A 3D thermal simulation tool for integrated devices – Atartjs/atar/atar.pdf ·  ·...

25
A 3D thermal simulation tool for integrated devices – Atar T. Smy, D. Walkey, S.K. Dew Department of Electronics Carleton University Ottawa, Ont., Canada K1S 5B6 Department of Electrical and Computer Engineering University of Alberta, Edmonton, AB, Canada T6G 2G7 Abstract This paper presents a novel 3D thermal simulation tool for semiconductor integrated devices. The simulator is used to automatically generate an accurate 3D physical model of the device to be simulated from layout information. The simulator produces an appropriate mesh of the device based on a rectan- gular block structure. The mesh is automatically created such that a fine mesh is produced around heat generation regions, but a moderate number of blocks are used for the entire device. This paper first confirms that the simulator produces an accurate solution to the non-linear differential equation describing the heat flow. Then model generation from three example technologies (silicon trench, GaAs mesa structures, silicon on insulator) is presented. The potential of the simulator to quickly and easily explore the effect of layout and process variations is illustrated, with the simulation of a two transistor GaAs power cell as a large example. The program incorporates a transient solver based on a transmission line matrix (TLM) implemen- tation using a physical extraction of a resistance and capacitance network. The formulation allows for temperature dependent material parameters and a non-uniform time stepping. An example of a full transient solution of heat flow in a realistic Si trench device is presented. 1

Transcript of A 3D thermal simulation tool for integrated devices – Atartjs/atar/atar.pdf ·  ·...

A 3D thermal simulation tool for integrated devices– Atar

T. Smy, D. Walkey, S.K. Dew�

Departmentof ElectronicsCarletonUniversity

Ottawa,Ont.,CanadaK1S5B6�Departmentof ElectricalandComputerEngineering

Universityof Alberta,Edmonton,AB, CanadaT6G2G7

Abstract

This paperpresentsa novel 3D thermalsimulationtool for semiconductorintegrateddevices. Thesimulatoris usedto automaticallygenerateanaccurate3D physicalmodelof thedevice to besimulatedfrom layout information. Thesimulatorproducesanappropriatemeshof thedevice basedon a rectan-gularblock structure.Themeshis automaticallycreatedsuchthata fine meshis producedaroundheatgenerationregions,but a moderatenumberof blocksareusedfor theentiredevice.

Thispaperfirst confirmsthatthesimulatorproducesanaccuratesolutionto thenon-lineardifferentialequationdescribingthe heatflow. Then model generationfrom threeexampletechnologies(silicontrench,GaAsmesastructures,silicononinsulator)is presented.Thepotentialof thesimulatorto quicklyandeasilyexploretheeffect of layoutandprocessvariationsis illustrated,with thesimulationof a twotransistorGaAspowercell asa largeexample.

Theprogramincorporatesa transientsolver basedon a transmissionline matrix (TLM) implemen-tationusinga physicalextractionof a resistanceandcapacitancenetwork. The formulationallows fortemperaturedependentmaterialparametersand a non-uniformtime stepping. An exampleof a fulltransientsolutionof heatflow in a realisticSi trenchdevice is presented.

1

1 Intr oduction

Thequestfor a moreaccurateunderstandingof thethermalpropertiesof integratedsemiconductordevices

is driven bothby a needfor bettermodelsof thesedevicesfor circuit level simulationandalsoreliability

concerns.Thermalbehaviour of electronicdeviceshasgenerallybeencharacterizedusinga thermalresis-

tance(�����

definedasthe steadystatetemperatureabove ambientdivided by the power dissipatedin the

device)anda thermalcapacitance( � ��� ). A numberof analyticapproachesto thesteadystatedetermination

of�����

have beenpursued[1, 2, 3]. However, all of theseattemptsarelimited in accuracy by a necessar-

ily simplisticapproachto thedevice geometry. Processfactorsandlayoutgeometrystronglyinfluencethe

valueof both�����

and � ��� , particularly in substrateswith poor thermalconductivities suchasGaAsand

InP. Determinationof theseparametersmayneedto includetheeffect of a numberof factors,includingthe

“backend” (metalizationandinterconnectstructures),complex device geometriessuchasmultipleemitters

andthermalcouplingbetweenadjacentdevices. A significantchallengeis theneedto evaluateandmodel

a largevarietyof processtechnologiesvaryingfrom silicon on insulator(SOI) technologiesto high power

III-V technologies.

To illustrate the complexity of the heatflow in an integrateddevice Fig. 1 shows a 2D cross-section

of a genericmesatransistorstructurewith heatspreader. The heatis shown asbeinggeneratedin a well

definedregion at the base/collectorjunction, a reasonableassumptionat moderatecurrentdensities. A

portionof heatflows into thesubstratespreadingin threedimensionsasit flows towardsthebottomof the

substratewhichis auniformtemperatureboundarycondition.Theremainderof theheatenergy flowsupthe

emittermetallization,backdown to thesubstratesurfacethroughthespreaderandthento thebacksideof

thesubstrate.Thisheatflow canbefurthercomplicatedby thepresenceof baseandcollectormetallization

andany flow throughthe insulatinglayerspresentin thebackend. This figure shows all coolingasbeing

dueto conductive pathsto thebacksideof thewafer. Althoughradiativeandconvective coolingoff thefront

of thewafercouldbepresentit is negligible at any reasonabledevice temperatures.

A completetheoreticaldeterminationof�����

requiresthecoupledsolutionof boththesemiconductorde-

vice equationsandtheheatequation[4]. This combinedelectro/thermalproblemis a significantchallenge.

