9881-26 Proto Flight Model (PFM) development status of Visible...

21
Proto Flight Model (PFM) development status of Visible and Near-Infrared Radiometer (VNR) on the Second-Generation Global Imager (SGLI) 6 April 2016 T. Sakashita, S. Tsuida, T. Amano, K. Shiratama (NEC) Kazuhiro Tanaka (JAXA) 9881-26 10th SPIE Asia-Pacific Remote Sensing Symposium Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV New Delhi, India, 4-7 April 2016

Transcript of 9881-26 Proto Flight Model (PFM) development status of Visible...

  • Proto Flight Model (PFM) development statusof Visible and Near-Infrared Radiometer (VNR)

    on the Second-Generation Global Imager (SGLI)

    6 April 2016

    T. Sakashita, S. Tsuida, T. Amano, K. Shiratama (NEC)Kazuhiro Tanaka (JAXA)

    9881-26

    10th SPIE Asia-Pacific Remote Sensing SymposiumEarth Observing Missions and Sensors: Development, Implementation, and Characterization IV

    New Delhi, India, 4-7 April 2016

  • 2 © NEC Corporation 2015

    Contents

    GCOM mission and satellite SGLI specification (SGLI-VNR and SGLI-IRS) SGLI VNR Current Status Test Results of VNR VNR Geometric Test VNR Radiometric Test NP Polarization Sensitivity PL Polarization Measurement

    Conclusion

  • 3 © NEC Corporation 2015

    Global Change Observation Mission (GCOM)

    Global observation satellite system as JAXA’s GEOSS contribution. 2 satellite series for 5 years, total 13 years observation. GCOM-W Microwave radiometer observation for WATER

    CYCLE using AMSR2 (AMSR-E follow on) GCOM-C Optical multi-channel observation for

    RADIATION BUDGET and CARBON CYCLE using SGLI(GLI follow on)

    GCOM-Cis scheduled forlaunch in 2017.

    GCOM-C(CLIMATE)

    SensorAdvanced Microwave Radiometer 2 (AMSR2)

    Passive Microwave ObservationWater vapor, soil moisture etc

    SensorSecond Generation Global Imager(SGLI)

    Optical Observation 380nm – 12 micronCloud, Aerosol, Vegetation, Chrolophl etc

    GCOM-W(WATER) AMSR2

    SGLIGCOM-W “SHIZUKU” was launched on May 18, 2012.

  • 4 © NEC Corporation 2015

    SGLI on GCOM-C1 satellite

    SGLI Second Generation Global ImagerVNR Visible and Near Infrared RadiometerIRS Infrared Scanning RadiometerSRU Scanning Radiometer UnitELU Electronic Unit

    Mission Life > 5 years

    Solar Paddle > 4000w (End of Life)

    Mass about 2,000kg

    SGLI IRSELU

    +X

    flight direction+Y

    +Z earth

    deepspace

    SGLI VNRELU

    SGLI IRSSRU

    SGLI VNRSRU

  • 5 © NEC Corporation 2015

    SGLI (Second Generation Global Imager)

    PolarizedObservationTelescopes(55deg FOVx 2)

    Non PolarizedObservation Telescopes(24deg FOV x 3)

    SolarDiffuser

    About1.7m

    About1.3m

    Infrared Scanning Radiometer(SGLI-IRS)

    EarthView Window

    DeepSpaceWindow

    About1.4m

    About0.6m

    Sensor Unit Features

    SGLI VNRNon Polarized Observation (11ch), IFOV 250m, Swath 1150kmPolarized Observation(2ch), IFOV 1km, Swath 1150km

    SGLI IRSShortwave Infrared (SWI 4ch), IFOV 250m/1km, Swath 1400kmThermal Infrared (TIR:2ch), IFOV 500m, Swath 1400km

    Visible and Near Infrared Radiometer(SGLI-VNR)

