A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

15
1 Masaya Miyahara, James Lin, Kei Yoshihara and Akira Matsuzawa Tokyo Institute of Technology, Japan A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC M atsuzaw a & O kada Lab M atsuzawa Lab. Tokyo Institute ofTechnology

description

A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC. Masaya Miyahara, James Lin, Kei Yoshihara and Akira Matsuzawa Tokyo Institute of Technology, Japan. Outline. Motivation Design Concept Calibration Technique Measurement Results Conclusions. Motivation. - PowerPoint PPT Presentation

Transcript of A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

Page 1: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

1

Masaya Miyahara, James Lin, Kei Yoshihara and Akira Matsuzawa

Tokyo Institute of Technology, Japan

A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s5 bit Flash ADC

Matsuzawa& Okada Lab

Matsuzawa Lab.Tokyo Institute of Technology

Page 2: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

2

Outline

• Motivation

• Design Concept

• Calibration Technique

• Measurement Results

• Conclusions

Page 3: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

3

Motivation• An ultra-low power ADC is strongly required.

– Portable applications– Ubiquitous wireless sensor system– Green IT

• A low voltage operation is required for further technology scaling and low power operation.– Analog circuits design becomes more difficult.

• Increasing VT mismatch

• Degradation of gain and distortion of an amplifier– The FoM of an ADC should be reduced like digital circuits.

• Optimizing a speed, resolution and power.• Calibration technique for low voltage operation.

Page 4: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

4

Performance of flash ADCs

2

q

off2

)(121log

2

1

V

VENOB

ENOBNd

f

P

2

FoMc

FoM is deteriorated by the offset voltage of the comparator.Offset voltage should be low at low voltage operation.

-1.6

-1.4

-1.2

-0.8

-0.6

-0.4

-0.2

0.0

0 0.125 0.25 0.375 0.5 0.625 0.75

E

NO

B [

bit

] Estimation

Simulation

-1.0

Voff () [LSB]

Voff():Offset voltageVq : 1LSB voltage

Page 5: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

5

FoM vs. VDD

0.2 0.4 0.6 0.8 10

1

2

3

4

0

100

200

300

VDD (V)

Ec (fJ)

N: 5bit

FoM (fJ)

mVVoff 6)( =

ENOB2

)(bitENOB

ENOBENOBN

N

Ef

Ef

22

2FoM c

c

cc

cfSV

IVVCE

TcDD

2DDcc

exp

Ec:Energy consumption for each comparator and followed logic circuits.

FoM can be significantly reduced by reducing power supply voltage VDD.

Page 6: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

6

FoM delay product

0.4 0.6 0.8 10

1

2

3

4

5

50

100

150

200

250

FD (fJ ns)

FoM(fJ)

V DD (V)

Del

ay (

nS

)

Delay (ns)

Fo

M(f

J),

FD

(fJ

ns)

TDD

DDd

VV

VkT

Delay time

The FD product suggests the balance between the number of interleaving and decrease of energy consumption.

VT = 0.4 V Excessive number ofInterleaving ADC

• Large area• Driving difficulty• Reduction of ENOB

DelayFoMFD

Page 7: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

7

Forward body biasingForward body biasing can decrease the delay time (1/2)and can be used easily at 0.5 V operation.

VDD

IN OUT

0

2

4

6

8

10

12

0.4 0.6 0.8 1 1.2 1.4Supply voltage (V)

Del

ay t

ime

(rel

ativ

e)

W/O FBB

W/ VFBB (0.5V)

BBW/O FBB

W/ FBB (0.5V) VTN = 100mV

VTP = 60mV

Increased leakage current in the proposed ADC is 0.32 mA by forward body biasing.

