A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT

15
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and Bobby Brar Teledyne Scientific Company, Thousand Oaks, CA 91360, USA *Department of Electrical and Computer Eng., UC Santa Barbara e-mail: [email protected], phone: 805-373-4104 Compound Semiconductor IC Symposium 2010

description

A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT. Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and Bobby Brar Teledyne Scientific Company, Thousand Oaks, CA 91360, USA *Department of Electrical and Computer Eng., UC Santa Barbara - PowerPoint PPT Presentation

Transcript of A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT

Page 1: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 1

A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT

Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell,

Mark Rodwell*, and Bobby Brar

Teledyne Scientific Company, Thousand Oaks, CA 91360, USA*Department of Electrical and Computer Eng., UC Santa Barbara

e-mail: [email protected], phone: 805-373-4104

Compound Semiconductor IC Symposium 2010

Page 2: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 2

MS flip-flops are very widely-used high speed digital circuits:• Dividers are master-slave flip-flop with inverting feedback • Connection as 2:1 frequency divider provides simple test method

Standard benchmark of logic speed: • Performance comparisons across technologies

Dynamic, super-dynamic, frequency dividers:• Higher maximum frequency than true static dividers• Narrow-band operation applications are limited

High speed technology performance for static dividers:• 250nm InP HBT: NGAS 200.6GHz (2009), TSC/UCSB 204.8GHz (2010)• Advanced SiGe HBT: Infinion 110+GHz

Why Static Frequency Dividers ?

Page 3: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 3

clock clock clock clock

inin

out

out

cexLOGIC

LOGIC

Ccb

becb

becbC

LOGIC

IRq

kTV

V

IR

CCR

CCI

V

6

leastat bemust swing logic The

resistance base the through

charge stored

collector base Supplying

resistance base the through

charging ecapacitancDepletion

swing logic the through

charging ecapacitancDepletion

:by DeterminedDelay Gate

bb

depletion,bb

depletion,

Fast divider design – identifying dominant gate delays

maxτ

logic

emitter

collector

depl

f& f not speed, clock for design to ...Need

high at low forlow very be must

objective. design HBTkey a is Low

total. of 80%-60% is

).1/(2delay HBT withcorrelated wellnotDelay

eex

effective

C

CE

LOGIC

C

LOGICcb

ccb

becbCLOGIC

JVR

v

T

A

A

V

V

I

VC

IC

CCIV

f

22

/

min,

,

Page 4: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 4

base

emitter

collector

subcollector

base

emitter

collector

subcollector

Collector Field Collapse (Kirk Effect)

Collector Depletion Layer Collapse

)2/)(/( 2 cdsatcb TqNvJV

)2/)(( 2min, cTqNV dcb

2min,max /)(2 ccecesat TVVvJ

e,1e,1

logic

C,1

c,1ro

C

logiccb,1 AJ

ΔV

T

Aεε

I

ΔVC

0.5um HBT, 150GHz divider, Je = 5mA/um2

0.25um HBT, 200GHz divider – vertical, lateral scaling for Je = 10mA/um2

Lateral scaling, current spreading for Je = 10mA/um2

(1-D collector current flow)

C

logiccb,1

e,1e,1

logic

C,1

c,1ro

C

logiccb,2 I

ΔVC

4

3

A21

2J

ΔV

T32

A21

εε

I

ΔVC

C

logiccb,1

e,1e,1

logic

C,1

c,1ro

C

logiccb,2 I

ΔVC

2

1

A21

2J

ΔV

T

A21

εε

I

ΔVC

33% reduction

200GHz dividers – collector design for 250nm HBTs

Page 5: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 5

.1/TJ where; AJ

ΔV

T

Aεε

I

ΔVC 2

cmaxe,emittere

logic

C

collectorro

C

logiccb

ex 7 m2 needed for 200 GHz clock rate

ECL delay not well correlated with f or fmax

Key HBT Scaling Limit Emitter Resistance

Io

RL

Rex

Noise margin

2kT/q+IoRex

Vin

Vout

Vlogic=IoRL

Vlogic

Largest delay is charging Ccb

Je 10 mA/m2 needed for 200 GHz clock rate

Voltage drop of emitter resistance becomes excessive

RexIc = exJe = (15 m2) (10 mA/m2) = 150 mV

considerable fraction of Vlogic 300 mV

Degrades logic noise margin

This slide presented at BCTM 2004 for phase-I 150GHz divider. HBT metrics here invoked to demonstrate the phase-III 200GHz divider.

Page 6: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 6

Ccb/Ic Charging Rate: ECL delays lower than CML

Vcb

= -0.3 V

0

2

4

6

8

10

0 2.5 5 7.5 10 12.50

5

10

15

20

25

Ccb

/Ae (

fF/

m2 )

Je (mA/m2)

Ccb (fF

)

-0.2 V

0.0 V

0.2 V

Vcb

= 0.6 V

Zo

CML

ECL

Zo

Vcb

= -0.3 V

0

2

4

6

8

10

0 2.5 5 7.5 10 12.50

5

10

15

20

25

Ccb

/Ae (

fF/

m2 )

Je (mA/m2)

Ccb (fF

)

