 1.5% 2.0%Exchange rates

NOxFuel Burn

Core Flow

HPC Efficiency

HPT Efficiency

OPR

ACAC Hot Flow

ACAC Effectiveness

Page 28: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

28Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

INTRODUCTION

METHODOLOGY

o Engine Performance

o Aircraft Performance

o NOx Emissions

o Noise

RESULTS

o Engine Performance

o Aircraft Performance & NOx Emissions

o Noise

o Weight

o Sensitivity Analysis

SUMMARY & CONCLUSIONS

Contents

Page 29: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

29Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Summary & Conclusions (I)

An integrated approach is used to assess the potential benefits of the GTAC concept in terms of fuel burned, NOx emissions generated and noise produced, over equivalent thrust engines of Year 2000 technology during typical short and long range aircraft missions.

According to the performance expected by the manufacturer for this engine and the modelling methods and assumptions the following conclusions are drawn:

The GTAC engines burn ~25% less fuel than their corresponding baseline engines for the same mission.

For the same combustor design, the GTAC engines produce more NOx emissions during the whole mission.

Page 30: A. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis ...

30Short and Long Range Mission Analysis for a Geared Turbofan with Active Core TechnologiesA. Alexiou, N. Aretakis, I. Roumeliotis, K. Mathioudakis

Summary & Conclusions (II)

Assuming new technology combustor designs, significant reductions in NOx are achieved at mission and LTO cycle.

The combination of high BPR, low fan speed and fan pressure ratio and smaller core of GTAC engines result in noise reduction at all three noise certification points.

From the above, it appears that the GTAC concept has the potential to meet current targets for reducing fuel consumption, NOx emissions and community noise.

A sensitivity analysis has shown that even further improvements are possible by optimising the most influential engine design parameters.