The heatflow from an integrateddevice is characterizedby a numberof complications.Specifically, the

complicationsare:heatspreadingin 3 dimensions,awidevarietyof materialswith greatlydifferingandof-

tentemperaturedependentthermalconductivities,complex geometriesandavarietyof boundaryconditions.

A majorfeatureof theheatproblemis theneedto simulatea very largeregion of thedevice andsubstrate,

andin somecasesthe packagegeometrymay needto be taken into account. The simultaneoussolution

of the3D electro/thermalproblemis thereforedifficult dueto theneedfor very fine meshingof thedevice

equationsat the device junctionsanda needfor a large simulationregion to producean accuratethermal

simulation. However, the thermalpropertiesof the layoutandprocesscanbedeterminedwithout solving

the device equationsif the power generationregion is known a priori. Knowing the power generationas

a function of position the heatequationcanbe solved independentlyto calculatethe device temperature

profile and�����

determined.For a givendevice thegeneralsize,shapeandpositionof theheatgeneration

region is known asafunctionof theoperatingpoint. Thethermalresistancecanthenbecorrectlycalculated

ignoringtheoperatingpointdependenceif it is only minimally sensitive to theexpectedchangesin position

andshapeof theheatgenerationregion dueto the thermal/electricalcoupling. Althoughdeterminationof

2

subtleeffectsrequiresa full electro/thermalapproachbasic.Basicthermalpropertiesof thedevice, layout

andprocesscanbedeterminedby usinganindependentthermalsimulatorwith appropriateassumptions[5].

A numberof numericaltoolsexist for specifyingandsolving3D thermalproblemsof thistype.They gen-

erallyhaveasophisticatedGUI to aid in building the3D model,specifyingmaterialparameters,andsetting

boundaryconditionsandheatgenerationregions.Thetoolsarebasedon finite elementor finite difference

solution“engines”andhave powerful software tools for producingthe discritizationof the 3D geometry

neededfor a solution. A significantdrawbackin theuseof thesetools is the time andexpertiseneededto

build a 3D model. The tools have a steeplearningcurve andeven after masteringthe tool generationof

the 3D modelof a singledevice cantake a significanteffort. Building the modelalsorequiresa detailed

knowledgeof theIC processtechnology. Acquiring theknowledgebaseandobtainingthetimerequiredfor

thebuilding andsimulationof a singledevice geometryis oftenprohibitive for bothdevice engineersand

circuit designers.

The solutionto this problemis a simulatorthat given a technologydescriptionandlayout information

will automaticallygeneratea 3D modelof thedevice, discretizethemodel,andsolve for the temperature

distribution in the device (seeFig. 2). In this paperwe will presenta thermalsimulationtool that usesa

technologydescriptionand layout informationto automaticallygeneratea full 3D model,completewith

discretization,andthensolvesfor the temperaturedistribution. A numberof technologieswill beusedas

illustrative examplesanda comparisonbetweenthetool anda commercialsimulatorwill beusedto verify

theaccuracy of thesolution.

Althoughmany applicationssimply requirethesolutionof thesteadystateproblemandthentheextrac-

tion of aneffective thermalresistance.A numberof problemsrequireafull solutionof thetransientresponse

of thedevice. TLM hasshown itself highly appropriatefor solvingtimedependenttransientheatflow prob-

lemsandis particularlyattractive for multi-materialandnonlinearproblemsasany temperatureor material

dependenceof thethermalparameterscanbelocally accommodated[6]. A particularadvantageof theTLM

methodis theability for timestepto beadjusteddynamicallyduringsimulationto reduceexecutiontime.

2 Atar a 3d thermal simulator

Thephysicsinvolvedin solvingfor theconductive heatflow requiressolvingthefollowing partialdifferen-

tial equation[7]: �

��� ���������� ��� � ������� �����! "�$#�� !� (1)

where��� ��� is thetemperaturedependantthermalconductivity, � thethermalcapacityof thematerial, the

materialdensity, and� �����! "�$# � describestheheatgeneration.Relevantsolutionsto thisproblemaredifficult

to obtaindueto thecomplexitiesoutlinedaboveandthenon-linearnatureof theequationresultingfrom the

temperaturedependenceof � . It is importantto notethatbothSi andGaAsdisplaysignificantdropsin � as

thetemperaturechangesfrom roomtemperatureto 200 % C[8].

To producea numericalsolutionanappropriatelydiscretized3D modelmustbebuilt, boundarycondi-

tionsapplied,a mathematicalmodelextractedandthensolvedusinga non-linearsolutionmethod.Dueto

the requirementof an automaticgenerationof the modelfrom layout informationit wasdecidedthat the

3

modelwould bebuilt first from thechip surfacedown into thesubstrateandthenthebackendinterconnect

structurewouldbebuilt from thechipsurfaceup. Themodelis constructedby first defininga surfacelayer

andthenprojectingthis layereitherdownwardsinto thethesubstrateor upwardsinto thebackend.

2.1 3D Model Creation

A significantchallengein the modelbuilding is the automaticcreationof a modelwith a high densityof

elementsor nodesin theregionsof largeheatflow or temperaturegradients.Thisessentiallymeansa large

numberof small elementsmustbecreatedneartheheatgenerationregionsin thesimulationregion. The

heatgenerationregionsin anintegrateddevicearegenerallyfairly closeto thechipsurfaceandwell defined

by thedevice layout. For examplea verticalsilicon BJT would generateheatat thebase/collectorjunction

in a thin platedefinedessentiallyby theemittergeometry.