    Sun Cal.Window

  • 6 © NEC Corporation 2015

    SGLI Specification

    SGLI channels

    CH

    Lstd Lmax SNR at Lstd IFOV

    VN, P, SW: nmT: m

    VN, P: W/m2/sr/m

    T: Kelvin

    VN, P, SW: SNR

    T: NETm

    VN1 380 10 60 210 250 250VN2 412 10 75 250 400 250VN3 443 10 64 400 300 250VN4 490 10 53 120 400 250VN5 530 20 41 350 250 250VN6 565 20 33 90 400 250VN7 673.5 20 23 62 400 250VN8 673.5 20 25 210 250 250VN9 763 12 40 350 1200 250/1000VN10 868.5 20 8 30 400 250VN11 868.5 20 30 300 200 250P1 673.5 20 25 250 250 1000P2 868.5 20 30 300 250 1000

    SW1 1050 20 57 248 500 1000SW2 1380 20 8 103 150 1000SW3 1630 200 3 50 57 250SW4 2210 50 1.9 20 211 1000T1 10.8 0.7 300 340 0.2 250/500T2 12.0 0.7 300 340 0.2 250/500

    •The SGLI features are 250m (VNR-NP & SW3) and 500m (TIR)spatial resolution and polarization/along-track slant viewchannels (VNR-PL), which will improve land, coastal, and aerosol observations.

    GCOM-C SGLI characteristics

    OrbitSun-synchronous(descending local time: 10:30)Altitude 798km, Inclination 98.6deg

    Mission Life 5 years (3 satellites; total 13 years)

    Scan Push-broom electric scan (VNR)Wisk-broom mechanical scan (IRS)

    Scan width 1150km cross track (VNR: VN & P)1400km cross track (IRS: SW & T)Digitalization 12bitPolarization 3 polarization angles for PAlong track direction

    Nadir for VN, SW and T, +45 deg and -45 deg for P

    On-board calibration

    VN: Solar diffuser, LED, Lunar cal maneuvers, and dark current by masked pixels and nighttime obs.

    SW: Solar diffuser, LED, Lunar, and dark current by deep space window

    T: Black body and dark current by deep space window

    Multi-angle obs. for 673.5nm and 868.5nm

    250m over the Land or coastal area, and 1km over offshore

    option

  • 7 © NEC Corporation 2015

    Visible and Near Infrared Radiometer (VNR)VNR Non-Polarized (NP) sensor

    24deg FOV each for 3 NP sensors. (total 70deg, nadir looking) 11 lines Band pass filter(BPF) on the 11 line 6000pix CCD

    VNR Polarized (PL) sensor 55dev FOV with +/-45deg tilting mechanism. (forward, backward and nadir looking) 3 polarization filter on the same design CCD with NP sensor for 3 pol. directions

  • 8 © NEC Corporation 2015

    SGLI VNR Current Status

    Integration

    Alignment

    SRU-ELU Interface

    Radiometric

    Thermal vacuum

    Vib. & Acoustic

    Final performance

    VNR SRU

    Geometric

    Radiometric

    Vib. & Shock

    Stray light

    Pol. measurement

    PL sub assembly

    Thermal vacuum

    PL sub-unitNP sub-unit

    Geometric

    Vib & Shock

    Radiometric

    Pol. sensitivity

    Stray light

    NP sub assembly

    Thermal vacuum

    NP/P

    L se

    nsor

    Pha

    se

    completed completed ongoing

    ←NOW

  • 9 © NEC Corporation 2015

    Current Status

    VNR SRU Onboard Configuration

    +Xflight direction

    +Ydeep space

    +Zearth

    VNR SRU

    PL NP

    March 2016, TSUKUBA

  • 10 © NEC Corporation 2015

    NP/PL sensor Performance Test by CollimatorGeometric testPolarization sensitivity of NP sensorMuller Matrix for PL sensor Stray light test / Stray light correction model

    Rotation Stage : 6-axis (3-linear, 3-rotation)

