8579ch21

download 8579ch21

of 13

Transcript of 8579ch21

  • 7/28/2019 8579ch21

    1/13

    Poularikas A. D. Legendre Polynomials

    The Handbook of Formulas and Tables for Signal Processing.

    Ed. Alexander D. PoularikasBoca Raton: CRC Press LLC,1999

    1999 by CRC Press LLC

  • 7/28/2019 8579ch21

    2/13

    1999 by CRC Press LLC

    21Legendre Polynomials21.1 Legendre Polynomials

    21.2 Legendre Functions of the Second Kind(Second Solution)

    21.3 Associated Legendre Polynomials

    21.4 Bounds for Legendre Polynomials

    21.5 Table of Legendre and Associate LegendreFunctions

    References

    21.1 Legendre Polynomials

    21.1.1 Definition

    21.1.2 Generating Function

    w(t,s) = w(t,s)

    21.1.3 Rodrigues Formula

    21.1.4 Recursive Formulas

    1.

    2.

    P tn k t

    k n k n k

    nn n

    n n

    n

    k

    n k n k

    n( )

    ( ) ( )!

    !( )!( )!

    [ / ]/

    ( ) /

    [ / ]

    =

    =

    =

    0

    2 21 2 2

    2 2

    22

    1 2

    even

    odd

    w t sst s

    P t s s

    P t s s

    n

    n

    n

    n

    n

    n

    ( , )

    ( )

    ( )

    = +

    =

    =

    =

    1

    1 2

    1

    1

    2

    0

    1

    0generating function

    P tn

    d

    dtt n

    n n

    n

    n

    n( )!

    ( ) , ,= =1

    21 0 1 22 L

    ( ) ( ) ( ) ( ) ( ) , ,n P t n t P t n P t nn n n

    + + + = =+ 1 2 1 0 1 21 1 L

    = + = =+P t t P t n P t P t P t n

    n n n11 0 1 2( ) ( ) ( ) ( ) ( ( ) ( ) , , ,derivative of L

  • 7/28/2019 8579ch21

    3/131999 by CRC Press LLC

    3.

    4.

    5.

    6.

    Figure 21.1 shows a few Legendre functions.

    21.1.5 Legendre Differential Equation

    If is a solution to the second-order DE

    For

    TABLE 21.1 Legendre Polynomials

    FIGURE 21.1

    t P t P t n P t nn n n = =( ) ( ) ( ) , ,1 1 2 L

    = + =+ P t P t n P t nn n n1 1 2 1 1 2( ) ( ) ( ) ( ) , ,L

    ( ) ( ) ( ) ( )t P t nt P t n P t n n n

    2

    11 =

    P t P t t 0 11( ) ( )= =

    P0

    1=

    P t1

    =

    P t2

    32

    2 12=

    P t t3

    52

    3 32=

    P t t4

    358

    4 308

    2 38= +

    P t t t 5 638 5 708 3 158= +

    P t t t 6

    23116

    6 31516

    4 10516

    2 516= +

    P t t t t 7

    42916

    7 69316

    5 31516

    3 3516= +

    y P x nn

    = =( ) , , , )( 0 1 2 L

    ( ) ( )1 2 1 02 + + =t y ty n n y

    t dd

    dyd

    n n y= + + =cos :

    sinsin ( )

    1 1 0

  • 7/28/2019 8579ch21

    4/131999 by CRC Press LLC

    Example

    From (21.1.4.4) and t= 1 implies For

    For and so forth. Hence

    21.1.6 Integral Representation

    1. Laplace integral:

    2. Mehler-Dirichlet formula:

    3. Schlfli integral:

    where C is any regular, simple, closed curve surrounding t.

    21.1.7 Complete Orthonormal System

    The Legendre polynomials are orthogonal in [1,1]

    and therefore the set

    is orthonormal.

    21.1.8 Asymptotic Representation:

    = fixed positive number

    21.1.9 Series Expansion

    Iff(t) is integrable in [1,1] then

    0 1 1 1 11 1

    = = nP nP P Pn n n n( ) ( ) ( ) ( ).or n P P= = =1 1 1 11 0, ( ) ( ) .n P P= = =2 1 1 1

    2 1, ( ) ( ) P

    n( ) .1 1=

    P t t t d n

    n( ) [ cos ]= + 1 102

    Pn

    d nn(cos )

    cos( )

    cos cos, , , ,

    = +

    < < = 2 2 0 0 1 2012

    P tj

    z

    z tdz

    n

    C

    n

    n n( )

    ( )

    ( )=

    +

    1

    2

    1

    2

    2

    1

    {[ ( )] ( )}/121 22 1n P t

    n+

    =

    = + =

    1

    1

    1

    1

    2

    0

    22 1

    0 1 2

    P t P t dt

    P t dt n

    n

    n m

    n

    ( ) ( )

    [ ( )] , ,L

    n n

    tn

    P t n( ) ( ) , ,=+

    =2 1

    20 1 2L

    Pn

    n nn(cos )

    sinsin ,

    +

    +

    2 1

    2 4,

    f t a P t tn n

    n

    ( ) ( )=