A 7.5-GS/s 3.8-ENOB 52-mW flash ADC with clock duty ... 22:3 22 On-chip 3 3:2 1234T 2 1/N clk input...

26
A 7.5-GS/s 3.8-ENOB 52-mW flash ADC with clock duty cycle control in 65nm CMOS Hayun Chung 1 , Alexander Rylyakov 2 , Zeynep Toprak Deniz 2 , John Bulzacchelli 2 , Gu-Yeon Wei 1 , and Daniel Friedman 2 1 Harvard University 2 IBM T. J. Watson Research Center

Transcript of A 7.5-GS/s 3.8-ENOB 52-mW flash ADC with clock duty ... 22:3 22 On-chip 3 3:2 1234T 2 1/N clk input...

A 7.5-GS/s 3.8-ENOB 52-mW flash ADC with clock duty cycle control in 65nm CMOS

Hayun Chung1, Alexander Rylyakov2, Zeynep Toprak Deniz2, John Bulzacchelli2,

Gu-Yeon Wei1, and Daniel Friedman2

1Harvard University2IBM T. J. Watson Research Center

Motivation

ReceiverTransmitter

DigitalequalizerADC

outinChannel

• ADC-based backplane receiver– Portability and design reuse– Power/area scalability with process– FFE + DFE– Equalizer immune to PVT variations

Front-end ADC requirements• High input bandwidth• High sampling rate• Low power consumption• Small area• Coarse resolution acceptable

ADC architecture• 6-7.5 GS/s, 4.5 bit flash ADC

4.5 bitoutput

×22Duty cycle ctrl.

R ladder

Ref.select

22

input Two-stage THA

clk

Two-stage THA

CH

AV ≅ 1CH

AV ≅ 1

Ccomp

input outputclk clk_b

1st stage 2nd stage• Separate 1st stage input from heavily

loaded 2nd stage output• High input bandwidth• Low power

Two-stage THA

CH

AV ≅ 1CH

AV ≅ 1

Ccomp

input outputclk clk_b

(a)(b)

(c)

T H

T H

(a)

(b)

(c)

50% duty cycle50 50

Two-stage THA

CH

AV ≅ 1CH

AV ≅ 1

Ccomp

input outputclk clk_b

(a)(b)

(c)

T H

T H

(a)

(b)

(c)

Duty cycle control42 58

Clock duty cycle control• Extend tracking time in 2nd stage• Sampling rate improvement

– Up to 14% (clock duty cycle: 50 58%)– Enables 7.5 GS/s

• Power savings– THA and duty cycle ctrl. block each

consume 8% of the total ADC power

Two-stage THA

1st stage 2nd stage

biasbias

clk clk_b

Two-stage THA

biasbias

clk

clk_b

clk_b

clk clk

• Charge Injection cancellation

Two-stage THA

biasbias

clk

clk_b

clk_b

clk clk

• Cross-coupled capacitors– Reduces glitching

Comparators

bias

inn inprefn refpLatchesand FFs

out

• Use minimum size transistors– Reduces total capacitive load on THA

output– Suffers from large offset (+/- 3 LSB)

Comparator offset correction

• Reference voltage pre-distortion• Comparator reassignment

8:1

0.5

LSB

+/-1

.75

LSB

ref_sel[7:0]in

outref

Comparator offset correction

THA

out

put

THA input

• THA buffer non-linearity correction

Comparator offset correction

THA

out

put

ADC output codeV

ref

THA input

• THA buffer non-linearity correction

Measurements

• Challenges in FFT measurements– Reading out high speed, multi-bit ADC

outputs at once– Synchronizing input and clock

generators with good precision

Measurements: SetupOscilloscope

ADC

22:3

22

On-chip

3

3:2

1 2 3 4 T2

1/N

clk

input

sel sel_man

trigger

• Reconstruct full ADC output by realigning measured data with respect to the trigger signal

5 10 15 20-4-2024

Comparator count

INL

(LSB

)

-4-2024

INL

(LSB

)

Measurements: Offset calib.

• INL: 2.6 LSB (before), 0.38 LSB (after)

Aftercalibration

Beforecalibration

5 10 15 20-4-2024

Comparator count

DN

L (L

SB)

-4-2024

DN

L (L

SB)

Measurements: Offset calib.

• DNL: 3.4 LSB (before), 0.35 LSB (after)

Aftercalibration

Beforecalibration

0 1 2 3 4 5 620

22

24

26

Input frequency (GHz)

SND

R (d

B)

Measurements: SNDR vs. fin

• Measured at 6 GS/s• Two-stage THA enables high input

bandwidth

6 6.5 7 7.5 820

22

24

26

Sampling rate (GS/s)

SND

R (d

B)

w/o duty cycle ctrl.

Measurements: SNDR vs. fsamp

• With Nyquist freq. input• SNDR degrades as sampling rate

increases

6 6.5 7 7.5 820

22

24

26

Sampling rate (GS/s)

SND

R (d

B)

w/o duty cycle ctrl.w/ duty cycle ctrl.

1.3 dB

Measurements: SNDR vs. fsamp

• With Nyquist freq. input• Clock duty cycle control improves

SNDR at high sampling rates (> 7 GS/s)

0 0.5 1 1.5 2 2.5 3 3.5

-60

-30

0

Frequency (GHz)

Am

plitu

de (d

B)

Measurements: FFT

• At 7.5 GS/s with Nyquist freq. input• Duty cycle ctrl. = ON• SNDR = 24.5 dB (3.8 ENOB)• 52 mW power consumption

0.01 0.1 1 10 1000.01

0.1

1

10

100

Input bandwidth (GHz)

FOM

(pJ/

conv

ersi

on)

ISSCCVLSI

Comparison to prior work

This work

×4

• FOM = 0.497 pJ/conv. at 7.5 GS/s

Performance summaryTechnology 65 nm CMOSSupply 1.1 VADC active area 65µm × 162µm = 0.01mm2

INL (before/after calib.) 2.6 LSB/0.38 LSBInput Range 0.8 Vpp (differential)

Sampling rate 7.5 GS/s 6.25 GS/sPower 52 mW 47.5 mWENOB (w/ duty cycle ctrl.) 3.8 3.9FOM 0.497

pJ/conv.0.508 pJ/conv.

Conclusions• A 4.5 bit, 6-7.5 GS/s flash ADC• Low power, high input bandwidth,

high sampling rate THA– Two-stage structure– Clock duty cycle control

• Small comparators with offset calib.• 4X FOM improvement over ADCs

with comparable sampling rates