The basicphilosophyof the modelbuilding is to createa complex meshgeometryusing rectangular

blocksof varying sizes. The modelwill be createdsuchthat a block andits neighborsform a relatively

simplesetof topologieswhereby eachblockcanhave amaximumof two blocksonany verticalsideanda

maximumof four blockson thetopor bottomof ablock. Fromtheseblocktopologiesanetwork of thermal

resistancesandcapacitanceswill be extractedrepresentingthe thermalequationto be solved. As will be

shown complex meshescanbebuilt usingtheserules. A secondkey part to themodelbuilding is to build

from thechipsurfacedown into thesubstrateandthenup into thebackend.

Thecreationof amodelis shown for asimpleexamplein figures3 and4. Themodelis constructedlayer

by layerstartingwith thesurfacelayer. The surfacelayer is createdby startingwith a very high uniform

densityof blocks(seeFig 3a). Thelayoutinformationis thenusedto allow for theiterative amalgamation

of blocksinto singleblocksfrom groupsof four. This amalgamationis controlledby the positionof the

maskedgesandvariablesassociatedwith eachmaskwhichsetthemaximumblocksizeallowedinsideand

outsidemaskareas.Duringtheiterationgroupsof four blocksarevisitedandsubjectto anumberof teststo

seeif amalgamationis allowed:

1. Theblocksarecheckedto seeif all four initial blocksarethesamesizeandof thesamematerial.

2. The final sizeof the new block to be createdis checked againstthe maximumblock sizeallowed

insideany maskscoveringthearea.

3. Neighboringblocksizesarecheckedto seeif therewill beat mosttwo blockson any onesideof the

new amalgamatedblock.

Theamalgamationof blocksin thesurfacelayerstopswhenall blockshave reachedtheirmaximumsize

asdefinedby themasksanda technologyfile. Thenet resultof themeshingis to producea 3D quadtree

mesh(QTM).

Thetechnologyfile containsinformationon thetwo thetypesof masksallowedandtheimpactof these

maskson the model. Substratemasksaredefinedproviding informationon the materialtype, maximum

blocksizewith in themask,andallowedphysicalconnectionsto backendlayers.An exampleof asubstrate

maskwould be a maskdefiningsubstratecontactsto an emittermetalizationlayer or a maskdefininga

4

oxidetrenchisolationregion. Theothertypeof maskis abackendmask.For backendmasksinformationis

providedon thematerialassociatedwith themask,thethicknessof the layer, maximumblock sizesin the

layerandphysicalconnectionsto otherbackendlayers.A typical backendmaskwould definefor example

analuminum“metal1” layeror a “W plug” interconnect.

Using the informationfrom the technologyfile andthemaskgeometriesthesurfacelayergeneratedin

the model is createdsuchthat very a high densityof blocks is producednearareasthat will definethe

heatgenerationregion. This is donefor exampleby makingthe maximumblock size insidethe emitter

contactmaskto bevery small. This forcesa high densityof nodesat theemitterwith a smoothtransition

to fewer nodesaway from theemitter. A simpleexampleis shown in Fig 3b. As notedabove, during the

amalgamationof the blocksin the surfacelayer the block topographyis restrictedso that on any vertical

sideof ablock themaximumnumberof blocksis two. Thisproducesagradualcontrolledgradientin block

sizeaswemoveaway from theheatgenerationregions.

Oncethe surfacelayer hasbeenformedthe substrateis built by duplicatingthe surfacelayer. As the

substratelayersarecreatedthenumberof blocksin eachlayer is reducedby furtheramalgamatinggroups

of four blocksinto a singleblock. Theamalgamationis controlledby boththe layoutgeometry, theblock

positionandalsotherequirementthatabove or below asingleblock therecanbenomorethanfour blocks.

Theresultof theserequirementsis thatall blockshave a maximumof two blockson eachsideandfour on

the top or bottom. This allows for a significantlyrestrictedsetof block topologies.The thicknessof the

substratelayersis generallyincreasednon-linearlyaswemove down into thesubstrate.Thisallows for the

generationof relatively largeblocksat thebottomof thesubstratewherethermalgradientsaresmall. Fig.

3c andd show two characteristicsubstratelayerscreatedduringtheformationof thesubstrate.This figure

clearlyshows thecoursingof thegrid andtheincreasein thicknessfrom thesurfacelayershown in Fig. 3d.

Thebackendis createdin a mannersimilar to thesubstrateandis shown in Fig. 4. Thesurfacelayer is

duplicatedandlayersextrudedupwards.Theselayersareformedof two materials,for examplemetalanda

dielectric(in thefigurethedielectricblocksareonly shown in outlinefor clarity). Oncethebackendlayers

have beenformed,blockswith zeroconductivity areremovedandaniterative procedureis usedto remove

extra blocksfrom the structureby merging blocksof four into singleblocks. All the blocksforming the

backendhave thesamelimitationsonadjacentblock topologyastheonesin thesubstratewith amaximum

of four blockson topor below andamaximumof two onany verticalside.

2.2 Extraction of the Thermal Network

After the creationof the 3D modela thermalnetwork is extractedconsistingof non-linearresistorsand

capacitors.Eachblock is visitedandusingthetopologyof theconnectionswith adjacentblocksa network

of resistorsto theneighboringnodesis created.Thevalueof eachresistoris calculatedusingthecommon

cross-sectionalarea,thesizeof thetwo blocksandthelocal thermalconductivity. Thethermalcapacitance

of thematerialis usedto calculatethevalueof a capacitorconnectedfrom theblock nodeto ground. As

the materialpropertiesare, in general,temperaturedependantthe resistorandthe capacitorvaluesarea

functionof thenodetemperature.In Fig. 5 theheatflowsfor asingleblockareshown, eachheatflow would

berepresentedby a thermalresistor. Thisblockhasasingleblockabove, four below, oneon thefront, back

andleft sidesandtwo on theright side.Theheatflow associatedwith theheatcapacityof theblock is not

5

shown.