    Geometric Test

    Collimator

    Rotation Stage

    NP sensor

  • 11 © NEC Corporation 2015

    Radiometric Test (Integrating Sphere)

    Radiometric Performance Test by Integrating Sphere ; BaSO4, Spectralon(option)Radiometric test for NP/PL sensorRadiometric test for SRU

    Integrating Sphere

    Simple rotation stage

    NP sensor

  • 12 © NEC Corporation 2015

    Thermal Vacuum Test

    Thermal Vacuum TestGeometric test for NP/PL sub-unitRadiometric test for NP/PL sub-unit

    Collimator and Rotation stage are setting in the 6mφ Space chamber in TSUKUBATest condition : 6 (2-ambient, 4-vacuum)

    6m Space chamber

    IR panels

    Collimator

    Rotation stage

    Sub-Unit

  • 13 © NEC Corporation 2015

    CCD view angle measurements and verificationAmbient and Thermal Vacuum environment

    NoteView angles are stable in thermal vacuum condition. (20~30℃)The deviation between ambient and vacuum is due to the change of focal length.The data for geometric model are acquired.

    Geometric Performance (Alignment)

    ambient1nominal1coldhotnominal2ambient2

    -100

    -50

    0

    50

    100

    -100-50050100

    θy(

    arcs

    ec)

    θx(arcsec)

    p60 234pixel

    -100

    -50

    0

    50

    100

    -100-50050100

    θy(

    arcs

    ec)

    θx(arcsec)

    m60 239pixel -100

    -50

    0

    50

    100

    -100-50050100

    θy(

    arcs

    ec)

    θx(arcsec)

    pm0 3000pixel

    -100

    -50

    0

    50

    100

    -100-50050100

    θy(

    arcs

    ec)

    θx(arcsec)

    p60 5765pixel

    -100

    -50

    0

    50

    100

    -100-50050100

    θy(

    arcs

    ec)

    θx(arcsec)

    m60 5760pixel

    vacuum

    ambient

    Deviation between ambient and vacuum(about 250m for PL-1km)

  • 14 © NEC Corporation 2015

    MTF defocusFollowing figures show the MTF defocus trend data. Data point : PL2 sensor, +60° of pol. angle, +27.5° of view angle

    NOTEMTF defocus is stable in thermal vacuum condition. (20~30℃)MTF peak is almost 0 defocusing position, it means CCD position is suitable. MTF value attains high resolution of >80%.

    Geometric Performance (MTF)

    The ambient data are the corrected value due to the vacuum shift of focal length

    40

    50

    60

    70

    80

    90

    100

    -0.3 -0.2 -0.1 0 0.1 0.2 0.3

    MT

    F[%

    ]

    Defocusing Position [mm]

    p60 +27.5°CT

    40

    50

    60

    70

    80

    90

    100

    -0.3 -0.2 -0.1 0 0.1 0.2 0.3M

    TF

    [%]

    Defocusing Position [mm]

    ambient1nominal1coldhotnominal2ambient2

    p60 +27.5°AT

  • 15 © NEC Corporation 2015

    Radiometric Performance (Linearity)

    Linearity errorTest condition : TVT nominal2 data, 0.3Lstd ~ Lmax of radiancePlot data : worst deviation values

    CommentThe data satisfies within 2%. (requirement)The final data will acquire at the final performance test of SRU PFT.

    0.0%

    0.5%

    1.0%

    1.5%

    2.0%

    2.5%

    3.0%

    3.5%

    4.0%

    VN1 VN2 VN3 VN4 VN5 VN6 VN7 VN8 VN9 VN10VN11

    Lin

    eari

    ty E

    rror

    NPRNPNNPLSpec

  • 16 © NEC Corporation 2015

    Radiometric Performance (SNR)

    SNRPL sub-unit TVT results in TVT tests.

    CommentThe SNR data satisfies >500.(SNR 500 comes form polarization accuracy requirements)The final data will acquire at the final performance test of SRU PFT.

