89:; ?@A BCD EFG H#$)I JK@ )L* - nagare.or.jp · g POM ^Xd ef gD EF +G Mh ³ if g 7 j L Tg ¡l k÷...

6
! 23 "#$%&’()*+,-. 0123 4567 89:;<=>?@ABCDEFGH#$)IJK@)L* Numerical Simulation of the Internal Tidal Wave Field in the Global Ocean !"# $%, &’()*+,-., &/01/234 7-3-1, [email protected] 567 89, &’()*+,-., &/01/234 7-3-1, [email protected] Yoshihiro Niwa, Grad. Schl. of Science, The Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan Toshiyuki Hibiya, Grad. Schl. of Science, The Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan Internal tidal waves are ubiquitous phenomena in a stratified ocean where they are generated in response to tidal flows incident upon bottom topography. In this study, we investigate the global distribution of the semidiurnal and diurnal internal tidal wave fields using a hydrostatic sigma-coordinate numerical model. The model results show that energetic internal tidal waves is generated over the limited prominent topographic features such as those in the Indonesian Archipelago, the continental shelf slope in the East China Sea, and the mid-ocean ridges such as Hawaiian Ridge. By comparing the model results with current observations, it is found that the generated internal tidal waves can propagate a very long distance of more than several thousand kilometers across the open ocean. The conversion rate from the surface to internal tides integrated over the global ocean amounts to about 800GW, and nearly 25% of which is dissipated in the deep ocean. MNOPQE :;<;=>?@ABCDEF+GDHIJKLMN OPQRSTUVABWXYZ[\HE]^_‘RSTa bc@de^fTghHUVABWXYiEMjkTUV Wlmno?<pHqr@stpuvwxy^fTDD zMYABstpuvH{r@|}yDz@Tg~YU VABWXPQyHMjkTvYPQy S:>?HUVWDHGIJ YE]H*i™^HCQh TghHUVABWQyHCXYi™¡H¢£D :n/ThD^¥ƒ§™¤'Y“Xi™«‹ ›fiRflTHM{r@–²‡TD·S T (1) g¶‡Y•‚ƒ@E]’«‹„”p»…/ TMXYUVABWstpuvH;v:p@‰¿ `M´^YˆSM˜¯CH˘˙@¨ ˚¸v˝˛ˇhD¶—rD@Tg ˆHDYNiwa and Hibiya (2) XMl]Z eD/TUVABWHÆv˝ ˛‡gˆHªY@UVABWHPQ¶L* ØŒºEYE@Hæ@EF+GMRSY hSEF+GH¿ıUVABWHstpu v¿¶‰c@zlhD`M g @¶YNiwa and Hibiya (2) ^Xøœßl] MHMüYøœyHl] 17 ! H"#@$%ßM¿–øœ˛‡&Y $%ß ’()*+,/TNˇ@UVABW˘˙M -d^@Dˇ./¶f‡g 01Y 2H)345 øH678”v˚9vnH:;UVABW¶PQy O(1000)km <´+,ˇT=>?RST (3),(4) g~YNiwa and Hibiya (2) @&ABHCD (5)(6) XY2 zEF/TG5HAH M 2 H3§¿HUVABWHI eDjOY5HA K 1 H3§¿@J¿AHUVAB WH;v:p¿MlXKLM@g ˆh^3CD^XYqrN¿A^fT M 2 H3(12.42 6 ), S 2 H3(12 6), K 1 H3(23.92 6), O 1 H3(25.8 6) HUVABWH;v:p¿`M/T&MYZ ,O6MP:v^T„”pMd1c@E F+G*¥ƒ§™jNQ:;<;=>?ABCRIST ^Æv˝˛‡g RN#$ST øœßXUVEW 80˚S 80˚N Hß^f TXY 1Z gPrinceton Ocean Model (POM)L[¡\* %]tn?^_ Navier-Stokes ‘abc¿ gPOM ^XdefgDEF+GMhifg 7jLTg¡lk/l|4X Smagorinsky „” p (7) Ydek/l|4X Pacanowski and Philander „” p (8) m‡øœgc¿X¡l‘nMo 1/15˚Y de‘nM 40 9pHøœpqm‡˛‡gmL EF+G”v˚X:rƒ¶ 1/30sH ETOPO2 H¡i” v˚øœ¸>U^ltzH^fTg˜3¥ƒ§ ™X Levitus Hultvw”v˚x&g~Y: ;<;=>?@AB‚ƒN L- d/T & M Matsumoto (9) x&:;<;=>?ABHyz{|v˚„”pUMO}Rflg3CD^XqrN¿A^f TG5HAH M 2 ,S 2 ¿AD5HAH K 1 ,O 1 ¿AH~v O6MY3H[„”p 56 5 gRMYhˇS2H 16 5H6 78M:;_/hDMNOYM 2 , S 2 , K 1 , O 1