A numberof boundaryconditionscanalsobeplacedon themodel.Regionsof themodelcanbedesig-

natedto beatafixedtemperature,aswouldbeusedfor afixedbacksidewafertemperature.Constantpower

generationcanbe specifiedin volumessuchasthe channelof a MOSFETor the base/collectorjunction

of a BJT. Theboundaryconditionon the verticalsidesof thesimulationregion is somewhatproblematic.

Placinga fixedboundaryconditionon thesesurfaceproducesa dramaticallyincorrectresult,unlessa very

largesimulationregion is usedat theexpenseof very long simulationrun times.A morenaturalboundary

conditionis a zeroflow conditionacrossthesesurfaces.However, the useof this boundaryconditionhas

implications.A zeroflow surfaceimpliesamirroringof all geometryin thesimulationregionatthissurface.

2.3 SteadyStateand Transient Solvers

Oncethethermalmodelhasbeenextractedandtheboundaryconditionssetthenetwork needsto besolved.

Thesimulationtool allows for eithera netlist to beoutputed(allowing for a solutionto befoundusingan

externalcircuit simulatorsuchasspice),or an internalsolver is used. Currentlytwo steadystateinternal

solversareavailable. A direct solver canbe usedwhich first setsup a global sparsearrayandsolvesthe

linear set of equationsrepresentingthe thermalresistornetwork. If the temperaturedependenceof the

thermalconductivity is to beconsideredaniterative techniqueis usedusingSORandtherepeatedsolution

of the linearizedset of equationsusing the direct solver. A secondsolver basedon SOR of the nodal

temperatureequationshasalsobeenimplementedandis particularlyusefulfor largeproblems.Thissolver

implicitly handlesthetemperaturedependenceof thematerialproperties.Oncethesolutionhasbeenfound

themaximumtemperatureis obtainedanda greyscalerepresentationof thetemperaturedistribution canbe

displayed.

A transientsolver hasbeenwritten thatusetheTLM method.This methodis particularlysuitedto the

extractednetwork approachdescribedabove. TLM modelingrepresentsa physicalmodelof heatflow as

a sequenceof voltagepulsestravelling througha matrix network of transmissionlines. By computingthe

voltage(temperature)at the nodesconnectingthe transmissionlines, an explicit, unconditionallystable

solutionto theheatflow equationcanbedescribedby asetof equationsthatareiteratedin astraightforward

manner.

The fundamentalapproachto TLM modelingof the QTM is shown for a 2D casein Fig. 6(a). At the

centerof eachblock is a temperaturenode,anda transmissionline from this nodeto all adjacentnodesis

created.Eachtransmissionline consistsof two impedancesandtwo resistances,oneof eachassociatedwith

eachblock. This is shown in Fig. 6(b) for two nodesdenotedas &(' and &*) . Although the associationof��+ � + with ��, � allows for a numberof choicesin choosingthevaluesof�

and - of eachtransmission

line, a naturalchoiceis to usethe physicalvaluesof thermalresistanceandcapacitanceassociatedwith

nodalconnections.A completedescriptionof theuseof TLM onaQTM will bepresentedin reference[9].

Theprogramis writtenin acombinationof C andtcl/tk. Themainbodyof theprogramanddatastructures

arewritten in C with thevisualizationbeinghandledby a setof tcl/tk routinesexecutedusingwish a tcl/tk

interpreter.

6

3 Simulation results

3.1 Comparisonwith Patran — simpleheatsource

In orderto confirm that the simulatoraccuratelysolved the steadystateheatequationthe simulationtool

wascomparedwith acommercialFEM 3D modelingtool (Patran).A simplecaseof a2 . m x 25 . m x 0.15

. m heatsourcein a rectangularsectionof GaAswastakenasbaseline. For this modeltheheatsourcewas

a100mW distributedevenlyover thegenerationregionandthebacksidetemperaturewasfixedat355K. In

Fig. 7 typical modelsfor bothsimulatorsareshown with a detailsof thehighdensitydiscretizationaround

theheatsourcealsopresented.TheAtar modelshows thecharacteristicgriddingpatternproducedby the

tool andwasautomaticallygenerated.The Patranmodelhasa sophisticatednon-rectangulargrid which

minimizesthenumberof elements,but doeshowever requirea significantamountof time andexpertiseto

build.

In Fig 8 temperaturedistributions are shown for both simulators. To allow for an easydirect com-

parisonof the two simulatorsFig. 9 shows the temperatureplotted along the surfaceand into the sub-

stratefor two identical structuresone built using Atar and the other Patran. Two caseswere compared

one for a constantthermal conductivity (GaAs at 355 K) and the other using a non-linearone ( / �/10 �32 � /14 � � �657�(89�:� /<; �65=��8>�@?

). Two Atar simulationsweredonewith differing meshdensitiesto

determinethesensitivity of the temperaturedistribution to meshing.As canbeseenin thefigure theboth

simulatorsproduceessentiallyidenticaltemperaturedistributions. The Patransimulationconsistedof ap-

proximately10,000finite elements.Thenumberof elementsin theAtar modelswereof theorderof 6,000

and10,000elementsfor thecourseandfine meshmodelsrespectively. TheAtar simulationswerefoundto

matchthePatranresultsmarginally betterfor thefiner meshedmodel,however, furtherrefinementwasnot

foundto beuseful.ThePatransimulationcompletesin approximately30min ona SunUltra 1. Thecourse

andfinemeshedAtar simulationscompletein 15min and45min respectively.

3.2 Example technologies

The primary useof the Atar tool is the quick building andthermalsimulationof integrateddevices in a

wide varietyof IC processes.As anexampleof threesubstantiallydifferenttechnologiesanddevicesFig.