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    0 50 100 150 200 250 300 350

    S/N

    Radiance [W/m2/str/um]

    PL2 @TVT nominal2

    +60°0°‐60°LstdTarget

    0100200300400500600700800900

    1000

    nom1 cold hot nom2 amb2

    S/N

    @L

    std

    PL1_+60°

    PL1_0°

    PL1_-60°

    PL2_+60°

    PL2_0°

    PL2_-60°

    Target

  • 17 © NEC Corporation 2015

    Polarization Sensitivity for NP sensor

    Polarization measurements using the linear polarizer.a) Polarization sensitivity b) Polarization direction

    Polarization sensitivity exceeds3% target in RED and NIR channelsas predicted from EM test results. Sensitivity Model req.

    in the retrieval algorithm.

    0.94

    0.96

    0.98

    1

    1.02

    1.04

    1.06

    0 90 180 270 360

    Nor

    mal

    ized

    out

    put

    Rotation angle[deg]

    Polarization Uniformity of NPR VN10 +12deg

    Measured value

    Fitting curve0%

    1%

    2%

    3%

    4%

    5%

    -12 -6 0 6 12

    Pola

    riza

    tion

    sens

    itivi

    ty

    View angle[deg]

    Polarization sensitivity of NPR VN10

    60

    70

    80

    90

    100

    110

    120

    -12 -6 0 6 12

    Pola

    riza

    tion

    angl

    e (°

    )

    View angle[deg]

    Polarization angle of NPR VN10

    0.0%

    1.0%

    2.0%

    3.0%

    4.0%

    5.0%

    VN1 VN2 VN3 VN4 VN5 VN6 VN7 VN8 VN9 VN10VN11

    Pmax, Pmin NPR PmaxNPN Pmax

    NPL Pmax

    NPR Pmin

    NPN Pmin

    NPL Pmin

  • 18 © NEC Corporation 2015

    Polarization Sensitivity for NP sensor (Model)

    Model parameter ρc, ρmax for Stokes Q and U componets

    chxy1tan max2

    max2

    22

    yxyx

    ch

    chl

    Qcos 2

    1 cos 21 sin 21 cos 2

    ρc : Pol. sensitivity of CCD+BPFρl : Pol. sensitivity of telescopeρmax : Pol. sensitivity of telescope (maximum)xch : channel (pixel) location for AT directiony : pixel location for CT directionymax : pixel location for CT direction (maximum)

    -U

    -U

    +U

    +U

    -Q-Q

    +Q

    +Q

    x_axis

    y_axis

    6000pixel1pixel

    xch

    -y

    θ

    Imaging plane

    45°

    Coordinate definition

    0.0%

    0.5%

    1.0%

    1.5%

    2.0%

    VN1 VN2 VN3 VN4 VN5 VN6 VN7 VN8 VN9 VN10 VN11

    NPR

    NPN

    NPL

    ρmax

    -1.0%

    0.0%

    1.0%

    2.0%

    3.0%

    4.0%

    VN1 VN2 VN3 VN4 VN5 VN6 VN7 VN8 VN9 VN10 VN11

    NPR

    NPN

    NPL

    ρc

  • 19 © NEC Corporation 2015

    Modeling errors from 5 view angles data (3 for model, 2 for verification)

    ResultsQ, U modeling are realized with sufficientaccuracy comparing to the req.

    Relative errors between bands :

  • 20 © NEC Corporation 2015

    Target AccuracyPol. ratio (ΔP/Pstd) :

  • 21 © NEC Corporation 2015

    Conclusion

    Test results of VNR-SRU PFM met the requirement.

    Precise sensor models are analyzed for the data processingGeometric model

    Radiometric gain

    Polarization sensitivity model of NP sensor

    Mueller Matrix for PL sensor

    The final VNR test is now ongoing before the delivery to thesatellite system.Mechanical Environmental Test (Vibration and Acoustic Excitation)

    Final Performance Test (Integrating Sphere, Calibration Test , … etc)

    Target launch in 2017