Transcript of 89:; ?@A BCD EFG H#$)I JK@ )L* - nagare.or.jp · g POM ^Xd ef gD EF +G Mh ³ if g 7 j L Tg ¡l k÷...

Page 1: 89:;  ?@A BCD EFG H#$)I JK@ )L* - nagare.or.jp · g POM ^Xd ef gD EF +G Mh ³ if g 7 j L Tg ¡l k÷ /l ... D O1¿A HU VA B X ¶ @ T< X ÃH ½¾ ¿ À¶Ã S S M2¿AD K1¿A

! 23"#$%&'()*+,-./

0123 4567

89:;<=>?@ABCDEFGH#$)IJK@)L*

Numerical Simulation of the Internal Tidal Wave Field in the Global Ocean !"# $%, &'()*+,-., &/01/234 7-3-1, [email protected]

567 89, &'()*+,-., &/01/234 7-3-1, [email protected]

Yoshihiro Niwa, Grad. Schl. of Science, The Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

Toshiyuki Hibiya, Grad. Schl. of Science, The Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

Internal tidal waves are ubiquitous phenomena in a stratified ocean where they are generated in response to tidal

flows incident upon bottom topography. In this study, we investigate the global distribution of the semidiurnal

and diurnal internal tidal wave fields using a hydrostatic sigma-coordinate numerical model. The model results

show that energetic internal tidal waves is generated over the limited prominent topographic features such as

those in the Indonesian Archipelago, the continental shelf slope in the East China Sea, and the mid-ocean ridges

such as Hawaiian Ridge. By comparing the model results with current observations, it is found that the generated

internal tidal waves can propagate a very long distance of more than several thousand kilometers across the open

ocean. The conversion rate from the surface to internal tides integrated over the global ocean amounts to about

800GW, and nearly 25% of which is dissipated in the deep ocean.

MNOPQE

:;<;=>?@ABCDEF+GDHIJKLMN

OPQRSTUVABWXYZ[\HE]^_`RSTa

bc@de^fTghHUVABWXYiEMjkTUV

Wlmno?<pHqr@stpuvwxy^fTDD

zMYABstpuvH{r@|}yDz@Tg~�YU

VABWXPQyH��MjkT��v����YPQy

���S�:>?����HUVW�DH��GIJ�

�����YE]H�*i�^H�C�����Qh��

 TghHUVABWQyH�C��XYi�¡H¢£D

:��n¤ThD^¥¦§��¨©�Yª �Xi�«¬

�­®R¯THM{r@°±�²³� TD´µ�S�

 T(1)g��¶³�Y·¸¦@E]'«¬¹ºp�»¼¤

TMXYUVABWstpuvH�;v:p@½¾¿À�

Á��M��Â^YÃSMÄÅ ��C��HÆÇ@È�

ÉÊËÌv�Í��ÎÏhD¶Ðr�ÑÒD@Tg

ÃHÓÔÕD��YNiwa and Hibiya(2)XÖ×MØl]Z

Ù�ÚeD¤TUVABWHÛÜÝÞß�àáâv�Í

��γ�gÃHãäYåæ@UVABWHPQ¶çè*

éêëEìYíîïEì@ðHñò@EF+GMó�RSY

hS�EF+GH¿À�ôõ��UVABWHstpu

v¿À¶ò� ½¾c@�Ôö÷�zøhD�Á��M

��g

���@¶�YNiwa and Hibiya(2)^XùúûÙ�Øl]

Mó���HMüµYùúýyHþÿ��Øl]� 17!