10 shows devicessimulatedin: 1) a high speedGaAsHBT power amptechnology. 2) a trenchisolatedSi

BJT technologyand3) aSOIMOSFETtechnology. For all of thetechnologiesshown only simplebackend

topographiesweredefinedandthethermalconductivity of thebackendoxidewasassumedto bezeroandis

notpresentin themodel.

The GaAstechnologyis a mesaHBT processincorporatinga heatspreadingtechnologywherebythe

emittermetalizationis usedto remove heatfrom the hot emitterstackandsink it into thesemi-insulating

GaAssubstrate.The HBT wasassumedto dissipating100 mW of heatat the base/collectorjunction in

regiondefinedby theemittergeometry.

The main featureof the silicon trenchtechnologyis thepresenceof oxide lined trenchesdeepinto the

substrate.Thesetrenchessubstantiallyrestricttheheatflow in thesubstratedueto their low thermalcon-

ductivity. Thetrenchdevice wasassumedto begenerating10mW of heatat thebase/collectorjunction.

7

TheSOI technologyrequiredthedefinitionof a layeredsubstratein which the top layerwasformedof

oxide. A silicon mesawasthenplacedon theoxidedefiningtheactive areaanda simplebackenddefined.

The heatdissipatedin the device was1mW andwasgeneratedin the channelbetweenthe drain andthe

source.

For boththeSi trenchandSOI technolgiesthebacksidetemperaturewasseta300K.

An assumptionin the useof Atar is that an independentthermalsimulationwill provide useful infor-

mation. As thepositionof theheatgenerationregion is assumeda priori it is necessaryto investigatethe

relative importanceof thesizeandpositionof theregion. As anexampletheeffect of moving theposition

of the heatgenerationregion in the Si trenchdevice away from the surfaceandinto the substratewasin-

vestigated.At low to moderatecurrentdensitiesthebulk of theheatgenerationwill bein thebase/collector

junctionwheretheelectricfield is largest. However asthecurrentdensitiesareraisedtheregion of maxi-

mumelectricfield will enlarge andpushinto thecollectordueto theKirk effect. In Fig. 11 theeffect on

themaximumdevice temperatureof moving a 0.075 . m generationregion deeperinto thecollectorregion

of the device is shown. The temperaturedropsasthegenerationregion movesaway from thedevice and

towardsthebacksideboundary. This is dueto a reductionin thethermalresistancebetweenthegeneration

regionandthebacksideboundarycondition.

It is importantto notethat thevariationin thepositionof thegenerationregion in this datais far more

thanwouldbeexpectedfrom eitherprocessvariationsor from thatdueto changesof theoperatingpointdue

to temperaturevariations.Thereforefrom theseresultswe canconcludethat thepositionandshapeof the

generationregion will have only a smalleffect on themaximumtemperatureof thedevice andfor a given

power level�����

canbedeterminedusinganun-coupledthermalanalysis.

3.3 Processand GeometricalVariations

Theprimaryadvantageof Atar is thatoncea technologyhasbeendefinedit is verystraightforwardto gen-

eratemodelswith differing geometriesor to investigatetheeffect of smallmodificationsof thetechnology.

A largevarietyof device geometriesandprocessvariationscanquickly andefficiently begeneratedusing

thesimulatorin abatchmode.A simpleexampleof this is theoptimizationof theGaAsHBT heatspreader

technology. Thereis anengineeringtradeoff betweenthesizeof theheatspreaderandthepackingdensity

of the devices. The larger the heatspreaderthe coolerthe device will run. However, the increasein the

effectivenessof theheatspreaderdiminishesfor very largespreaderlengthsdueto thefinite conductivity of

theemittermetallization.

Thiseffect is presentedin Fig. 12. Thefirst figureshows aplot of thetemperatureof thesurfacethrough

theheatspreader. Thisplot clearlyshowstherisein temperatureof theGaAssurfaceundertheheatspreader

dueto theheatflow off theemitterdown into thespreader. Also shown in thisfigurearesurfacetemperatures

from anidenticalPatransimulation,aswith thesimplesimulationsabove thetemperaturedistributionsfor

the two simulatorsmatchwell. Thesecondfiguredisplaysthemaximumtemperatureof thedevice under

a numberof configurations.With no metallizationpresentthe device temperatureis 110 degreesabove

the backsidetemperatureof 355 K. If a simplepost is presentthe maximumdropsby 10 degreesdueto

heatspreadingthroughthe emitterpost. The presenceof even a small heatspreaderdropsthe maximum

temperatureby 15 moredegrees. Increasingthe lengthof the heatspreaderincreasesthe drop in device

8

temperature,althoughwith diminishingreturns.In additionto studyingtheeffectof thelayouton theGaAs

HBT thermalresponseprocessvariationssuchmetalandmesathicknessescanalsobeeasilystudiedusing

Atar.

Examplesof variationsfor trenchdevicescanbedoneverysimplyusingAtar. Theprimarycharacteristic

of thetrenchdevice is theeffectivenessof thethermallyisolatingtrenchstructures.Thetrenchesforcethe

heatflow down into the substratereducingthe 3D heatspreadingandincreasing�����

. Moving the trench

away from theheatsourcereducestheeffect of the trenchin restrictingtheheatflow andthe temperature

decreases.A significantrise in temperatureis found whenthe trenchis broughtcloserthan2 . m to the

emitter. A riseof 30%is foundastheseparationis decreasedfrom 2 . m to zero.Conversely, for separations

largerthan5 . m little effect is seen.Increasingthetrenchdepthalsoconstrictstheheatflow andcausesan

increasein thedevice temperature,with analmostlinearincreasefrom 308 % C to 316% C asthetrenchdepth

is increasedfrom zeroto 20 . m.