-0.2 V

0.0 V

0.2 V

Vcb

= 0.6 V

Vlogic

= 300mV

Page 7: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 7

Design approach for 200GHz logic

Block diagram of Divide-by-8

Schematic of a flip-flop configured as a static divider

Approach: (new design elements presented in bold)• Emitter coupled logic (ECL) topology• Faster HBTs with lower Ccb and lower Rex (-um2)

• Scaled device from 0.5um to 0.25um• 150nm collector, 30nm base (400GHz ft, 650GHz fmax)

• Reduce signal bus and loading delays • Decreased device-to-device spacing

• Thin-film microstrip with low loss r = 2.7• Resistive pulldown voltage biasing• Small peaking inductance Lpeak

• Emitter-follower HBTs having reduced Ccb (Q1, Q2)• Collector-base DC voltage Vcb increased

Q1, Q2 Ccb reduction

Page 8: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 8

IC micrographs of the TSC 200GHz Static Frequency Dividers

Final fabrication, top-metal ground plane omitted

Divide-by-2 circuit, 36 HBTs (0.420.41-mm2) Divide-by-8 circuit, 108 HBTs (0.680.45-mm2)

Page 9: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 9

TSC/UCSB/GSC 150GHz divider (September 2004)

x = 500um

y =

470

um

Technology cross-section, phase-I

112um

190um

Close-up view of flip-flop interconnect, configured for divide-by-2

Summary of divider physical size:

• 5um device-to-device spacing

• Two-sided collector HBT

• Latch width = 112um

• Latch-to-buffer signal distance = 190um CMET = Blue

MET-1 = Red

DC power ~ 600mW

-90

-80

-70

-60

-50

-40

-30

-20

-10

0.00 19.50 39.00 58.50 78.00

Out

put

Pow

er (

dB

m)

frequency (GHz)

-80

-70

-60

-50

-40

75.9975 76.0000 76.0025

dBm

GHz

Phase-I divider @ 152GHz

Page 10: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 10

TSC/UCSB 200GHz divider – scaling summary

x = 420um

y =

410

um

TSC mixed-signal technology cross-section

50um

64um

Close-up view of flip-flop interconnect, configured for divide-by-2

Summary of divider physical size:

• 2um device-to-device spacing

• One-sided narrower collector HBT

• Latch width = 50um (55% reduction)

• Latch-to-buffer signal distance = 64um

• 66% reduction

DC power ~ 592mW

Simulated CLK rate, 213GHz

Page 11: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 11

Probe-station for 200GHz divider testing

WR-05 output power sweep

Probe station for 200GHz testing

Output

Close-up showing wafer probes

Mechanical attenuator

200GHz source

200GHz 8x VDI source from UCSB

Output at 204.8GHz operation

Page 12: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 12

-100

-80

-60

-40

-20

0

0 5 10 15 20 25

Ou

tput

Pow

er (

dB

m)

Frequency (GHz)

Divide-by-8 static divider operating to 204.8GHz

Divider output – fclk = 204.8GHz, fout = 25.60GHz Divider output – fclk = 4.0GHz, fout = 500MHz

• Peak divider toggle rate is 204.8GHz• Expected output at 25.60GHz, no spectral content at lower frequencies

• Input divider operational down to 4.0GHz to confirm static operation at all frequencies• 3rd-stage divider is operating at 1.0GHz clock (differential 350mVp-p), 500MHz final output

• PDC of divide-by-8 circuit = 1.82W• Input divider operating at 204.8GHz, PDC = 592mW

-100

-80

-60

-40

-20

0

0 10 20 30 40 50

Ou

tput

Po

wer

(dB

m)

Frequency (GHz)

-100

-80

-60

-40

-20

0

25.5975 25.6000 25.6025

dB

m

GHz

5MHz spanLow-frequency verification

Page 13: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 13

-30

-20

-10

0

10

0 50 100 150 200

Inpu

t P

ow

er (

dBm

)

Frequency (GHz)

Source-free self-oscillation @ 143GHz

Sensitivity plot of the 204.8GHz static divider

Divider output – fclk = 204.8GHz, fout = 25.60GHz Sensitivity plot, 204.8GHz static divider

• Sensitivity plot of the divider: 0.1-50GHz, 61.5-113.25GHz, 182.4-204.8GHz

• Expected trends of input power sensitivity versus frequency observed

• Source-free self oscillation (no input signal) reference to the input is 143GHz

-100

-80

-60

-40

-20

0

0 10 20 30 40 50

Ou

tput

Po

wer

(dB

m)

Frequency (GHz)

-100

-80

-60

-40

-20

0

25.5975 25.6000 25.6025

dB

m

GHz

5MHz span

61-113GHz tripler

182-209GHz 8x FEM

0.1-50GHz source

Page 14: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 14Summary

• A record static divide-by-8 frequency divider has been demonstrated– 108 HBTs, all having 250nm features– TSC 4-metal layer, mixed-signal interconnect– Operational from 4.0GHz to 204.8GHz– Total PDC = 1.82W, input divider only (no buffers) = 592mW

• Continued increases to static divider toggle rate require balanced reductions to HBT base Rbb and emitter resistance Rex, and junction capacitances Cje, Ccb.– Presentation (Tues-F1) by M. Urteaga discusses recent HBT developments

Page 15: A 204.8GHz Static Divide-by-8 Frequency Divider  in 250nm InP HBT

Chart 15Acknowledgement

• This work was supported under the DARPA TFAST program, Sanjay Raman program manager.

Thank you!!