H"#@$%ûÙM¿±��ùú�γ��&Y$%ûÙ

¾�'(��)*�+,¤TNÏ@UVABW�ÆÇM

-d^�@ D Ï./¶f³�g01Y2�H)345

ùH678ºvÊ9vnH:;��UVABW¶PQy

�� O(1000)km <Â+,�ÏTÑ=÷¶>?RS� T

(3),(4)g~�YNiwa and Hibiya(2)�@&ABHCD(5)(6)XY2

zEF¤TG5HAHM2H3§¿HUVABWHI�Ú

eD��jOY5HA K1H3§¿@ðJ¿AHUVAB

WH�;v:p¿ÀMø �XK�LM�� @ g

Ãh^3CD^XYqrN¿A^fT M2H3(12.42 6

¾), S2H3(126¾), K1H3(23.926¾), O1H3(25.86¾)

HUVABWH�;v:p¿À�Á��M¤T�&MYZ

,�O6MP:v^�TÛÜÝÞß¹ºpMd1c@E

F+G*¥¦§�jNQ:;<;=>?ABC�RIST

^Þß�àáâv�Í��γ�g

RN#$ST//

ùúûÙXUVEÙ�W � 80˚S�� 80˚NHûÙ^f

TXY 1ZgPrinceton Ocean Model (POM)�L �[¡\*

%]tn?�^�_�� Navier-Stokes `ab�Þßc¿

��gPOM ^XdefgD��EF+GMh³�ifg

7�jL�� Tg¡lk÷/l|4ÞX Smagorinsky¹º

p(7)Ydek÷/l|4ÞX Pacanowski and Philander¹º

p(8)�m³�ùú��gÞßc¿X¡l`nM¾o 1/15˚Y

de`nM 40â9pHùúpq�m³�γ�gmL�

�EF+GºvÊX:r¦¶ 1/30sH ETOPO2 H¡iº

vÊ�ùú�Ë>�U^lt��zH^fTgÄ3¥¦§

�X LevitusHultvwߺv��x&�g~�Y:

;<;=>?@AB�¸¦NL-d¤T�&M

Matsumoto �(9)¶x&�:;<;=>?ABHyz{|º

vÊ�¹ºpUMO}R¯�g3CD^XqrN¿A^f

TG5HAH M2,S2¿AD5HAH K1,O1¿AH~�v�

���O6M�µY�3H[�����¹ºp� 565¾

����gR�MYhÏ����S�2�H 165¾H6

78MÚ����:;�_¤hDMNOYM2, S2, K1, O1

Page 2: 89:;  ?@A BCD EFG H#$)I JK@ )L* - nagare.or.jp · g POM ^Xd ef gD EF +G Mh ³ if g 7 j L Tg ¡l k÷ /l ... D O1¿A HU VA B X ¶ @ T< X ÃH ½¾ ¿ À¶Ã S S M2¿AD K1¿A

! 23"#$%&'()*+,-./

0123 4567

�¿AH��H��*|I�ùú��g���YS2 ¿A

D O1¿AHUVAB�X��¶�@T<�XÃH½¾¿

À¶ÃS�S M2¿AD K1¿AHUVAB�D�÷cM

'�L{��@ H^Y3�^XqM M2, K1¿AHUV

ABWHùúãäMø ��¤g

Fig.1: The whole model domain together with the bottom topography. Block-shaped areas enclosed by thick yellow line

show the regions including prominent topographic features. /

7NUV/

Y 2 XG5H3H M2H3§¿HUVABWH��st

puv�Z¡i^dec¿��zHH½¾¿À^fTg

Niwa and Hibiya[2001]¶>?��NÏMYUVABWHå

æ@PQyX��^�øg·¶¥¦��M��¤Tñò

@EF+GMó�RS�jOYÃS�ôõ��YM2 H3

§¿HUVABWHstpuvâ9p¶�VØl]Yï�

�t����EY�Vï��]Y'�]� Eì@ð^ò

�L·L@³� ThD¶¿�Tg

Y 3 XU�Øl]H�¡¦ÙH M2UVABW��l'