The device�����

is alsoa function of the emittergeometry. For an initial structurehaving a 0.5 . m x

10 . m emitterchangingthewidth hasonly a small effect (20%)forevena increaseof 6 times. However,

reducingthelengthhasadramaticeffectasthedeviceessentiallychangesfrom aline sourceat longlengths

to asquaresourceasthelengthapproachesthewidth. A 250%increasein�����

is foundfor areductionin the

lengthby a factorof 6. For anSOI structuretherisein thedevice temperatureastheoxidelayerthickness

is increasedis of interest.As would beexpecteda nearlylinearvariationis foundwith a rise in maximum

temperaturefrom 305 % C to 308 % C asthethicknessis increasedfrom 0.10 . m to 0.30 . m.

Figure13shows thesensitivity of a varietyof devicesto heatflow throughthebackendmetalization.To

determinethis sensitivity the emittermetallizationwasextendedanda fixed boundarycondition(300 K)

placedat it’s far end(somewhatsimilar to having a bondpadat theendof theline). Thelengthof theline

to theemitterwasthenvariedfrom 2 to 60 micronsin lengthandthedevice temperaturedetermined.For

theSi deviceslittle effectcanbeseenuntil thefixedboundaryconditionis verycloseto thedevice. A GaAs

device on theotherhandshows asignificanteffectdueto thehigh intrinsic�����

of thedevice. Interestingly,

theSOI device althoughhaving a large�����

dueto theoxidelayerdoesnot show asappreciableaneffect.

The decreasein the strengthof the effect is dueto the heatgenerationregion beingin the channelof the

device. This resultsin anadditionalthermalresistanceto theheatflow to thesourceanddraincontactsand

thenthroughthebackendmoderatingtheeffectof alteringthebackend.

3.4 GaAsPower Cell Model

Thepreviousexamplespresentedsingleddeviceswith limited metalizationasexamplesof distinctive tech-

nologies. However, oncea technologyhasbeendefineda larger areaof the circuit canbe simulated. In

Fig. 14 a GaAspower cell is shown in thetechnologydescribedabove. Shown in this figureis theoriginal

layout,a 3D modelasbuilt by thesimulatoranda temperaturedistribution. Thepower cell consistsof two

power transistors,with 40and100mW of generatedpower respectively. Eachtransistorhasanemitterheat

spreaderandall metalizationis modeledincludinga NiCr resistor. Themaximumtemperaturein the cell

wasat thecenterof the100mW transistorandwas105K above thebacksidetemperatureof 355K.

An aspectof this simulationthat is of interestis thethermalcouplingbetweenthetwo transistors.This

issuecanbe investigatedeasilyandeffectively usinga layout driven simulator, suchasAtar, andwill be

9

exploredin thenext section.

3.5 Transient Analysis

To confirmtheaccuracy of theTLM methoda transientsolutionfor thesimplecaseof 3D blockof Si with

aheightof 50 . m andawidth andlengthof 32 . m wasdone.Thebottomfaceof theblockwasfixedat300

K, andathin heatsourceregionwassituatednearthetopof theblock. Theheatsourceof 25mW is centered

at theblock, is 8 A 8 . m in its lateraldimensions,hasa thicknessof 0.2 . m andis 0.2 . m from thetop face.

An analyticaltransientsolutionof this problemis available (assumingtemperatureindependentmaterial

parameters)usingGreen’s functions. A comparisonof the time responseof the modelandthe analytical

solutionis shown in Fig.15. As canbeseenfrom boththeplot of thetemperaturetransientresponseandthe

residualerror, theQTM TLM solutionis veryaccurateover theentireresponsetime.

Finally, a modelof a Si trenchdevice is shown in Fig. 16(a). Thefigureshows 1/4 of thedevice which

hasa central1 . m x 20 . m emitterwith a collectorcontacton eachside. The technologyhasa PtSi/W

plug contactstructureandtwo aluminummetallayerswereincludedin themodelwith a W plug via. The

simulationregionis64 . msquareandthewaferthicknesswas100 . m. Thebacksidetemperaturewas300K

andthepowergeneratedin thedevicewas1.75mW, uniformly generatedin aregionundertheemitter. The

endsof theemitterandcollectormetalizationwerealsofixedat 300K. Thetotal modelconsistsof 15,000

blocks.A simulationof thetransientresponseof this Si device is shown in Fig. 16(b). Thetemperatureof

pointat thecenterof thebase/collectorjunctionis presentedasa functionof time.

4 Conclusion

Thispaperhaspresentedanew thermalsimulatorfor integratedcircuit devices.Thesimulatorautomatically

producesan accurate3D modelof the device from layout informationwhich is appropriatelymeshedfor

solving the non-linearthermaldiffusion equation. A 3D model is built up from the surfaceof the semi-

conductorsurfacethat representsboth the substrateof the device andany metalizationthat is present.A

3D quadtreemeshis createdthatproducesa fine meshat theheatgenerationregion of thedevice,but still

usesa moderatenumberof temperaturenodes.Fromthis modela network of thermalresistorsandcapac-

itors areextractedthatmathematicallyrepresentsthemodelwhich canbesolvedto obtainthetemperature

distribution.

Thepaperfirst comparesresultsfrom thesimulatorwith a commercialsimulatorFEM simulatorto con-

firm that it accuratelysolvesthe steadystateheatequation.Threeexampletechnologiesarethenusedto

displaytheabilitiesof thesimulatorto exploretheeffect of processandlayoutvariations.A completesim-

ulationof GaAspower cell consistingof two power transistorsandheatspreadersis presented.Finally, an

exampleof a full transientsimulationof a Si trenchdevice using15,000blockswaspresented,displaying

thefull capabilitiesof thesimulator.