1/2

Page 8: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

8

Proposed Calibration Technique

CLK

Vinp Vinm

1stOutp 1stOutm

CLKp CLKm

LOWCALcode_B

CLKin CLKout

Proposed Calibration(Timing control base)

Timing controller

no CAL Cap CAL [5] Proposed

Voff() [mV] 10.1 5.79 1.49

Pd [W] 14.5 21.4 24.5

Delay [ps] 365 756 511

[5] V. Giannini, ISSCC2008

VDD=0.5V, fs=500MHz

CLKp

CLKm

1stOutp

1stOutm

Conventional Calibration (Capacitor DAC base[5])• MOS varactor sensitivity• Delay time and power

CLK1stOutp 1stOutm

Vinp Vinm

CALcode_B CALcode

Page 9: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

9

ADC Structure

Comparator Block(32 Comparators)

S/H

S/H

・ ・ ・

Reference ladder

Vin

Thermometer to Binary Encoder

5

Comparator ×4

Comparator ×4

Up Down Counter 6b ×4

Comparator ×4

Comparator ×4

S/H

S/H

Error Correction Cirtuit

Up Down Counter 6b ×4

Up Down Counter 6b ×4

Up Down Counter 6b ×4

8

2b Interpolation

32 32

Clock Divider

5

Dout

5b Flip Flops

f f/4 f/8

90nm 1P9M CMOS process

Page 10: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

10

DNL and INL

DNL+/-2.2 LSB => +/- 0.5 LSB.

INL +/-1.5 LSB => +/- 0.3 LSB.

(Measurement results are updated because the measurement setup is improved.)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 4 8 12 16 20 24 28 32

CODE

DN

L [

LS

B]

Before CAL

After CAL

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 4 8 12 16 20 24 28 32

CODE

INL

[L

SB

]

Before CAL

After CAL

Page 11: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

11

15

20

25

30

35

40

45

50

0 200 400 600 800

Sampling Frequency [MSps]

SF

DR

, SN

DR

[d

B]

SFDR and SNDR vs. Fsample

SFDR, W/ CAL

SFDR, W/O CAL

SNDR, W/O CAL

SNDR, W/ CAL

5 d

B10

dB

Fin = 1 MHz

Page 12: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

12

SFDR and SNDR vs. Fin

15

20

25

30

35

40

45

0 100 200 300 400

Input Frequency [MHz]

SN

DR

, S

FD

R [

dB

]

SFDR

SNDR

Fsample = 360 MSps

FoMBest = 110 fJ/conv.

Page 13: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

13

Performance Summary

Reference # [7] [8] [9] [10] This workResolution (bit) 5 5 5 5 5fs (GS/s) 0.5 1.75 1.75 0.06 0.6SNDR (dB) 26 30 30 26 27Pd (mW) 5.9 2.2 7.6 1.3 1.2

Active area (mm2) 0.87 0.017 0.03 - 0.083Vdd (V) 1.2 1 1 0.6 0.5FoM(fJ) 750 50 150 1060 160CMOS Tech. (nm) 65 90 90 90 90Architecture SAR Fold+Flash Flash Flash Flash

[7] B. P. Ginsburg, J. Solid-State Circuits 2007.[8] B. Verbruggen, ISSCC 2008.[9] B. Verbruggen, VLSI Circuits 2008.[10] J. E. Proesel, CICC 2008.

FoMFmax = 160fJ @ 600MSpsFoMBest = 110 fJ @ 360MSps

Page 14: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

14

Conclusions• The strategy for low voltage operation is

proposed.– FoM delay product (FD) is considered for not only

low FoM but also high speed operation.

• Low voltage design techniques are proposed.– Forward body bias can be used easily at 0.5 V

operation. (Td => 1/2)– The timing control based offset calibration technique

is proposed. (DNL / INL 2 LSB => 0.5 LSB)

• Proposed ADC has good power efficiency and high speed operation.– 600MSps, ERBW = 200 MHz, ENOB = 4.6 bit,

FoMBest =110 fJ/ conv. at 0.5 V supply.

Page 15: A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

15

Thank youfor your interest!

Masaya Miyahara,[email protected]