��zH^Y¡i 1000m MjkT¢¥¦zHde{|H

¿À^fTgM2 UVABWH£yc@¡lW)Xÿ

150km a¦^fOYçèéêëEì�p¤�E¥@ðP

QyH��^Hde{|H��XÞ¦ m M�¤ThD¶

��Tg

Ô`YY 4 X5H3H K1H3§¿HUVABWH��

stpuvH½¾¿À^fTgK1 UVABWstpuv

X�¡¦ÙMó�RS� ThD¶¿�T¶YhSX K1

ABH3(23.92 6¾)¶+,§¨H©÷H3D¢�L@T

ª\¡¦ 33.4sNOz·¡¦«^X K1UVABW¶+,

WD��§�C¬��­®M+,^�@L@T�&^f

Tg���ª\¡¦NOz·¡¦«^zh¯Ù�EF+G

H��^X+GM°±RS� K1UVABW¶PQRS�

 TgK1UVABWHåæ@PQyXM2UVABWM6

²ó�RS�jOY³M&�´EHµ�ï��t����

E@ðYUØl]�VM¶³�¿À�� ThD¶¿�Tg

Y 5 X K1UVABW�Hl'Y^fT¶Yp¤�E¥

^ K1UVABW¶³MåæMPQRS�jOYÃH£y

c@¡lW)Xÿ 300km ^fTg~�Yª\¡¦ 33.4s

<UHçèéêëEìH2U·VMj �+GM°±R

S�+GHO�+,¤T K1UVABW¶¸¹^�Tg

Fig. 2: Model predicted distribution of the depth-integrated kinetic energy of the

M2 internal tidal wave.

Fig. 3: The model predicted distribution of vertical isopycnal

displacement of the M2 internal tidal waves at a depth of

1000m in the mid-latitude North-Western Pacific.

Page 3: 89:;  ?@A BCD EFG H#$)I JK@ )L* - nagare.or.jp · g POM ^Xd ef gD EF +G Mh ³ if g 7 j L Tg ¡l k÷ /l ... D O1¿A HU VA B X ¶ @ T< X ÃH ½¾ ¿ À¶Ã S S M2¿AD K1¿A

! 23"#$%&'()*+,-./

0123 4567

Fig. 4: As in Figure 2 but for the K1 internal tidal wave.

Fig. 5: As in Figure 3 but for the K1 internal tidal wave.