10

Acknowledgement

Thiswork wassupportedby theNationalSciencesandEngineeringResearchCouncilof Canada(NSERC),

ManufacturingandMaterialOntario(MMO) andtheNetworksof Centersof Excellence(Micronet).

11

References

[1] RichardC. Joy andE.S.Schlig,“ThermalPropertiesof VeryFastTransistors”,IEEETrans.onED, vol.

17,no.8, August,1970.

[2] Guang-Bo,Ming-Zhu Wang,Xiang Gui, andHadisMorkoc, “themal DesignStudiesof High-Power

HetrojunctionBipolarTransistors”,IEEETrans.onED, vol. 36,no.5, May. 1989.

[3] Chang-Woo Kim, Norio Goto,andKazuhiko Honjo, “ThermalBehavior Dependingon EmitterFinger

andSubstrateConfigurationsin Power HetrojunctionBipolar Transistors”,IEEE Trans.on ED, vol. 45,

no.6, June1998.

[4] A. KagerandJ.J.Liou, “Two-dimensionalNumericalAnalysisof AlGaAs/GAASHetrojunctionBipo-

lar TransisitorsIncludiengthe Effectsof GradedLayer, SetBackLayer andSelf-Heating”,Solid-State

Electronics,Vol. 39.,no.2, pp.193-199,1996.

[5] C. Bozadaet al., “ThermalManagementof Microwave Power hetrojunctioniBipolar Devices”, Solid-

StateElectronics,Vol. 41,no10,pp.1667-1673,1997.

[6] Xiang Gui, Paul W. Webb,andGuang-boGao,“Use of three-dimensionalTLM methodin thethermal

simulationanddesignof semiconductordevices”, IEEETrans.Electr. Dev., 39(6) 1295–1302(1992).

[7] H. Carslaw, Conduction of heat in solids, Oxford,1959

[8] M. Holland,Phys.Rev. 134,A471,1964.

[9] T. Smy, D. Walkey, S.K. Dew, “Transient3D heatflow analysisfor integratedcircuit devicesusingthe

transmissionline matrixmethodonaquadtreemesh”,Submittedto theInt. J.Numer. Eng.

12

B B B BB B B BB B B BB B B BC C C CC C C CC C C CC C C C

D D D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D D DD D D D D D D D D D D D D D D D D D D D

E E E E E E E E E E E E E E E E E E E EE E E E E E E E E E E E E E E E E E E EE E E E E E E E E E E E E E E E E E E EE E E E E E E E E E E E E E E E E E E EE E E E E E E E E E E E E E E E E E E EE E E E E E E E E E E E E E E E E E E EE E E E E E E E E E E E E E E E E E E E

F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F FG G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G

H H H H HI I I I

Substrate

Emittor Metallization

Emitter MesaBase Mesa

Backside mounting

Heat Generation

Heat Flow

Figure1: A schematicillustrationof thegeometryof theheatflow problemfor GaAspoweramplifier

a) b)

Figure2: Layoutto 3dmodel

13

a) b)

c) d)

Figure3: Substrateconstruction.a) Theinitial high densityblock structureshowing a simplemasklayout.b) Thesurfacestructurecreatedfrom this highdensitystructureafteriterative coarseningof themesh.c) Asubstratelayernearthesurfaceof thesubstrateshowing moremeshcoarsening.d) A substratelayernearthebottomof thesubstrateshowing increasedthicknessandfurthercoarsening.

14

a) b)

c) d)

Figure4: Backend creationandfinal model. a) Extrusionof the first backend layer a silicide layer. b)Extrusionof a threelayertungstenplug contactstructure.c) Creationof a M1 aluminumline. d) Thefinalmodelshowing thesubstrateandcompletedbackendof asimpleemitterstructure.

15

Figure5: Heatflowsbetweenblocksrepresentedby thermalresistors

Ri

ZiZj

Rj

nj

in

(a) (b)

Figure6: (a)TLM transmissionline links in aquadtreeand(b) detailsof asinglelink in thequadtreemesh.

16

a) b)X

Y

Z

Y2

Z

XX 768741587404873987383873728736187351

Z

Y

X

Y

Z

c) d)X

Y

Z

Y

X

Y

Z

Figure7: Typicalmeshsfor a simpleheatsourcein a substrateregion. a) Atar andb) Patran.Detailsof theheatsourceregionc) Atar andd) Patran

17

a) b)X

Y

Z

Y

5.44+02

5.31+02

5.19+02

5.06+02

4.94+02

4.81+02

4.68+02

4.56+02

4.43+02

4.31+02

4.18+02

4.05+02

3.93+02

3.80+02

3.68+02

3.55+02X

Y

Z

Figure8: Temperaturedistribution for a rectangularheatsourcein a GaAssubstratewith a fixed 355 Kbacksidetemperature.(a) Atar (d) PATRAN.

a)

0J

20J

40J

60J

80J

100J

Depth (microns)K350

400

450

500

550

600

Tem

pera

ture

(K

)

L

Patran (linear)MPatran (nonlinear)MSimulator (linear)NSimulator (nonlinear)N

b)

0O

20O

40O

60O

80O

y (microns)P350

400

450

500

550

Tem

pera

ture

(K

)

Q

Patran (linear)RPatran (nonlinear)RSimulator (linear)SSimulator (non−linear)S

Figure9: Temperatureprofiles.a)Fromtheemitterdown into thesubstrate.b) Along thesurface.