Y 6X�3H[�����ùúº» 5, 10, 20, 305�H

M2 UVABW�H6¾æ¼���� Tgö½@PQy

��UVABW¶¾v¿�M+,���;v:p@UV

ABW�¶G§RS� Tg³MYíîïEì�ÀËt�

�Á�^PQRS�UVABWXÞ km <Âz+,�

��ÉËP�VE¯M~^���� ThD¶¿�Tg

���Yd1HE]HUVABWXY3Þß1Ã^´Ä

RS� @ ÅÆHUVW���ÇÈÉ�D��GIJ

KL���stpuv�ÊÏhDMN³�YÃH+,*�

¶þóRSTÑ=÷¶fTgÃh^Y1ËMY 6HöMU

VABW¶Þ km <Â+,�ÏT��ÌͤT�&_

`CκvÊDùúãäDH6Ï�γ�gOregon 'Ð

H Buoy Archive Group HºvÊ9vnMfT)3457

����S�CκvÊ��YUVABW§¿¶ÑÒ^�

TNÏ$�Óp¾o¶ÔL�øde`nM¦¿@`Õ¶

fT_`+Õ� 282 ÕÖÒ��XY 7ZghS�H_`Õ

����S�¡lCÎH678ºvÊ��:��Èn~

×pÊvD2éØÙÚ�L �deÓÛ¹v�*G5H3

HUVABW§¿�ÑÒ�YÃHstpuv�ùú��g

Y 8XÄÜ`abMÃS�S6�Þ 55, 155, 305, 60

5H�GÝ�=��Þ�üµ�ùú�γ�ãäX'ßZ

D_`ãäXàßZD�6Ï��zH^fTghS�áT

DÝ�=��6¾¶ 55D 155H��HùúãäX_`

ãäM6²�stpuv¶Á��MéR HMÚ�YÝ�

=��6¾¶305D605H��HùúãäX_`ãäD

âãä�c^fThD¶¿�TghHhD��deÓÔ¹

v�HUVABWXEF+GHåæ�çk@ óO 305

<Â+,^�Y£yc@+,Φ (ÿ 3m/sec) �´µSè

*�M��Þ km Xjé� 10000km �Lz+,�ÏT

hD¶¸�&�S�g

Fig.6 : Model predicted distribution of vertical isopycnal displacement of the M2 internal tide at a depth of 1000m after 5days, 10days,

20days, 30days from the start of the calculation. The results of calculation with a 30-day damping are shown.

Page 4: 89:;  ?@A BCD EFG H#$)I JK@ )L* - nagare.or.jp · g POM ^Xd ef gD EF +G Mh ³ if g 7 j L Tg ¡l k÷ /l ... D O1¿A HU VA B X ¶ @ T< X ÃH ½¾ ¿ À¶Ã S S M2¿AD K1¿A

! 23"#$%&'()*+,-./

0123 4567

Fig.7: Locations of the long-term mooring stations at which observed

current data and the model results are compared.

Fig.8: Scatter plot comparing the first vertical-mode semidiurnal internal

tidal wave kinetic energy predicted by the model (abscissa-axis) and

that observed at locations shown in figure 5 (ordinate-axis). The

model results with 5-day damping (upper-left), 15day-damping

(upper-right), 30-day damping (lower-left), 60-day damping

(lower-right) are compared.

ÜMUVABWHPQê|Öa��ëcM�²T�&s

tpuvìí:;�γ�gÔABH3^6¾lt�R�

MZ¡i^delt��UVABWHstpuv`ab

XÜb^�µ�ST(10)g

DIS bc ! " g # $ Wbt D +

% # P # U D

%x+

% # P # V D

%y

&

'

(

(

(

)

*

+

+

+

(1)

hh^ gX{îüΦYDXZ¡iY !" XUVABMï

ÏÄ3¥¦§���H¥¦¶ðY !P X !" MïÏ\îH{

�Y( !U , !V )XUVABMïÏ¡lCÎ^¡lCÎ (U,V )

Hdelt (U,V )X:;<;=>?ACZ��H¶ð

( !U , !V ) " U #U,V #V( )^�ñ��YWbtX:;<;=

>?ABC (U,V )DEF+GHIJKLMN³�ò�T

deCÎ^fTghh^b(1)H�ÞHó)côõXYö

µHÓÔÞ¶:;<;=>?ABC��UVABW÷H

ø|zcù�OHstpuv¨úû�y�YöµHÓØÞ

¶UVABWH+,MNTstpuv~�>?nHæ|

�y¤gÃ��Yüµ DISbc ¶ø|zcù�OHUVA

BWstpuvHê|û�y�� Tg

Y 7XM2UVABWHstpuv¨úûXb(1)Höµ

ÓÔÞZH½¾¿À^fTghhMX¹ºpûÙ� 5º!5º

Hé%;>?M¿±��Y�%;>?U^stpuv¨ú

û�½¾c¿��ãä���� TgY 1��¿�TöMY

M2 UVABWHPQ¶ñò@EF+G¶fT³�HEÙ

Mó�RSThD¶NOX³�OD¸¹^�TgÔ`YY

8 X K1UVABWHstpuv¨úûH¿À^fT¶Y

K1 UVABWHPQEÙ¶Y�Ëáv�ý�Á�Y?Ë

pÁ�(þÿv!?E)Y&�´E'"#$zYï��t�

���EMâãó�RS� ThD¶NL¿�Tg

UVABW÷Hstpuv¨úû�ZE]^c¿¤T

D M2, S2, K1, O1 ¿A^ÃS�S 552GW (1GW=109W),

96GW, 86GW, 46GWD@O�ù^ 782GWD@³�ghS

XQAî��:;<;=>?ABM�µ�STstpu

vHáczO 3428GWHÿ 23%MÚ�¤Tg

Y 9XY 1HØ%&�^'~S�ñò@EF+G�@(

EÙ^c¿��stpuv¨ú^fTg�VØl]H¤;

¹�Á�Yï��t����EY�Vï��]^³MUV

ABW¶åæMPQRS� Tg~�Y'�]� EìM

6²zc¶éR Mz)��*YçèéêëEì�íîï

Eì^zUVABW¶+ûcMPQRS� ThD¶¿

�TgY 9M���stpuv¨úûH�ùX 550GWD

@OYZE]HUVABWstpuvH 70%¶hS�ñ

ò@EF+GMj �PQRS� ThDM@Tg

Fig.7: The conversion rate from the M2 barotropic to internal tidal

energy integrated over full water column within each 5º(longitude)

! 5º(latitude) area.

Fig. 8: As in Figure 7 but for K1 internal tide.

Page 5: 89:;  ?@A BCD EFG H#$)I JK@ )L* - nagare.or.jp · g POM ^Xd ef gD EF +G Mh ³ if g 7 j L Tg ¡l k÷ /l ... D O1¿A HU VA B X ¶ @ T< X ÃH ½¾ ¿ À¶Ã S S M2¿AD K1¿A

! 23"#$%&'()*+,-./

0123 4567

Fig9: Conversion rates of the M2, S2, K1 and O1 internal tides

integrated over the prominent topographic features shown in

figure 1.

Y 10 Xb(1)Hüµ��ácz³� M2,S2,K1,O1 ¿AH

ZUVABWHstpuvê|ûXb(1)HüµZH½¾

¿À^fTgstpuv¨úûH¿ÀXY 7,8ZM6²�

stpuvê|ûXUVABW¶+,¤T¿�k½¾c

M,¶O�©³�jOY)*�+,¤TUVABW¶��

¤Th¯ÙMj �stpuvê|¶j�� Töq¶

¿�Tg

Y 11 XUVABWHstpuvê|ûH¡i¿À^f

TgUVABWX¡i 0m-500m H.EÙ^³M+ûc

Mê|�� ThD¶¿�TgY 12Xstpuvê|û

H¡iMÚ¤T/c¿À^fT¶YZê|ë 782GWHÏ

0¡i 1000m NOi iEÙ^ê|¤TUVABWst

puvX 527GWD@³�ghHhDXYMunk and Wunsh(1)