18

a)GaAsHeatSpreaderTechnology

b)SiliconBJTTechnology

c)SOIMOSFETTechnology

Figure10: Example3D Atar modelsandtemperaturedistributions.(a)GaASheatspreder. (b) Si trench.(c)SOI

19

0.00T 0.10U 0.20V 0.30W 0.40XGeneration Region Position (microns)

0

2

4

6

8

10

12

Tem

pera

ture

Ris

e (K

)

Y

Figure11: Si trenchdeviceoperatingtemperatureasafunctionof thepositionof theheatgenerationregion.

a)

0Z

20Z

40Z

60Z

80Z

x (microns)[0

20

40

60

80

Tem

pera

ture

Ris

e (K

)

\

PATRAN]Simulator^

b)

0O

5_

10O

15_

20O

Spreader Length (microns)

0

20

40

60

80

100

120

Tem

pera

ture

Ris

e (K

)

` spreader ano metalizationbno spreaderb

Figure12: GaAsHBT device. a) Surfacetemperature.b) Device temperatureasa function of spreaderlength.

20

0c 20 40 60L (microns)d

0

5

10

15

20

25

30

Tem

pera

ture

Ris

e (K

)

e

SiliconSilicon trenchGaAsSOI(0.1 microns)

Figure13: Device temperaturesensitivity to backendheatflow.

21

a)

b)

c)

Figure14: Example3D GaasPowerCell with metallization.a) Layout.b) Model. c) Temperatureprofile.

22

(a)0f

20f

40f

60f

80f

100f

Time (µs)

0

20

40

60

80

Tem

pera

ture

Ris

e (K

)

AnalyticalgQuad Tree TLMh

0f0.002f0.004f0.006f0.008f

Nor

mal

ized

Err

or

(b)0i

10i

20i

30i

40i

50i

Depth (µm)

0

20

40

60

80

Tem

pera

ture

Ris

e (K

)

AnalyticaljQuad Tree TLMk

Figure15: Temperatureresponsewithin a3D rectangularsolidshowing (a) transientresponseof maximumtemperatureand(b) temperatureprofileasa functionof depthnearthesteadystate.

(a) (b)0l

5m

10l

15m

Time (µs)

0

2

4

6

8

Tem

pera

ture

Ris

e (K

)

Figure16: (a) Detailsof a Si trenchdevice showing structureandmetalizationand(b) transientthermalresponseof thedevice.

23

Responseto the Review

In responseto theeditorscommentsandreviewersremarksfor manuscripts921and941:

n 921: “A 3D thermalsimulationtool for integrateddevices– Atar”, T. Smy, D. Walkey

n 941: “Transient3D heatflow analysisfor integrateddevicesusingTLM on a quadtreemesh”,T.Smy, D. Walkey, S.Dew

We wish to first thankthereviewersfor their constructive comments.It wassuggestedthat921and941

shouldbecombinedandsomematerialremoved from 921(reviewer 921:#1,point 2). We have taken this

approachandproducedanew manuscript.However, 941wasafairly longandinvolveddescriptionof anew

implementationfor TLM on a 3D quadtreemesh.To allow thenew manuscriptto beof reasonablelength

we have addedto 921a brief descriptionof theTLM transientsolution(referencinga submittedpaperon

the details). This hasallowed us to addsomematerialto the resultssectioncontainingthe mostuseful

resultson transientanalysisfrom 941. We have also,assuggestedby reviewer 921:#1,removeda number

of figuresfrom 941andcondensedthediscussion.

A numberof pointswerespecificallybroughtupby thereviewerswhichwewill now address.

n Electrothermaleffects( 921:#1-point2,921:#2-point1,941:#2-point2)

Thereviewerspoint out thattheelectrothermal(ET) interactionwill effect device operationandthat

is very true.Wehavedesignedthecodewith theintentionof incorporatingET effectsinto thethermal

calculations.Work is still ongoingandproving to bearich areaof investigation.Theresultspresented

herearestill relevantat moderatepower levelsandclearlyillustratethepotentialof thetool.

n TemperatureInterpolation( 921:#2-point6,921:#2-point3)

The plottedtemperatureswereinterpolatedfrom the 3D temperaturedistribution given by thenode

temperatures.

n Applications(921:#1-point1)

Currentlythe tool is primarily for internaluse. We arein the processof developinginterfaceswith

standardVLSI designtoolssuchasCadence.If interestis sufficient thiswork will beaccelerated.

n Fig 2. (921:#2-point2)– Fig. 2 is now referencedin themanuscript.

n FixedT BC’s (921:#2-point3)

The useof a fixedboundaryconditionon verticalsidesof thesimulationregion causesanartificial

constraintonthetemperatureprofile. Thiscanbeovercomeby usingaverylargeregionof simulation

but that is computationallyexpensive. A bettersolutionis to usezeroflow boundaryconditionsand

beawarethatthis impliesmirroringat thatboundary.

n FocusonBJT’s (921:#2-point5)

The focuson BJT’s wasprimarily dueto the authorsindustrialexperiencewith high power BJT’s

whereselfheatingis aconcern.As thepaperis essentiallyillustratingthevarioususesof thetool the

useof BJT structuresseemsappropriate.Thetool itself is of coursenot limited to BJT’s andindeed

wearecurrentlyemploying it to look at largepowerMESFETstructures.

n Thermalconductivity (941:#2-point1)– Theunitsfor thermalconductivity weremistypedusing“cm”

not “microns” accountingfor thefactorof 10,000.

A numberof otherpointswerebroughtup by thereviewers,however, they eitherdealtwith materialnot

incorporatedfrom 941into thenew paperor materialremovedfrom 921.

Thanksfor youconsideration.