¶ácz³�E]i�«¬H¨©��MÐrDRST�

C��stpuv2100GW HÏ0UVABW����w

xRSTHX 25%a¦^fThDôõ�� Tg

WNXYQ

3CD^XYqrN¿AHUVABWH�;v:p¿À

�d1c@EF+GY¥¦§�YAB~�v����RI

1S�ÛÜÝÞß�àáâv�Í��jh@ �²�gU

VABWHPQXñò@EF+G¶23¤T³�HEÙ

Mó�RS�jOY³M5H3HUVABWHPQ¶ï�

�t����EDU�Øl]Hh¯Mó�S� ThD

¶¿�³�ghÏ��³�HEÙ��+,¤TUVAB¶

�]Ù�Þ km<Âz+,�ÏThD¶Y)345CÎ

ºvÊH:;��Á��M@³�ghHNÏ@)*�+,

¤TUVABXE]UVWHablmno?<p^fT

Garrett-Munk no?<p(11)HG§¨©M{r@°±�ä

��� TD´µ�STgR�MYstpuv:;��P

QRSTUVABWHZstpuvÿ 800GWHÏ0Y¡

i1000m<ÂHiE^ê|RSTßXÿ500GWM¤4@

 hD¶¿�³�ghHßXi�«¬H¨©MÐrDRS

T�C��stpuv21000GW(1)H 25%M¤4*YhHh

DXstpuvìíH_Õ��´µ�i�«¬H¨©É

P56¿�R�M-´¤TÐr¶fThD�ôõ�� 

TD´µ�STg

Fig.10: The dissipation rate of the M2, S2, K1, and O1 internal tidal

wave energy integrated over the full water column within

each 5º(longitude) ! 5º(latitude) area.

Fig.11: Depth distribution of the dissipation rate of the M2, S2, K1,

and O1 internal tidal energy.

Fig.12: Cumulative depth distribution of the dissipation rate of

the M2, S2, K1, and O1 internal tidal energy.

Page 6: 89:;  ?@A BCD EFG H#$)I JK@ )L* - nagare.or.jp · g POM ^Xd ef gD EF +G Mh ³ if g 7 j L Tg ¡l k÷ /l ... D O1¿A HU VA B X ¶ @ T< X ÃH ½¾ ¿ À¶Ã S S M2¿AD K1¿A

! 23"#$%&'()*+,-./

0123 4567

Z[\]

(1) Munk, W. H., and Wunsch, C., “Abyssal recipes II:

energetics of tidal and wind mixing”, Deep-Sea Res.,

45(12)(1998), pp.1977-2010

(2) Niwa, Y., and Hibiya, T., “Numerical study of the spatial

distribution of the M2 internal tide in the Pacific Ocean”, J.

Geophys. Res., 105(C6)(2001), pp.13933-13943

(3) Alford, M.H., “Redistribution of energy available for ocean

mixing by long-range propagation of internal waves”,

Nature, 423(6936)(2003), pp.159-162

(4) Alford, M.H. and Zhao, ZX., ” Global patterns of low-mode

internal-wave propagation. Part I: Energy and energy

flux”, J. Phys. Oceanogr., 37(7) (2007), pp.1829-1848

(5) Simmons, H.L., Hallberg, R.W., and Arbic B.K.,” Internal

wave generation in a global baroclinic tide model”,

Deep-Sea Res., 51(25-26) (2008), pp.3043-3068

(6) Simmons, H.L.,” Spectral modification and geographic

redistribution of the semi-diurnal internal tide”, Ocean

Modelling, 21(3-4) (2008), pp.126-138

(7) Smagorinsky, J.S., “General circulation experiments with

the primitive equations, I, The basic experiment”, Mon.

Weather Rev., 91(3)(1963), pp.99-164

(8) Pacanowski R.C. and Philander S.G.H., “Parameterization

of vertical mixing in numerical models of tropical oceans”,

J. Phys. Oceanogr., 11(11) (1981), pp.1829-1848

(9) Matsumoto, K., Takanezawa T., and Ooe M., “Ocean tide

models developed by assimilating Topex/ Poseidon

altimeter data into hydrodynamical model: a global model

and a regional model around Japan”, J. Oceanogr., 56

(5)(2000), pp.567-581

(10) Niwa Y., and Hibiya, T., “Three-dimensional numerical

simulation of M2 internal tides in the East China Sea”, J.

Geophys. Res., 109(C4)(2004), doi:10.1029/2003

JC001923

(11) Munk, W. H., “Internal waves and small-scale processes”,

in Evolution of Physical Oceanography, edited by B. S.

Warren and C. Wunsch, MIT Press, Cambridge, Mass.,

(1981), pp. 264-291